1
|
Giovannercole F, Gafeira Gonçalves L, Armengaud J, Varela Coelho A, Khomutov A, De Biase D. Integrated multi-omics unveil the impact of H-phosphinic analogs of glutamate and α-ketoglutarate on Escherichia coli metabolism. J Biol Chem 2024; 300:107803. [PMID: 39307306 PMCID: PMC11533085 DOI: 10.1016/j.jbc.2024.107803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/21/2024] Open
Abstract
Desmethylphosphinothricin (L-Glu-γ-PH) is the H-phosphinic analog of glutamate with carbon-phosphorus-hydrogen (C-P-H) bonds. In L-Glu-γ-PH the phosphinic group acts as a bioisostere of the glutamate γ-carboxyl group allowing the molecule to be a substrate of Escherichia coli glutamate decarboxylase, a pyridoxal 5'-phosphate-dependent α-decarboxylase. In addition, the L-Glu-γ-PH decarboxylation product, GABA-PH, is further metabolized by bacterial GABA-transaminase, another pyridoxal 5'-phosphate-dependent enzyme, and succinic semialdehyde dehydrogenase, a NADP+-dependent enzyme. The product of these consecutive reactions, the so-called GABA shunt, is succinate-PH, the H-phosphinic analog of succinate, a tricarboxylic acid cycle intermediate. Notably, L-Glu-γ-PH displays antibacterial activity in the same concentration range of well-established antibiotics in E. coli. The dipeptide L-Leu-Glu-γ-PH was shown to display an even higher efficacy, likely as a consequence of an improved penetration into the bacteria. Herein, to further understand the intracellular effects of L-Glu-γ-PH, 1H NMR-based metabolomics, and LC-MS-based shotgun proteomics were used. This study included also the keto-derivative of L-Glu-γ-PH, α-ketoglutarate-γ-PH (α-KG-γ-PH), which also exhibits antimicrobial activity. L-Glu-γ-PH and α-KG-γ-PH are found to similarly impact bacterial metabolism, although the overall effect of α-KG-γ-PH is more pervasive. Notably, α-KG-γ-PH is converted intracellularly into L-Glu-γ-PH, but the opposite was not found. In general, both molecules impact the pathways where aspartate, glutamate, and glutamine are used as precursors for the biosynthesis of related metabolites, activate the acid stress response, and deprive cells of nitrogen. This work highlights the multi-target drug potential of L-Glu-γ-PH and α-KG-γ-PH and paves the way for their exploitation as antimicrobials.
Collapse
Affiliation(s)
- Fabio Giovannercole
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy; Instituto de Tecnologia Química e Biológica, António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| | - Luís Gafeira Gonçalves
- Instituto de Tecnologia Química e Biológica, António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, Bagnols-sur-Ceze, France
| | - Ana Varela Coelho
- Instituto de Tecnologia Química e Biológica, António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Alex Khomutov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Daniela De Biase
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.
| |
Collapse
|
2
|
Khomutov MA, Giovannercole F, Onillon L, Demiankova MV, Vasilieva BF, Salikhov AI, Kochetkov SN, Efremenkova OV, Khomutov AR, De Biase D. A Desmethylphosphinothricin Dipeptide Derivative Effectively Inhibits Escherichia coli and Bacillus subtilis Growth. Biomolecules 2023; 13:1451. [PMID: 37892133 PMCID: PMC10604730 DOI: 10.3390/biom13101451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
New antibiotics are unquestionably needed to fight the emergence and spread of multidrug-resistant bacteria. To date, antibiotics targeting bacterial central metabolism have been poorly investigated. By determining the minimal inhibitory concentration (MIC) of desmethylphosphinothricin (Glu-γ-PH), an analogue of glutamate with a phosphinic moiety replacing the γ-carboxyl group, we previously showed its promising antibacterial activity on Escherichia coli. Herein, we synthetized and determined the growth inhibition exerted on E. coli by an L-Leu dipeptide derivative of Glu-γ-PH (L-Leu-D,L-Glu-γ-PH). Furthermore, we compared the growth inhibition obtained with this dipeptide with that exerted by the free amino acid, i.e., Glu-γ-PH, and by their phosphonic and non-desmethylated analogues. All the tested compounds were more effective when assayed in a chemically-defined minimal medium. The dipeptide L-Leu-D,L-Glu-γ-PH had a significantly improved antibacterial activity (2 μg/mL), at a concentration between the non-desmethytaled (0.1 μg/mL) and the phosphonic (80 μg/mL) analogues. Also, in Bacillus subtilis, the dipeptide L-Leu-D,L-Glu-γ-PH displayed an activity comparable to that of the antibiotic amoxicillin. This work highlights the antibacterial relevance of the phosphinic pharmacophore and proposes new avenues for the development of novel antimicrobial drugs containing the phosphinic moiety.
Collapse
Affiliation(s)
- Maxim A. Khomutov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia; (M.A.K.); (A.I.S.); (S.N.K.)
| | - Fabio Giovannercole
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, I-04100 Latina, Italy; (F.G.); (L.O.)
| | - Laura Onillon
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, I-04100 Latina, Italy; (F.G.); (L.O.)
| | - Marija V. Demiankova
- Gause Institute of New Antibiotics, Bol’shaya Pirogovskaya 11, 119021 Moscow, Russia; (M.V.D.); (B.F.V.); (O.V.E.)
| | - Byazilya F. Vasilieva
- Gause Institute of New Antibiotics, Bol’shaya Pirogovskaya 11, 119021 Moscow, Russia; (M.V.D.); (B.F.V.); (O.V.E.)
| | - Arthur I. Salikhov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia; (M.A.K.); (A.I.S.); (S.N.K.)
| | - Sergey N. Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia; (M.A.K.); (A.I.S.); (S.N.K.)
| | - Olga V. Efremenkova
- Gause Institute of New Antibiotics, Bol’shaya Pirogovskaya 11, 119021 Moscow, Russia; (M.V.D.); (B.F.V.); (O.V.E.)
| | - Alex R. Khomutov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia; (M.A.K.); (A.I.S.); (S.N.K.)
| | - Daniela De Biase
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, I-04100 Latina, Italy; (F.G.); (L.O.)
| |
Collapse
|
3
|
Mari G, De Crescentini L, Favi G, Santeusanio S, Mantellini F. Straightforward Access to Pyrazine‐(2,3)‐diones through Sequential Three‐Component Reaction. European J Org Chem 2023. [DOI: 10.1002/ejoc.202201080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Giacomo Mari
- Department of Biomolecular Sciences Section of Organic Chemistry and Pharmaceutical Technologies University of Urbino “Carlo Bo” Via I Maggetti 24 61029 Urbino PU Italy
| | - Lucia De Crescentini
- Department of Biomolecular Sciences Section of Organic Chemistry and Pharmaceutical Technologies University of Urbino “Carlo Bo” Via I Maggetti 24 61029 Urbino PU Italy
| | - Gianfranco Favi
- Department of Biomolecular Sciences Section of Organic Chemistry and Pharmaceutical Technologies University of Urbino “Carlo Bo” Via I Maggetti 24 61029 Urbino PU Italy
| | - Stefania Santeusanio
- Department of Biomolecular Sciences Section of Organic Chemistry and Pharmaceutical Technologies University of Urbino “Carlo Bo” Via I Maggetti 24 61029 Urbino PU Italy
| | - Fabio Mantellini
- Department of Biomolecular Sciences Section of Organic Chemistry and Pharmaceutical Technologies University of Urbino “Carlo Bo” Via I Maggetti 24 61029 Urbino PU Italy
| |
Collapse
|
4
|
Berlinck RGS, Crnkovic CM, Gubiani JR, Bernardi DI, Ióca LP, Quintana-Bulla JI. The isolation of water-soluble natural products - challenges, strategies and perspectives. Nat Prod Rep 2021; 39:596-669. [PMID: 34647117 DOI: 10.1039/d1np00037c] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Covering period: up to 2019Water-soluble natural products constitute a relevant group of secondary metabolites notably known for presenting potent biological activities. Examples are aminoglycosides, β-lactam antibiotics, saponins of both terrestrial and marine origin, and marine toxins. Although extensively investigated in the past, particularly during the golden age of antibiotics, hydrophilic fractions have been less scrutinized during the last few decades. This review addresses the possible reasons on why water-soluble metabolites are now under investigated and describes approaches and strategies for the isolation of these natural compounds. It presents examples of several classes of hydrosoluble natural products and how they have been isolated. Novel stationary phases and chromatography techniques are also reviewed, providing a perspective towards a renaissance in the investigation of water-soluble natural products.
Collapse
Affiliation(s)
- Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Camila M Crnkovic
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil
| | - Juliana R Gubiani
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Darlon I Bernardi
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Laura P Ióca
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Jairo I Quintana-Bulla
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| |
Collapse
|
5
|
Simon MA, Ongpipattanakul C, Nair SK, van der Donk WA. Biosynthesis of fosfomycin in pseudomonads reveals an unexpected enzymatic activity in the metallohydrolase superfamily. Proc Natl Acad Sci U S A 2021; 118:e2019863118. [PMID: 34074759 PMCID: PMC8201877 DOI: 10.1073/pnas.2019863118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The epoxide-containing phosphonate natural product fosfomycin is a broad-spectrum antibiotic used in the treatment of cystitis. Fosfomycin is produced by both the plant pathogen Pseudomonas syringae and soil-dwelling streptomycetes. While the streptomycete pathway has recently been fully elucidated, the pseudomonad pathway is still mostly elusive. Through a systematic evaluation of heterologous expression of putative biosynthetic enzymes, we identified the central enzyme responsible for completing the biosynthetic pathway in pseudomonads. The missing transformation involves the oxidative decarboxylation of the intermediate 2-phosphonomethylmalate to a new intermediate, 3-oxo-4-phosphonobutanoate, by PsfC. Crystallographic studies reveal that PsfC unexpectedly belongs to a new class of diiron metalloenzymes that are part of the polymerase and histidinol phosphatase superfamily.
Collapse
Affiliation(s)
- Max A Simon
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Chayanid Ongpipattanakul
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Satish K Nair
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801;
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Wilfred A van der Donk
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801;
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- HHMI, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
6
|
A Phosphonate Natural Product Made by Pantoea ananatis is Necessary and Sufficient for the Hallmark Lesions of Onion Center Rot. mBio 2021; 12:mBio.03402-20. [PMID: 33531390 PMCID: PMC7858074 DOI: 10.1128/mbio.03402-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Pantoea ananatis is the primary cause of onion center rot. Genetic data suggest that a phosphonic acid natural product is required for pathogenesis; however, the nature of the molecule is unknown. Here, we show that P. ananatis produces at least three phosphonates, two of which were purified and structurally characterized. The first, designated pantaphos, was shown to be 2-(hydroxy[phosphono]methyl)maleate; the second, a probable biosynthetic precursor, was shown to be 2-(phosphonomethyl)maleate. Purified pantaphos is both necessary and sufficient for the hallmark lesions of onion center rot. Moreover, when tested against mustard seedlings, the phytotoxic activity of pantaphos was comparable to the widely used herbicides glyphosate and phosphinothricin. Pantaphos was also active against a variety of human cell lines but was significantly more toxic to glioblastoma cells. Pantaphos showed little activity when tested against a variety of bacteria and fungi.IMPORTANCE Pantoea ananatis is a significant plant pathogen that targets a number of important crops, a problem that is compounded by the absence of effective treatments to prevent its spread. Our identification of pantaphos as the key virulence factor in onion center rot suggests a variety of approaches that could be employed to address this significant plant disease. Moreover, the general phytotoxicity of the molecule suggests that it could be developed into an effective herbicide to counter the alarming rise in herbicide-resistant weeds.
Collapse
|
7
|
Enzymatic kinetic resolution of desmethylphosphinothricin indicates that phosphinic group is a bioisostere of carboxyl group. Commun Chem 2020; 3:121. [PMID: 36703359 PMCID: PMC9814759 DOI: 10.1038/s42004-020-00368-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/04/2020] [Indexed: 01/29/2023] Open
Abstract
Escherichia coli glutamate decarboxylase (EcGadB), a pyridoxal 5'-phosphate (PLP)-dependent enzyme, is highly specific for L-glutamate and was demonstrated to be effectively immobilised for the production of γ-aminobutyric acid (GABA), its decarboxylation product. Herein we show that EcGadB quantitatively decarboxylates the L-isomer of D,L-2-amino-4-(hydroxyphosphinyl)butyric acid (D,L-Glu-γ-PH), a phosphinic analogue of glutamate containing C-P-H bonds. This yields 3-aminopropylphosphinic acid (GABA-PH), a known GABAB receptor agonist and provides previously unknown D-Glu-γ-PH, allowing us to demonstrate that L-Glu-γ-PH, but not D-Glu-γ-PH, is responsible for D,L-Glu-γ-PH antibacterial activity. Furthermore, using GABase, a preparation of GABA-transaminase and succinic semialdehyde dehydrogenase, we show that GABA-PH is converted to 3-(hydroxyphosphinyl)propionic acid (Succinate-PH). Hence, PLP-dependent and NADP+-dependent enzymes are herein shown to recognise and metabolise phosphinic compounds, leaving unaffected the P-H bond. We therefore suggest that the phosphinic group is a bioisostere of the carboxyl group and the metabolic transformations of phosphinic compounds may offer a ground for prodrug design.
Collapse
|
8
|
Khasiyatullina NR, Islamov DR, Mironov VF. Some Features of Reaction of 2-Methyl-1,4-naphthoquinone with H-Phosphonium Salts Based on Diphenylphosphine. RUSS J GEN CHEM+ 2019. [DOI: 10.1134/s1070363219110094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Petkowski JJ, Bains W, Seager S. Natural Products Containing 'Rare' Organophosphorus Functional Groups. Molecules 2019; 24:E866. [PMID: 30823503 PMCID: PMC6429109 DOI: 10.3390/molecules24050866] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/13/2019] [Accepted: 02/22/2019] [Indexed: 12/25/2022] Open
Abstract
Phosphorous-containing molecules are essential constituents of all living cells. While the phosphate functional group is very common in small molecule natural products, nucleic acids, and as chemical modification in protein and peptides, phosphorous can form P⁻N (phosphoramidate), P⁻S (phosphorothioate), and P⁻C (e.g., phosphonate and phosphinate) linkages. While rare, these moieties play critical roles in many processes and in all forms of life. In this review we thoroughly categorize P⁻N, P⁻S, and P⁻C natural organophosphorus compounds. Information on biological source, biological activity, and biosynthesis is included, if known. This review also summarizes the role of phosphorylation on unusual amino acids in proteins (N- and S-phosphorylation) and reviews the natural phosphorothioate (P⁻S) and phosphoramidate (P⁻N) modifications of DNA and nucleotides with an emphasis on their role in the metabolism of the cell. We challenge the commonly held notion that nonphosphate organophosphorus functional groups are an oddity of biochemistry, with no central role in the metabolism of the cell. We postulate that the extent of utilization of some phosphorus groups by life, especially those containing P⁻N bonds, is likely severely underestimated and has been largely overlooked, mainly due to the technological limitations in their detection and analysis.
Collapse
Affiliation(s)
- Janusz J Petkowski
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
| | - William Bains
- Rufus Scientific, 37 The Moor, Melbourn, Royston, Herts SG8 6ED, UK.
| | - Sara Seager
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
- Department of Physics, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
| |
Collapse
|
10
|
Asselin JAE, Bonasera JM, Beer SV. Center Rot of Onion (Allium cepa) Caused by Pantoea ananatis Requires pepM, a Predicted Phosphonate-Related Gene. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:1291-1300. [PMID: 29953334 DOI: 10.1094/mpmi-04-18-0077-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Pantoea ananatis, a cause of center rot of onion, is problematic in the United States and elsewhere. The bacterium lacks disease determinants common to most other bacterial pathogens of plants. A genomic island containing the gene pepM was detected within many onion-pathogenic strains of P. ananatis of diverse origins. The pepM gene of P. ananatis putatively encodes a protein that converts phosphoenolpyruvate to phosphonopyruvate, the first step in the biosynthesis of phosphonates and related molecules. This gene appears to be essential for center rot disease. Deletion of pepM rendered the mutant strain unable to cause lesions in leaves of growing onions and water-soaking of inoculated yellow onion bulbs. Furthermore, growth of the deletion mutant in onion leaves was significantly diminished compared with wild-type bacteria, and the mutant failed to cause cell death in tobacco. Complementation of the mutated strain with pepM restored the phenotype to wild-type capability. The pepM gene is the first pathogenicity factor identified that affects bacterial fitness as well as symptom development in both leaves and bulbs in a pathogen causing center rot of onion.
Collapse
Affiliation(s)
- Jo Ann E Asselin
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14853, U.S.A
| | - Jean M Bonasera
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14853, U.S.A
| | - Steven V Beer
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14853, U.S.A
| |
Collapse
|
11
|
Artiukhov AV, Graf AV, Bunik VI. Directed regulation of multienzyme complexes of 2-oxo acid dehydrogenases using phosphonate and phosphinate analogs of 2-oxo acids. BIOCHEMISTRY (MOSCOW) 2016; 81:1498-1521. [DOI: 10.1134/s0006297916120129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Abstract
Organophosphonic acids are unique as natural products in terms of stability and mimicry. The C-P bond that defines these compounds resists hydrolytic cleavage, while the phosphonyl group is a versatile mimic of transition-states, intermediates, and primary metabolites. This versatility may explain why a variety of organisms have extensively explored the use organophosphonic acids as bioactive secondary metabolites. Several of these compounds, such as fosfomycin and bialaphos, figure prominently in human health and agriculture. The enzyme reactions that create these molecules are an interesting mix of chemistry that has been adopted from primary metabolism as well as those with no chemical precedent. Additionally, the phosphonate moiety represents a source of inorganic phosphate to microorganisms that live in environments that lack this nutrient; thus, unusual enzyme reactions have also evolved to cleave the C-P bond. This review is a comprehensive summary of the occurrence and function of organophosphonic acids natural products along with the mechanisms of the enzymes that synthesize and catabolize these molecules.
Collapse
Affiliation(s)
- Geoff P Horsman
- Department of Chemistry and Biochemistry, Wilfrid Laurier University , Waterloo, Ontario N2L 3C5, Canada
| | - David L Zechel
- Department of Chemistry, Queen's University , Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
13
|
|
14
|
Cioni JP, Doroghazi J, Ju KS, Yu X, Evans BS, Lee J, Metcalf WW. Cyanohydrin phosphonate natural product from Streptomyces regensis. JOURNAL OF NATURAL PRODUCTS 2014; 77:243-249. [PMID: 24437999 PMCID: PMC3993929 DOI: 10.1021/np400722m] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Indexed: 06/03/2023]
Abstract
Streptomyces regensis strain WC-3744 was identified as a potential phosphonic acid producer in a large-scale screen of microorganisms for the presence of the pepM gene, which encodes the key phosphonate biosynthetic enzyme phosphoenolpyruvate phosphonomutase. (31)P NMR revealed the presence of several unidentified phosphonates in spent medium after growth of S. regensis. These compounds were purified and structurally characterized via extensive 1D and 2D NMR spectroscopic and mass spectrometric analyses. Three new phosphonic acid metabolites, whose structures were confirmed by comparison to chemically synthesized standards, were observed: (2-acetamidoethyl)phosphonic acid (1), (2-acetamido-1-hydroxyethyl)phosphonic (3), and a novel cyanohydrin-containing phosphonate, (cyano(hydroxy)methyl)phosphonic acid (4). The gene cluster responsible for synthesis of these molecules was also identified from the draft genome sequence of S. regensis, laying the groundwork for future investigations into the metabolic pathway leading to this unusual natural product.
Collapse
Affiliation(s)
- Joel P. Cioni
- Department of Microbiology and The Institute for Genomic Biology, University of Illinois, Urbana−Champaign, Illinois 61801, United States
| | - James
R. Doroghazi
- Department of Microbiology and The Institute for Genomic Biology, University of Illinois, Urbana−Champaign, Illinois 61801, United States
| | - Kou-San Ju
- Department of Microbiology and The Institute for Genomic Biology, University of Illinois, Urbana−Champaign, Illinois 61801, United States
| | - Xiaomin Yu
- Department of Microbiology and The Institute for Genomic Biology, University of Illinois, Urbana−Champaign, Illinois 61801, United States
| | - Bradley S. Evans
- Department of Microbiology and The Institute for Genomic Biology, University of Illinois, Urbana−Champaign, Illinois 61801, United States
| | - Jaeheon Lee
- Department of Microbiology and The Institute for Genomic Biology, University of Illinois, Urbana−Champaign, Illinois 61801, United States
| | - William W. Metcalf
- Department of Microbiology and The Institute for Genomic Biology, University of Illinois, Urbana−Champaign, Illinois 61801, United States
| |
Collapse
|
15
|
Gao J, Ju KS, Yu X, Velásquez JE, Mukherjee S, Lee J, Zhao C, Evans BS, Doroghazi JR, Metcalf WW, van der Donk WA. Use of a phosphonate methyltransferase in the identification of the fosfazinomycin biosynthetic gene cluster. Angew Chem Int Ed Engl 2014; 53:1334-7. [PMID: 24376039 PMCID: PMC3927463 DOI: 10.1002/anie.201308363] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/16/2013] [Indexed: 12/19/2022]
Abstract
Natural product discovery has been boosted by genome mining approaches, but compound purification is often still challenging. We report an enzymatic strategy for "stable isotope labeling of phosphonates in extract" (SILPE) that facilitates their purification. We used the phosphonate methyltransferase DhpI involved in dehydrophos biosynthesis to methylate a variety of phosphonate natural products in crude spent medium with a mixture of labeled and unlabeled S-adenosyl methionine. Mass-guided fractionation then allowed straightforward purification. We illustrate its utility by purifying a phosphonate that led to the identification of the fosfazinomycin biosynthetic gene cluster. This unusual natural product contains a hydrazide linker between a carboxylic acid and a phosphonic acid. Bioinformatic analysis of the gene cluster provides insights into how such a structure might be assembled.
Collapse
Affiliation(s)
- Jiangtao Gao
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West, Gregory Drive, Urbana, Illinois 61801, USA
| | - Kou-San Ju
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West, Gregory Drive, Urbana, Illinois 61801, USA
| | - Xiaomin Yu
- Department of Microbiology, 601 South Goodwin Avenue, Urbana, Illinois 61801, USA
| | - Juan E. Velásquez
- Howard Hughes Medical Institute and Department of Chemistry, University of Illinois at Urbana-Champaign, 600, South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Subha Mukherjee
- Howard Hughes Medical Institute and Department of Chemistry, University of Illinois at Urbana-Champaign, 600, South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Jaeheon Lee
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West, Gregory Drive, Urbana, Illinois 61801, USA
| | - Changming Zhao
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West, Gregory Drive, Urbana, Illinois 61801, USA
| | - Bradley S. Evans
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West, Gregory Drive, Urbana, Illinois 61801, USA
| | - James R. Doroghazi
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West, Gregory Drive, Urbana, Illinois 61801, USA
| | - William W. Metcalf
- Department of Microbiology, 601 South Goodwin Avenue, Urbana, Illinois 61801, USA
| | - Wilfred A. van der Donk
- Howard Hughes Medical Institute and Department of Chemistry, University of Illinois at Urbana-Champaign, 600, South Mathews Avenue, Urbana, Illinois 61801, USA
| |
Collapse
|
16
|
Gao J, Ju KS, Yu X, Velásquez JE, Mukherjee S, Lee J, Zhao C, Evans BS, Doroghazi JR, Metcalf WW, van der Donk WA. Use of a Phosphonate Methyltransferase in the Identification of the Fosfazinomycin Biosynthetic Gene Cluster. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201308363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
Diversity and abundance of phosphonate biosynthetic genes in nature. Proc Natl Acad Sci U S A 2013; 110:20759-64. [PMID: 24297932 DOI: 10.1073/pnas.1315107110] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phosphonates, molecules containing direct carbon-phosphorus bonds, compose a structurally diverse class of natural products with interesting and useful biological properties. Although their synthesis in protozoa was discovered more than 50 y ago, the extent and diversity of phosphonate production in nature remains poorly characterized. The rearrangement of phosphoenolpyruvate (PEP) to phosphonopyruvate, catalyzed by the enzyme PEP mutase (PepM), is shared by the vast majority of known phosphonate biosynthetic pathways. Thus, the pepM gene can be used as a molecular marker to examine the occurrence and abundance of phosphonate-producing organisms. Based on the presence of this gene, phosphonate biosynthesis is common in microbes, with ~5% of sequenced bacterial genomes and 7% of genome equivalents in metagenomic datasets carrying pepM homologs. Similarly, we detected the pepM gene in ~5% of random actinomycete isolates. The pepM-containing gene neighborhoods from 25 of these isolates were cloned, sequenced, and compared with those found in sequenced genomes. PEP mutase sequence conservation is strongly correlated with conservation of other nearby genes, suggesting that the diversity of phosphonate biosynthetic pathways can be predicted by examining PEP mutase diversity. We used this approach to estimate the range of phosphonate biosynthetic pathways in nature, revealing dozens of discrete groups in pepM amplicons from local soils, whereas hundreds were observed in metagenomic datasets. Collectively, our analyses show that phosphonate biosynthesis is both diverse and relatively common in nature, suggesting that the role of phosphonate molecules in the biosphere may be more important than is often recognized.
Collapse
|