1
|
Thompson MD, Chidiac P, Jose PA, Hauser AS, Gorvin CM. Genetic variants of accessory proteins and G proteins in human genetic disease. Crit Rev Clin Lab Sci 2025; 62:113-134. [PMID: 39743506 PMCID: PMC11854058 DOI: 10.1080/10408363.2024.2431853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/14/2024] [Accepted: 11/16/2024] [Indexed: 01/04/2025]
Abstract
We present a series of three articles on the genetics and pharmacogenetics of G protein- coupled receptors (GPCR). In the first article, we discuss genetic variants of the G protein subunits and accessory proteins that are associated with human phenotypes; in the second article, we build upon this to discuss "G protein-coupled receptor (GPCR) gene variants and human genetic disease" and in the third article, we survey "G protein-coupled receptor pharmacogenomics". In the present article, we review the processes of ligand binding, GPCR activation, inactivation, and receptor trafficking to the membrane in the context of human genetic disease resulting from pathogenic variants of accessory proteins and G proteins. Pathogenic variants of the genes encoding G protein α and β subunits are examined in diverse phenotypes. Variants in the genes encoding accessory proteins that modify or organize G protein coupling have been associated with disease; these include the contribution of variants of the regulator of G protein signaling (RGS) to hypertension; the role of variants of activator of G protein signaling type III in phenotypes such as hypoxia; the contribution of variation at the RGS10 gene to short stature and immunological compromise; and the involvement of variants of G protein-coupled receptor kinases (GRKs), such as GRK4, in hypertension. Variation in genes that encode proteins involved in GPCR signaling are outlined in the context of the changes in structure and function that may be associated with human phenotypes.
Collapse
Affiliation(s)
- Miles D. Thompson
- Krembil Brain Institute, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Peter Chidiac
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Pedro A. Jose
- Division of Renal Diseases & Hypertension, Departments of Medicine and Pharmacology/Physiology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Alexander S. Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Caroline M. Gorvin
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, West Midlands, UK
| |
Collapse
|
2
|
Koç F, Mills S, Strain C, Ross RP, Stanton C. The public health rationale for increasing dietary fibre: Health benefits with a focus on gut microbiota. NUTR BULL 2020. [DOI: 10.1111/nbu.12448] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- F. Koç
- APC Microbiome Ireland University College Cork Cork Ireland
- APC Microbiome Ireland Teagasc Food Research Centre Moorepark Fermoy Ireland
| | - S. Mills
- APC Microbiome Ireland University College Cork Cork Ireland
| | - C. Strain
- APC Microbiome Ireland University College Cork Cork Ireland
- APC Microbiome Ireland Teagasc Food Research Centre Moorepark Fermoy Ireland
| | - R. P. Ross
- APC Microbiome Ireland University College Cork Cork Ireland
| | - C. Stanton
- APC Microbiome Ireland University College Cork Cork Ireland
- APC Microbiome Ireland Teagasc Food Research Centre Moorepark Fermoy Ireland
| |
Collapse
|
3
|
Leong IL, Tsai TY, Wong KL, Shiao LR, Cheng KS, Chan P, Leung YM. Valproic acid inhibits ATP-triggered Ca 2+ release via a p38-dependent mechanism in bEND.3 endothelial cells. Fundam Clin Pharmacol 2018; 32:499-506. [PMID: 29752814 DOI: 10.1111/fcp.12381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 04/22/2018] [Accepted: 05/04/2018] [Indexed: 01/06/2023]
Abstract
Valproic acid (VA) is currently used to treat epilepsy and bipolar disorder. It has also been demonstrated to promote neuroprotection and neurogenesis. Although beneficial actions of VA on brain blood vessels have also been demonstrated, the effects of VA on brain endothelial cell (EC) Ca2+ signaling are hitherto unreported. In this report, we examined the effects of VA on agonist-triggered Ca2+ signaling in mouse cortical bEND.3 EC. While VA (100 μm) did not cause an acute inhibition of ATP-triggered Ca2+ signaling, a 30-min VA treatment strongly suppressed ATP-triggered intracellular Ca2+ release; however, such treatment did not affect Ca2+ release triggered by cyclopiazonic acid, an inhibitor of SERCA Ca2+ pump, suggesting there was no reduction in Ca2+ store size. VA-activated p38 signaling, and VA-induced inhibition of ATP-triggered Ca2+ release was prevented by SB203580, a p38 inhibitor, suggesting VA caused the inhibition by activating p38. Remarkably, VA treatment did not affect acetylcholine-triggered Ca2+ release, suggesting VA may not inhibit inositol 1,4,5-trisphosphate-induced Ca2+ release per se, and may not act directly on Gq or phospholipase C. Taken together, our results suggest VA treatment, via a p38-dependent mechanism, led to an inhibition of purinergic receptor-effector coupling.
Collapse
Affiliation(s)
- Iat-Lon Leong
- Division of Cardiology, Department of Internal Medicine, Kiang Wu Hospital, 33 Estrada do Repouso, Macau, China
| | - Tien-Yao Tsai
- School of Medicine, College of Medicine, Fu Jen Catholic University, 510 Zhongzheng Road, New Taipei City, Taiwan.,Cardiovascular Division, Fu Jen Catholic University Hospital, 69 Guizi Road, New Taipei City, Taiwan
| | - Kar-Lok Wong
- Department of Anesthesiology, China Medical University Hospital, 2 Yude Road, Taichung, Taiwan
| | - Lian-Ru Shiao
- Department of Physiology, China Medical University, 91 Hsuehshi Road, Taichung, Taiwan
| | - Ka-Shun Cheng
- Department of Anesthesiology, China Medical University Hospital, 2 Yude Road, Taichung, Taiwan.,Department of Anesthesiology, The Qingdao University Yuhuangding Hospital, 20 Yuhuangding East Road, Yantai, Shandong, China
| | - Paul Chan
- Division of Cardiology, Department of Medicine, Taipei Medical University Wan Fang Hospital, 111 Xinglong Road, Taipei, Taiwan
| | - Yuk-Man Leung
- Department of Physiology, China Medical University, 91 Hsuehshi Road, Taichung, Taiwan
| |
Collapse
|
4
|
Wang D. The essential role of G protein-coupled receptor (GPCR) signaling in regulating T cell immunity. Immunopharmacol Immunotoxicol 2018; 40:187-192. [PMID: 29433403 DOI: 10.1080/08923973.2018.1434792] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
AIM The aim of this paper is to clarify the critical role of GPCR signaling in T cell immunity. METHODS The G protein-coupled receptors (GPCRs) are the most common targets in current pharmaceutical industry, and represent the largest and most versatile family of cell surface communicating molecules. GPCRs can be activated by a diverse array of ligands including neurotransmitters, chemokines as well as sensory stimuli. Therefore, GPCRs are involved in many key cellular and physiological processes, such as sense of light, taste and smell, neurotransmission, metabolism, endocrine and exocrine secretion. In recent years, GPCRs have been found to play an important role in immune system. T cell is an important type of immune cell, which plays a central role in cell-mediated immunity. A variety of GPCRs and their signaling mediators (RGS proteins, GRKs and β-arrestin) have been found to express in T cells and involved T cell-mediated immunity. We will summarize the role of GPCR signaling and their regulatory molecules in T cell activation, homeostasis and function in this article. RESULTS GPCR signaling plays an important role in T cell activation, homeostasis and function. CONCLUSION GPCR signaling is critical in regulating T cell immunity.
Collapse
Affiliation(s)
- Dashan Wang
- a Molecular Biology Research Center, Key Medical Health Laboratory for Laboratory Medicine of Shandong Province, Department of Laboratory Medicine , Shandong Medical College , Linyi , Shandong , China
| |
Collapse
|
5
|
Narla C, Scidmore T, Jeong J, Everest M, Chidiac P, Poulter MO. A switch in G protein coupling for type 1 corticotropin-releasing factor receptors promotes excitability in epileptic brains. Sci Signal 2016; 9:ra60. [PMID: 27303056 DOI: 10.1126/scisignal.aad8676] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Anxiety and stress increase the frequency of epileptic seizures. These behavioral states induce the secretion of corticotropin-releasing factor (CRF), a 40-amino acid neuropeptide neurotransmitter that coordinates many behavioral responses to stress in the central nervous system. In the piriform cortex, which is one of the most seizurogenic regions of the brain, CRF normally dampens excitability. By contrast, CRF increased the excitability of the piriform cortex in rats subjected to kindling, a model of temporal lobe epilepsy. In nonkindled rats, CRF activates its receptor, a G protein (heterotrimeric guanosine triphosphate-binding protein)-coupled receptor, and signals through a Gαq/11-mediated pathway. After seizure induction, CRF signaling occurred through a pathway involving Gαs This change in signaling was associated with reduced abundance of regulator of G protein signaling protein type 2 (RGS2), which has been reported to inhibit Gαs-dependent signaling. RGS2 knockout mice responded to CRF in a similar manner as epileptic rats. These observations indicate that seizures produce changes in neuronal signaling that can increase seizure occurrence by converting a beneficial stress response into an epileptic trigger.
Collapse
Affiliation(s)
- Chakravarthi Narla
- Molecular Medicine Research Group, Robarts Research Institute, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 5K8, Canada. Department of Physiology and Pharmacology, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Tanner Scidmore
- Molecular Medicine Research Group, Robarts Research Institute, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 5K8, Canada. Department of Physiology and Pharmacology, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Jaymin Jeong
- Molecular Medicine Research Group, Robarts Research Institute, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 5K8, Canada. Graduate Program in Neuroscience, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 5K8, Canada
| | - Michelle Everest
- Molecular Medicine Research Group, Robarts Research Institute, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 5K8, Canada
| | - Peter Chidiac
- Department of Physiology and Pharmacology, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 3K7, Canada. Department of Biology, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Michael O Poulter
- Molecular Medicine Research Group, Robarts Research Institute, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 5K8, Canada. Department of Physiology and Pharmacology, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 3K7, Canada. Graduate Program in Neuroscience, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 5K8, Canada.
| |
Collapse
|
6
|
Chidiac P. RGS proteins destroy spare receptors: Effects of GPCR-interacting proteins and signal deamplification on measurements of GPCR agonist potency. Methods 2016; 92:87-93. [DOI: 10.1016/j.ymeth.2015.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/13/2015] [Accepted: 08/14/2015] [Indexed: 12/15/2022] Open
|
7
|
Regulation of RGS5 GAP activity by GPSM3. Mol Cell Biochem 2015; 405:33-40. [PMID: 25842189 DOI: 10.1007/s11010-015-2393-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 03/27/2015] [Indexed: 10/23/2022]
Abstract
Heterotrimeric G protein signaling is limited by intracellular proteins that impede the binding of or accelerate the hydrolysis of the activating nucleotide GTP, exemplified respectively by the G protein-signaling modifier (GPSM) and regulator of G protein-signaling (RGS) families of proteins. Little is known about how members of these groups of proteins might influence the impact of the other on G protein activity. In the present study, we have identified novel binding and functional interactions between GPSM3 (also known as activator of G protein-signaling 4 (AGS4) or G18) and RGS5, both of which were found to be expressed in primary rat aortic smooth muscle cell cultures. The binding of GPSM3 to RGS5 appears to be selective as no interactions were detected with other RGS proteins tested. In solution-based experiments, the addition of GPSM3 was found to enhance the ability of RGS5 to accelerate GTP hydrolysis by Gαi1 but not that of RGS4. In membrane-based assays utilizing M2 muscarinic receptor-activated Gαi1, GPSM3 decreased the rate of GTP hydrolysis in the presence of RGS4 but not RGS5, suggesting that the enhancement of RGS5 activity by GPSM3 is maintained under these conditions and/or that the binding of RGS5 to GPSM3 impedes its inhibitory effect on GTP turnover. Overall these findings show that it is possible for GPSM and RGS proteins to bind to one another to produce distinct regulatory effects on heterotrimeric G protein activity.
Collapse
|
8
|
G protein-coupled receptor accessory proteins and signaling: pharmacogenomic insights. Methods Mol Biol 2014; 1175:121-52. [PMID: 25150869 DOI: 10.1007/978-1-4939-0956-8_7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The identification and characterization of the genes encoding G protein-coupled receptors (GPCRs) and the proteins necessary for the processes of ligand binding, GPCR activation, inactivation, and receptor trafficking to the membrane are discussed in the context of human genetic disease. In addition to functional GPCR variants, the identification of genetic disruptions affecting proteins necessary to GPCR functions have provided insights into the function of these pathways. Gsα and Gβ subunit polymorphisms have been found to result in complex phenotypes. Disruptions in accessory proteins that normally modify or organize heterotrimeric G-protein coupling may also result in disease states. These include the contribution of variants of the regulator of G protein signaling (RGS) protein to hypertension; the role variants of the activator of G protein signaling (AGS) proteins to phenotypes (such as the type III AGS8 variant to hypoxia); the contribution of G protein-coupled receptor kinase (GRK) proteins, such as GRK4, in disorders such as hypertension. The role of accessory proteins in GPCR structure and function is discussed in the context of genetic disorders associated with disruption of the genes that encode them. An understanding of the pharmacogenomics of GPCR and accessory protein signaling provides the basis for examining both GPCR pharmacogenetics and the genetics of monogenic disorders that result from disruption of given receptor systems.
Collapse
|
9
|
Zhao P, Metcalf M, Bunnett NW. Biased signaling of protease-activated receptors. Front Endocrinol (Lausanne) 2014; 5:67. [PMID: 24860547 PMCID: PMC4026716 DOI: 10.3389/fendo.2014.00067] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 04/22/2014] [Indexed: 01/06/2023] Open
Abstract
In addition to their role in protein degradation and digestion, proteases can also function as hormone-like signaling molecules that regulate vital patho-physiological processes, including inflammation, hemostasis, pain, and repair mechanisms. Certain proteases can signal to cells by cleaving protease-activated receptors (PARs), a family of four G protein-coupled receptors. PARs are expressed by almost all cell types, control important physiological and disease-relevant processes, and are an emerging therapeutic target for major diseases. Most information about PAR activation and function derives from studies of a few proteases, for example thrombin in the case of PAR1, PAR3, and PAR4, and trypsin in the case of PAR2 and PAR4. These proteases cleave PARs at established sites with the extracellular N-terminal domains, and expose tethered ligands that stabilize conformations of the cleaved receptors that activate the canonical pathways of G protein- and/or β-arrestin-dependent signaling. However, a growing number of proteases have been identified that cleave PARs at divergent sites to activate distinct patterns of receptor signaling and trafficking. The capacity of these proteases to trigger distinct signaling pathways is referred to as biased signaling, and can lead to unique patho-physiological outcomes. Given that a different repertoire of proteases are activated in various patho-physiological conditions that may activate PARs by different mechanisms, signaling bias may account for the divergent actions of proteases and PARs. Moreover, therapies that target disease-relevant biased signaling pathways may be more effective and selective approaches for the treatment of protease- and PAR-driven diseases. Thus, rather than mediating the actions of a few proteases, PARs may integrate the biological actions of a wide spectrum of proteases in different patho-physiological conditions.
Collapse
Affiliation(s)
- Peishen Zhao
- Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Matthew Metcalf
- Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Nigel W. Bunnett
- Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
- Department of Pharmacology, University of Melbourne, Melbourne, VIC, Australia
- *Correspondence: Nigel W. Bunnett, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, VIC 3052, Australia e-mail:
| |
Collapse
|
10
|
Seeman P. Are dopamine D2 receptors out of control in psychosis? Prog Neuropsychopharmacol Biol Psychiatry 2013; 46:146-52. [PMID: 23880595 DOI: 10.1016/j.pnpbp.2013.07.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/08/2013] [Accepted: 07/08/2013] [Indexed: 01/11/2023]
Abstract
It is known that schizophrenia patients are behaviorally supersensitive to dopamine-like drugs (amphetamine, methylphenidate). There is evidence for an increased release of dopamine, a slight increase of dopamine D2 receptors and an increase of dopamine D2High receptors in schizophrenia, all possibly explaining the clinical supersensitivity to dopamine. The elevation in apparent D2High receptors in vivo in schizophrenia matches the elevation in D2High receptors in many animal models of psychosis. The increased amounts of D2High receptors in psychotic-like behavior in animals may result from a loss of control of D2 by various factors. These factors include the rate of phosphorylation and desensitization of D2 receptors by kinases, the attachment of arrestin to D2 receptors, internalization of D2 receptors, the rate of receptor de-phosphorylation, formation of D2 receptor dimers, and GTP regulation by various GTPases. While at present there are no statistically significant associations of any of these controlling factors and their genes with schizophrenia, investigation of D2High receptors in schizophrenia will require a new radioligand in order to selectively label D2High receptors in vivo in patients. Finally, haloperidol reduces the number of D2High receptors that are elevated by amphetamine, indicating that this therapeutic effect may occur clinically.
Collapse
Affiliation(s)
- Philip Seeman
- Department of Pharmacology, University of Toronto, 260 Heath Street, West, unit 605, Toronto, Ontario M5P 3L6, Canada; Department of Psychiatry, University of Toronto, 260 Heath Street, West, unit 605, Toronto, Ontario, M5P 3L6, Canada.
| |
Collapse
|
11
|
Winquist RJ, Mullane K, Williams M. The fall and rise of pharmacology--(re-)defining the discipline? Biochem Pharmacol 2013; 87:4-24. [PMID: 24070656 DOI: 10.1016/j.bcp.2013.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 09/09/2013] [Indexed: 12/19/2022]
Abstract
Pharmacology is an integrative discipline that originated from activities, now nearly 7000 years old, to identify therapeutics from natural product sources. Research in the 19th Century that focused on the Law of Mass Action (LMA) demonstrated that compound effects were dose-/concentration-dependent eventually leading to the receptor concept, now a century old, that remains the key to understanding disease causality and drug action. As pharmacology evolved in the 20th Century through successive biochemical, molecular and genomic eras, the precision in understanding receptor function at the molecular level increased and while providing important insights, led to an overtly reductionistic emphasis. This resulted in the generation of data lacking physiological context that ignored the LMA and was not integrated at the tissue/whole organism level. As reductionism became a primary focus in biomedical research, it led to the fall of pharmacology. However, concerns regarding the disconnect between basic research efforts and the approval of new drugs to treat 21st Century disease tsunamis, e.g., neurodegeneration, metabolic syndrome, etc. has led to the reemergence of pharmacology, its rise, often in the semantic guise of systems biology. Against a background of limited training in pharmacology, this has resulted in issues in experimental replication with a bioinformatics emphasis that often has a limited relationship to reality. The integration of newer technologies within a pharmacological context where research is driven by testable hypotheses rather than technology, together with renewed efforts in teaching pharmacology, is anticipated to improve the focus and relevance of biomedical research and lead to novel therapeutics that will contain health care costs.
Collapse
Affiliation(s)
- Raymond J Winquist
- Department of Pharmacology, Vertex Pharmaceuticals Inc., Cambridge, MA, United States
| | - Kevin Mullane
- Profectus Pharma Consulting Inc., San Jose, CA, United States
| | - Michael Williams
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.
| |
Collapse
|