1
|
Kim H, Kamm RD, Vunjak-Novakovic G, Wu JC. Progress in multicellular human cardiac organoids for clinical applications. Cell Stem Cell 2022; 29:503-514. [PMID: 35395186 PMCID: PMC9352318 DOI: 10.1016/j.stem.2022.03.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Advances in self-organizing cardiac organoids to recapitulate human cardiogenesis have provided a powerful tool for unveiling human cardiac development, studying cardiovascular diseases, testing drugs, and transplantation. Here, we highlight the recent remarkable progress on multicellular cardiac organoids and review the current status for their practical applications. We then introduce key readouts and tools for assessing cardiac organoids for clinical applications, address major challenges, and provide suggestions for each assessment method. Lastly, we discuss the current limitations of cardiac organoids as miniature models of the human heart and suggest a direction for moving forward toward building the mini-heart from cardiac organoids.
Collapse
Affiliation(s)
- Hyeonyu Kim
- Stanford Cardiovascular Institute, Stanford, CA 94305, USA
| | - Roger D Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA; Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford, CA 94305, USA; Department of Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Zevolis E, Philippou A, Moustogiannis A, Chatzigeorgiou A, Koutsilieris M. Optimizing mechanical stretching protocols for hypertrophic and anti-apoptotic responses in cardiomyocyte-like H9C2 cells. Mol Biol Rep 2021; 48:645-655. [PMID: 33394230 DOI: 10.1007/s11033-020-06112-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/18/2020] [Indexed: 01/07/2023]
Abstract
Cardiomyocytes possess the ability to respond to mechanical stimuli by reprogramming their gene expression. This study investigated the effects of different loading protocols on signaling and expression responses of myogenic, anabolic, inflammatory, atrophy and pro-apoptotic genes in cardiomyocyte-like H9C2 cells. Differentiated H9C2 cells underwent various stretching protocols by altering their elongation, frequency and duration, utilizing an in vitro cell tension system. The loading-induced expression changes of MyoD, Myogenin, MRF4, IGF-1 isoforms, Atrogin-1, Foxo1, Fuca and IL-6 were measured by Real Time-PCR. The stretching-induced activation of Akt and Erk 1/2 was also evaluated by Western blot analysis. Low strain (2.7% elongation), low frequency (0.25 Hz) and intermediate duration (12 h) stretching protocol was overall the most effective in inducing beneficial responses, i.e., protein synthesis along with the suppression of apoptosis, inflammation and atrophy, in the differentiated cardiomyocytes. These findings demonstrated that varying the characteristics of mechanical loading applied on H9C2 cells in vitro can regulate their anabolic/survival program.
Collapse
Affiliation(s)
- Evangelos Zevolis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Micras Asias, Goudi-Athens, 115 27, Athens, Greece
| | - Anastassios Philippou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Micras Asias, Goudi-Athens, 115 27, Athens, Greece
| | - Athanasios Moustogiannis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Micras Asias, Goudi-Athens, 115 27, Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Micras Asias, Goudi-Athens, 115 27, Athens, Greece
| | - Michael Koutsilieris
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Micras Asias, Goudi-Athens, 115 27, Athens, Greece.
| |
Collapse
|
3
|
Pretorius D, Kahn-Krell AM, LaBarge WC, Lou X, Kannappan R, Pollard AE, Fast VG, Berry JL, Eberhardt AW, Zhang J. Fabrication and characterization of a thick, viable bi-layered stem cell-derived surrogate for future myocardial tissue regeneration. Biomed Mater 2020; 16. [PMID: 33053512 DOI: 10.1088/1748-605x/abc107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023]
Abstract
Cardiac tissue surrogates show promise for restoring mechanical and electrical function in infarcted left ventricular (LV) myocardium. For these cardiac surrogates to be useful in vivo, they are required to support synchronous and forceful contraction over the infarcted region. These design requirements necessitate a thickness sufficient to produce a useful contractile force, an area large enough to cover an infarcted region, and prevascularization to overcome diffusion limitations. Attempts to meet these requirements have been hampered by diffusion limits of oxygen and nutrients (100-200 μm) leading to necrotic regions.This study demonstrates a novel layer-by-layer (LbL) fabrication method used to produce tissue surrogates that meet these requirements and mimic normal myocardium in form and function. Thick (1.5-2 mm) LbL cardiac tissues created from human induced pluripotent stem cell-derived cardiomyocytes and endothelial cells were assessed, in vitro, over a four week period for viability (< 5.6 ± 1.4 % nectrotic cells), cell morphology, viscoelastic properties and functionality. Viscoelastic properties of the cardiac surrogates were determined via stress relaxation response modeling and compared to native murine LV tissue. Viscoelastic characterization showed that the generalized Maxwell model of order 4 described the samples well (0.7 < R2 < 0.98). Functional performance assessment showed enhanced t-tubule network development, gap junction communication as well as conduction velocity (16.9 ± 2.3 cm s-1). These results demonstrate that LbL fabrication can be utilized successfully in creating complex, functional cardiac surrogates for therapeutic applications.
Collapse
Affiliation(s)
- Danielle Pretorius
- Biomedical Engineering, The University of Alabama at Birmingham, Volker Hall Room G094, 1670 University Blvd, Birmingham, Alabama, 35294-2182, UNITED STATES
| | - Asher M Kahn-Krell
- Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama, UNITED STATES
| | - Wesley C LaBarge
- Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama, UNITED STATES
| | - Xi Lou
- Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama, UNITED STATES
| | - Ramaswamy Kannappan
- Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama, UNITED STATES
| | - Andrew E Pollard
- Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama, UNITED STATES
| | - Vladimir G Fast
- Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama, UNITED STATES
| | - Joel L Berry
- School of Engineering, The University of Alabama at Birmingham, Birmingham, Alabama, UNITED STATES
| | - Alan W Eberhardt
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama, UNITED STATES
| | - Jianyi Zhang
- Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama, UNITED STATES
| |
Collapse
|
4
|
Wang C, Koo S, Park M, Vangelatos Z, Hoang P, Conklin B, Grigoropoulos CP, Healy KE, Ma Z. Maladaptive Contractility of 3D Human Cardiac Microtissues to Mechanical Nonuniformity. Adv Healthc Mater 2020; 9:e1901373. [PMID: 32090507 PMCID: PMC7274862 DOI: 10.1002/adhm.201901373] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/01/2020] [Indexed: 01/29/2023]
Abstract
Cardiac tissues are able to adjust their contractile behavior to adapt to the local mechanical environment. Nonuniformity of the native tissue mechanical properties contributes to the development of heart dysfunctions, yet the current in vitro cardiac tissue models often fail to recapitulate the mechanical nonuniformity. To address this issue, a 3D cardiac microtissue model is developed with engineered mechanical nonuniformity, enabled by 3D-printed hybrid matrices composed of fibers with different diameters. When escalating the complexity of tissue mechanical environments, cardiac microtissues start to develop maladaptive hypercontractile phenotypes, demonstrated in both contractile motion analysis and force-power analysis. This novel hybrid system could potentially facilitate the establishment of "pathologically-inspired" cardiac microtissue models for deeper understanding of heart pathology due to nonuniformity of the tissue mechanical environment.
Collapse
Affiliation(s)
- Chenyan Wang
- Department of Biomedical & Chemical Engineering, Syracuse Biomaterials Institute, Syracuse University
| | - Sangmo Koo
- Department of Mechanical Engineering, University of California, Berkeley
| | - Minok Park
- Department of Mechanical Engineering, University of California, Berkeley
| | | | - Plansky Hoang
- Department of Biomedical & Chemical Engineering, Syracuse Biomaterials Institute, Syracuse University
| | - Bruce Conklin
- Gladstone Institute of Cardiovascular Diseases, University of California, San Francisco
| | | | - Kevin E. Healy
- Department of Bioengineering, University of California, Berkeley
- Department of Material Science & Engineering, University of California, Berkeley
| | - Zhen Ma
- Department of Biomedical & Chemical Engineering, Syracuse Biomaterials Institute, Syracuse University
| |
Collapse
|
5
|
Solazzo M, O'Brien FJ, Nicolosi V, Monaghan MG. The rationale and emergence of electroconductive biomaterial scaffolds in cardiac tissue engineering. APL Bioeng 2019; 3:041501. [PMID: 31650097 PMCID: PMC6795503 DOI: 10.1063/1.5116579] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023] Open
Abstract
The human heart possesses minimal regenerative potential, which can often lead to chronic heart failure following myocardial infarction. Despite the successes of assistive support devices and pharmacological therapies, only a whole heart transplantation can sufficiently address heart failure. Engineered scaffolds, implantable patches, and injectable hydrogels are among the most promising solutions to restore cardiac function and coax regeneration; however, current biomaterials have yet to achieve ideal tissue regeneration and adequate integration due a mismatch of material physicochemical properties. Conductive fillers such as graphene, carbon nanotubes, metallic nanoparticles, and MXenes and conjugated polymers such as polyaniline, polypyrrole, and poly(3,4-ethylendioxythiophene) can possibly achieve optimal electrical conductivities for cardiac applications with appropriate suitability for tissue engineering approaches. Many studies have focused on the use of these materials in multiple fields, with promising effects on the regeneration of electrically active biological tissues such as orthopedic, neural, and cardiac tissue. In this review, we critically discuss the role of heart electrophysiology and the rationale toward the use of electroconductive biomaterials for cardiac tissue engineering. We present the emerging applications of these smart materials to create supportive platforms and discuss the crucial role that electrical stimulation has been shown to exert in maturation of cardiac progenitor cells.
Collapse
|
6
|
Lyra-Leite DM, Andres AM, Petersen AP, Ariyasinghe NR, Cho N, Lee JA, Gottlieb RA, McCain ML. Mitochondrial function in engineered cardiac tissues is regulated by extracellular matrix elasticity and tissue alignment. Am J Physiol Heart Circ Physiol 2017; 313:H757-H767. [PMID: 28733449 DOI: 10.1152/ajpheart.00290.2017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/29/2017] [Accepted: 07/16/2017] [Indexed: 01/20/2023]
Abstract
Mitochondria in cardiac myocytes are critical for generating ATP to meet the high metabolic demands associated with sarcomere shortening. Distinct remodeling of mitochondrial structure and function occur in cardiac myocytes in both developmental and pathological settings. However, the factors that underlie these changes are poorly understood. Because remodeling of tissue architecture and extracellular matrix (ECM) elasticity are also hallmarks of ventricular development and disease, we hypothesize that these environmental factors regulate mitochondrial function in cardiac myocytes. To test this, we developed a new procedure to transfer tunable polydimethylsiloxane disks microcontact-printed with fibronectin into cell culture microplates. We cultured Sprague-Dawley neonatal rat ventricular myocytes within the wells, which consistently formed tissues following the printed fibronectin, and measured oxygen consumption rate using a Seahorse extracellular flux analyzer. Our data indicate that parameters associated with baseline metabolism are predominantly regulated by ECM elasticity, whereas the ability of tissues to adapt to metabolic stress is regulated by both ECM elasticity and tissue alignment. Furthermore, bioenergetic health index, which reflects both the positive and negative aspects of oxygen consumption, was highest in aligned tissues on the most rigid substrate, suggesting that overall mitochondrial function is regulated by both ECM elasticity and tissue alignment. Our results demonstrate that mitochondrial function is regulated by both ECM elasticity and myofibril architecture in cardiac myocytes. This provides novel insight into how extracellular cues impact mitochondrial function in the context of cardiac development and disease.NEW & NOTEWORTHY A new methodology has been developed to measure O2 consumption rates in engineered cardiac tissues with independent control over tissue alignment and matrix elasticity. This led to the findings that matrix elasticity regulates basal mitochondrial function, whereas both matrix elasticity and tissue alignment regulate mitochondrial stress responses.
Collapse
Affiliation(s)
- Davi M Lyra-Leite
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California
| | - Allen M Andres
- Heart Institute and Barbra Streisand Women's Heart Center, Cedars-Sinai Medical Center, Los Angeles, California; and
| | - Andrew P Petersen
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California
| | - Nethika R Ariyasinghe
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California
| | - Nathan Cho
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California
| | - Jezell A Lee
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California
| | - Roberta A Gottlieb
- Heart Institute and Barbra Streisand Women's Heart Center, Cedars-Sinai Medical Center, Los Angeles, California; and
| | - Megan L McCain
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California; .,Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, California
| |
Collapse
|
7
|
Fischer M, Rikeit P, Knaus P, Coirault C. YAP-Mediated Mechanotransduction in Skeletal Muscle. Front Physiol 2016; 7:41. [PMID: 26909043 PMCID: PMC4754448 DOI: 10.3389/fphys.2016.00041] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/29/2016] [Indexed: 12/14/2022] Open
Abstract
Skeletal muscle is not only translating chemical energy into mechanical work, it is also a highly adaptive and regenerative tissue whose architecture and functionality is determined by its mechanical and physical environment. Processing intra- and extracellular mechanical signaling cues contributes to the regulation of cell growth, survival, migration and differentiation. Yes-associated Protein (YAP), a transcriptional coactivator downstream of the Hippo pathway and its paralog, the transcriptional co-activator with PDZ-binding motif (TAZ), were recently found to play a key role in mechanotransduction in various tissues including skeletal muscle. Furthermore, YAP/TAZ modulate myogenesis and muscle regeneration and abnormal YAP activity has been reported in muscular dystrophy and rhabdomyosarcoma. Here, we summarize the current knowledge of mechanosensing and -signaling in striated muscle. We highlight the role of YAP signaling and discuss the different routes and hypotheses of its regulation in the context of mechanotransduction.
Collapse
Affiliation(s)
- Martina Fischer
- Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Center for Research in Myology, Sorbonne Universités Université Pierre et Marie Curie University Paris 06Paris, France; Institute of Chemistry and Biochemistry, Freie Universität BerlinBerlin, Germany
| | - Paul Rikeit
- Institute of Chemistry and Biochemistry, Freie Universität BerlinBerlin, Germany; Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin BerlinBerlin, Germany
| | - Petra Knaus
- Institute of Chemistry and Biochemistry, Freie Universität Berlin Berlin, Germany
| | - Catherine Coirault
- Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Center for Research in Myology, Sorbonne Universités Université Pierre et Marie Curie University Paris 06 Paris, France
| |
Collapse
|
8
|
Shradhanjali A, Riehl BD, Kwon IK, Lim JY. Cardiomyocyte stretching for regenerative medicine and hypertrophy study. Tissue Eng Regen Med 2015. [DOI: 10.1007/s13770-015-0010-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
9
|
Cannon L, Bodmer R. Genetic manipulation of cardiac ageing. J Physiol 2015; 594:2075-83. [PMID: 26060055 DOI: 10.1113/jp270563] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/05/2015] [Indexed: 01/06/2023] Open
Abstract
Ageing in humans is associated with a significant increase in the prevalence of cardiovascular disease. We still do not fully understand the molecular mechanisms underpinning this correlation. However, a number of insights into which genes control cardiac ageing have come from studying hearts of the fruit fly, Drosophila melanogaster. The fly's simple heart tube has similar molecular structure and basic physiology to the human heart. Also, both fly and human hearts experience significant age-related morphological and functional decline. Studies on the fly heart have highlighted the involvement of key nutrient sensing, ion channel and sarcomeric genes in cardiac ageing. Many of these genes have also been implicated in ageing of the mammalian heart. Genes that increase oxidative stress, or are linked to cardiac hypertrophy or neurodegenerative diseases in mammals also affect cardiac ageing in the fruit fly. Moreover, fly studies have demonstrated the potential of exercise and statins to treat age-related cardiac disease. These results show the value of Drosophila as a model to discover the genetic causes of human cardiac ageing.
Collapse
Affiliation(s)
- Leah Cannon
- Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Rolf Bodmer
- Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| |
Collapse
|