1
|
Eibach Y, Kreher S, Poetsch MS, Kho AL, Gaertner U, Clemen CS, Schröder R, Guo K, Milting H, Meder B, Potente M, Richter M, Schneider A, Meiners S, Gautel M, Braun T. The deubiquitinase USP5 prevents accumulation of protein aggregates in cardiomyocytes. SCIENCE ADVANCES 2025; 11:eado3852. [PMID: 39841822 PMCID: PMC11753375 DOI: 10.1126/sciadv.ado3852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025]
Abstract
Protein homeostasis is crucial for maintaining cardiomyocyte (CM) function. Disruption of proteostasis results in accumulation of protein aggregates causing cardiac pathologies such as hypertrophy, dilated cardiomyopathy (DCM), and heart failure. Here, we identify ubiquitin-specific peptidase 5 (USP5) as a critical determinant of protein quality control (PQC) in CM. CM-specific loss of mUsp5 leads to the accumulation of polyubiquitin chains and protein aggregates, cardiac remodeling, and eventually DCM. USP5 interacts with key components of the proteostasis machinery, including PSMD14, and the absence of USP5 increases activity of the ubiquitin-proteasome system and autophagic flux in CMs. Cardiac-specific hUSP5 overexpression reduces pathological remodeling in pressure-overloaded mouse hearts and attenuates protein aggregate formation in titinopathy and desminopathy models. Since CMs from humans with end-stage DCM show lower USP5 levels and display accumulation of ubiquitinated protein aggregates, we hypothesize that therapeutically increased USP5 activity may reduce protein aggregates during DCM. Our findings demonstrate that USP5 is essential for ubiquitin turnover and proteostasis in mature CMs.
Collapse
Affiliation(s)
- Yvonne Eibach
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Frankfurt, Giessen, Germany
| | - Silke Kreher
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Frankfurt, Giessen, Germany
| | - Mareike S. Poetsch
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ay Lin Kho
- Randall Centre for Cell and Molecular Biophysics, King’s College London, BHF Centre of Excellence, London, UK
| | - Ulrich Gaertner
- University of Giessen, Institute of Anatomy and Cell Biology, Giessen, Germany
| | - Christoph S. Clemen
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Rolf Schröder
- Institute for Neuropathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Kai Guo
- Research Center Borstel/Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), 23845 Borstel, Germany
- Institute of Experimental Medicine, Christian-Albrechts University, Kiel, Germany
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute for Cardiovascular Research and Development, Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, Bad Oeynhausen, Germany
| | - Benjamin Meder
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Department of Medicine III, University of Heidelberg, INF 410, 69120 Heidelberg, Germany
| | - Michael Potente
- Berlin Institute of Health (BIH) and Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Manfred Richter
- Department of Cardiac Surgery, Kerckhoff-Clinic, Bad Nauheim, Germany
| | - Andre Schneider
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - Silke Meiners
- Research Center Borstel/Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), 23845 Borstel, Germany
- Institute of Experimental Medicine, Christian-Albrechts University, Kiel, Germany
| | - Mathias Gautel
- Randall Centre for Cell and Molecular Biophysics, King’s College London, BHF Centre of Excellence, London, UK
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Frankfurt, Giessen, Germany
| |
Collapse
|
2
|
Jean-Charles PY, Roy B, Yu SMW, Pironti G, Nagi K, Mao L, Kaur S, Abraham DM, Maudsley S, Rockman HA, Shenoy SK. USP20 deletion promotes eccentric cardiac remodeling in response to pressure overload and increases mortality. Am J Physiol Heart Circ Physiol 2024; 327:H1257-H1271. [PMID: 39365672 PMCID: PMC11559650 DOI: 10.1152/ajpheart.00329.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024]
Abstract
Left ventricular hypertrophy (LVH) caused by chronic pressure overload with subsequent pathological remodeling is a major cardiovascular risk factor for heart failure and mortality. The role of deubiquitinases in LVH has not been well characterized. To define whether the deubiquitinase ubiquitin-specific peptidase 20 (USP20) regulates LVH, we subjected USP20 knockout (KO) and cognate wild-type (WT) mice to chronic pressure overload by transverse aortic constriction (TAC) and measured changes in cardiac function by serial echocardiography followed by histological and biochemical evaluations. USP20-KO mice showed severe deterioration of systolic function within 4 wk of TAC compared with WT cohorts. Both USP20-KO TAC and WT-TAC cohorts presented cardiac hypertrophy following pressure overload. However, USP20-KO-TAC mice showed an increase in cardiomyocyte length and developed maladaptive eccentric hypertrophy, a phenotype generally observed with volume overload states and decompensated heart failure. In contrast, WT-TAC mice displayed an increase in cardiomyocyte width, producing concentric remodeling that is characteristic of pressure overload. In addition, cardiomyocyte apoptosis, interstitial fibrosis, and mouse mortality were augmented in USP20-KO-TAC compared with WT-TAC mice. Quantitative mass spectrometry of LV tissue revealed that the expression of sarcomeric myosin heavy chain 7 (MYH7), a fetal gene normally upregulated during cardiac remodeling, was significantly reduced in USP20-KO after TAC. Mechanistically, we identified increased degradative lysine-48 polyubiquitination of MYH7 in USP20-KO hearts, indicating that USP20-mediated deubiquitination likely prevents protein degradation of MYH7 during pressure overload. Our findings suggest that USP20-dependent signaling pathways regulate the layering pattern of sarcomeres to suppress maladaptive remodeling during chronic pressure overload and prevent cardiac failure.NEW & NOTEWORTHY We identify ubiquitin-specific peptidase 20 (USP20) as an important enzyme that is required for cardiac homeostasis and function, particularly during myocardial pressure overload. USP20 regulates protein stability of cardiac MYH7, an essential molecular motor protein expressed in sarcomeres; loss-of-function mutations of MYH7 are associated with human hypertrophic cardiomyopathy, cardiac failure, and sudden death. Enhancing USP20 activity could be a potential therapeutic approach to prevent the development of maladaptive state of eccentric hypertrophy and heart failure.
Collapse
MESH Headings
- Animals
- Ventricular Remodeling
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Mice, Knockout
- Ubiquitin Thiolesterase/metabolism
- Ubiquitin Thiolesterase/genetics
- Apoptosis
- Hypertrophy, Left Ventricular/physiopathology
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Mice
- Mice, Inbred C57BL
- Male
- Heart Failure/physiopathology
- Heart Failure/metabolism
- Heart Failure/genetics
- Heart Failure/pathology
- Fibrosis
- Ventricular Function, Left
- Disease Models, Animal
- Ubiquitination
- Myosin Heavy Chains/metabolism
- Myosin Heavy Chains/genetics
Collapse
Affiliation(s)
- Pierre-Yves Jean-Charles
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States
| | - Bipradas Roy
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States
| | - Samuel Mon-Wei Yu
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States
| | - Gianluigi Pironti
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States
| | - Karim Nagi
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States
| | - Lan Mao
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States
| | - Suneet Kaur
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States
| | - Dennis M Abraham
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States
| | - Stuart Maudsley
- Receptor Biology Laboratory, Department of Biomedical Science, University of Antwerp, Antwerp, Belgium
| | - Howard A Rockman
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States
| | - Sudha K Shenoy
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States
| |
Collapse
|
3
|
Moghadam RK, Daraei A, Haddadi M, Mardi A, Karamali N, Rezaiemanesh A. Casting Light on the Janus-Faced HMG-CoA Reductase Degradation Protein 1: A Comprehensive Review of Its Dualistic Impact on Apoptosis in Various Diseases. Mol Neurobiol 2024; 61:6842-6863. [PMID: 38356096 DOI: 10.1007/s12035-024-03994-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
Nowadays, it is well recognized that apoptosis, as a highly regulated cellular process, plays a crucial role in various biological processes, such as cell differentiation. Dysregulation of apoptosis is strongly implicated in the pathophysiology of numerous disorders, making it essential to comprehend its underlying mechanisms. One key factor that has garnered significant attention in the regulation of apoptotic pathways is HMG-CoA reductase degradation protein 1, also known as HRD1. HRD1 is an E3 ubiquitin ligase located in the endoplasmic reticulum (ER) membrane. Its primary role involves maintaining the quality control of ER proteins by facilitating the ER-associated degradation (ERAD) pathway. During ER stress, HRD1 aids in the elimination of misfolded proteins that accumulate within the ER. Therefore, HRD1 plays a pivotal role in the regulation of apoptotic pathways and maintenance of ER protein quality control. By targeting specific protein substrates and affecting apoptosis-related pathways, HRD1 could be an exclusive therapeutic target in different disorders. Dysregulation of HRD1-mediated processes contributes significantly to the pathophysiology of various diseases. The purpose of this review is to assess the effect of HRD1 on the pathways related to apoptosis in various diseases from a therapeutic perspective.
Collapse
Affiliation(s)
- Reihaneh Khaleghi Moghadam
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Daneshgah Street, Shahid Shiroudi Boulevard, PO-Box: 6714869914, Kermanshah, Iran
| | - Arshia Daraei
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Daneshgah Street, Shahid Shiroudi Boulevard, PO-Box: 6714869914, Kermanshah, Iran
| | - Maryam Haddadi
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Daneshgah Street, Shahid Shiroudi Boulevard, PO-Box: 6714869914, Kermanshah, Iran
| | - Amirhossein Mardi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negin Karamali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Alireza Rezaiemanesh
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Daneshgah Street, Shahid Shiroudi Boulevard, PO-Box: 6714869914, Kermanshah, Iran.
| |
Collapse
|
4
|
Kulbacka J, Rembiałkowska N, Radzevičiūtė-Valčiukė E, Szewczyk A, Novickij V. Cardiomyocytes Permeabilization and Electrotransfection by Unipolar and Bipolar Asymmetric Electric Field Pulses. Bioelectricity 2024; 6:91-96. [PMID: 39119571 PMCID: PMC11304875 DOI: 10.1089/bioe.2024.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Short electric field pulses represent a novel potential approach for achieving uniform electroporation within tissue containing elongated cells oriented in various directions, such as electroporation-based cardiac ablation procedures. In this study, we investigated how electroporation with nanosecond pulses with respect to different pulse shapes (unipolar, bipolar, and asymmetric) influences cardiomyocyte permeabilization and gene transfer. For this purpose, rat cardiomyocytes (H9c2) were used. The efficacy of the pulsed electric field protocols was assessed by flow cytometry and electrogene transfer by fluorescent and holotomographic microscopy. The response of the cells was assessed by the metabolic activity (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide [MTT] assay), F-actin distribution in cells by confocal microscopy, and muscle atrophy F-box (MAFbx) marker. We show nano- and microsecond pulse protocols, which are not cytotoxic for cardiac muscle cells and can be efficiently used for gene electrotransfection. Asymmetric nanosecond pulsed electric fields were similarly efficient in plasmid delivery as microsecond and millisecond protocols. However, the millisecond protocol induced a higher MAFbx expression in H9c2 cells.
Collapse
Affiliation(s)
- Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Eivina Radzevičiūtė-Valčiukė
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Vitalij Novickij
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Vilnius, Lithuania
| |
Collapse
|
5
|
You JR, Wen ZJ, Tian JW, Lv XB, Li R, Li SP, Xin H, Li PF, Zhang YF, Zhang R. Crosstalk between ubiquitin ligases and ncRNAs drives cardiovascular disease progression. Front Immunol 2024; 15:1335519. [PMID: 38515760 PMCID: PMC10954775 DOI: 10.3389/fimmu.2024.1335519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
Cardiovascular diseases (CVDs) are multifactorial chronic diseases and have the highest rates of morbidity and mortality worldwide. The ubiquitin-proteasome system (UPS) plays a crucial role in posttranslational modification and quality control of proteins, maintaining intracellular homeostasis via degradation of misfolded, short-lived, or nonfunctional regulatory proteins. Noncoding RNAs (ncRNAs, such as microRNAs, long noncoding RNAs, circular RNAs and small interfering RNAs) serve as epigenetic factors and directly or indirectly participate in various physiological and pathological processes. NcRNAs that regulate ubiquitination or are regulated by the UPS are involved in the execution of target protein stability. The cross-linked relationship between the UPS, ncRNAs and CVDs has drawn researchers' attention. Herein, we provide an update on recent developments and perspectives on how the crosstalk of the UPS and ncRNAs affects the pathological mechanisms of CVDs, particularly myocardial ischemia/reperfusion injury, myocardial infarction, cardiomyopathy, heart failure, atherosclerosis, hypertension, and ischemic stroke. In addition, we further envision that RNA interference or ncRNA mimics or inhibitors targeting the UPS can potentially be used as therapeutic tools and strategies.
Collapse
Affiliation(s)
- Jia-Rui You
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Zeng-Jin Wen
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Jia-Wei Tian
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiao-Bing Lv
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China
| | - Rong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China
| | - Shu-Ping Li
- Department of Cardiology, The Affiliated Qingdao Third People’s Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China
| | - Hui Xin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China
| | - Pei-Feng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Rui Zhang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
6
|
Yang Z, Cao Y, Kong L, Xi J, Liu S, Zhang J, Cheng W. Small molecules as modulators of the proteostasis machinery: Implication in cardiovascular diseases. Eur J Med Chem 2024; 264:116030. [PMID: 38071793 DOI: 10.1016/j.ejmech.2023.116030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/25/2023] [Accepted: 12/03/2023] [Indexed: 12/30/2023]
Abstract
With the escalating prevalence of cardiovascular diseases, the substantial socioeconomic burden on healthcare systems is intensifying. Accumulating empirical evidence underscores the pivotal role of the proteostasis network in regulating cardiac homeostasis and function. Disruptions in proteostasis may contribute to the loss of protein function or the acquisition of toxic functions, which are intricately linked to the development of cardiovascular ailments such as atrial fibrillation, heart failure, atherosclerosis, and cardiac aging. It is widely acknowledged that the proteostasis network encompasses molecular chaperones, autophagy, and the ubiquitin proteasome system (UPS). Consequently, the proteostasis network emerges as an appealing target for therapeutic interventions in cardiovascular diseases. Numerous small molecules, acting as modulators of the proteostasis machinery, have exhibited therapeutic efficacy in managing cardiovascular diseases. This review centers on elucidating the role of the proteostasis network in various cardiovascular diseases and explores the potential of small molecules as therapeutic agents.
Collapse
Affiliation(s)
- Zhiheng Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yu Cao
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, China
| | - Limin Kong
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Jianjun Xi
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, China
| | - Shourong Liu
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, China.
| | - Jiankang Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China.
| | - Weiyan Cheng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
7
|
Gao J, Gao Z. The regulatory role and mechanism of USP14 in endothelial cell pyroptosis induced by coronary heart disease. Clin Hemorheol Microcirc 2024; 86:495-508. [PMID: 38073382 DOI: 10.3233/ch-232003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
OBJECTIVE The present study probes into the role and mechanism of ubiquitin specific peptidase 14 (USP14) in coronary heart disease (CHD)-triggered endothelial cell pyroptosis. METHODS An in vitro CHD model was established by inducing human coronary artery endothelial cells (HCAECs) with oxidized low-density lipoprotein (ox-LDL). HCAECs were transfected with si-USP14, followed by evaluation of cell viability by CCK-8 assay, detection of lactate dehydrogenase (LDH) activity by assay kit, detection of USP14, miR-15b-5p, NLRP3, GSDMD-N, and Cleaved-Caspase-1 expressions by qRT-PCR or Western blot, as well as IL-1β and IL-18 concentrations by ELISA. Co-IP confirmed the binding between USP14 and NLRP3. The ubiquitination level of NLRP3 in cells was measured after protease inhibitor MG132 treatment. Dual-luciferase reporter assay verified the targeting relationship between miR-15b-5p and USP14. RESULTS USP14 and NLRP3 were highly expressed but miR-15b-5p was poorly expressed in ox-LDL-exposed HCAECs. USP14 silencing strengthened the viability of ox-LDL-exposed HCAECs, reduced the intracellular LDH activity, and diminished the NLRP3, GSDMD-N, Cleaved-Caspase-1, IL-1β, and IL-18 expressions. USP14 bound to NLRP3 protein and curbed its ubiquitination. Repression of NLRP3 ubiquitination counteracted the inhibitory effect of USP14 silencing on HCAEC pyroptosis. miR-15b-5p restrained USP14 transcription and protein expression. miR-15b-5p overexpression alleviated HCAEC pyroptosis by suppressing USP14/NLRP3. CONCLUSION USP14 stabilizes NLRP3 protein expression through deubiquitination, thereby facilitating endothelial cell pyroptosis in CHD. miR-15b-5p restrains endothelial cell pyroptosis by targeting USP14 expression.
Collapse
Affiliation(s)
- Jie Gao
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi'an, China
| | - Zhao Gao
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi'an, China
| |
Collapse
|
8
|
Nahum-Ankonina O, Kurtzwald-Josefson E, Ciechanover A, Waldman M, Shwartz-Rohaker O, Hochhauser E, Meyer SJ, Aravot D, Phillip M, Barac YD. Ubiquitin Proteasome System Role in Diabetes-Induced Cardiomyopathy. Int J Mol Sci 2023; 24:15376. [PMID: 37895057 PMCID: PMC10607702 DOI: 10.3390/ijms242015376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
This study investigated modifications to the ubiquitin proteasome system (UPS) in a mouse model of type 2 diabetes mellitus (T2DM) and their relationship to heart complications. db/db mice heart tissues were compared with WT mice tissues using RNA sequencing, qRT-PCR, and protein analysis to identify cardiac UPS modifications associated with diabetes. The findings unveiled a distinctive gene profile in the hearts of db/db mice with decreased levels of nppb mRNA and increased levels of Myh7, indicating potential cardiac dysfunction. The mRNA levels of USP18 (deubiquitinating enzyme), PSMB8, and PSMB9 (proteasome β-subunits) were down-regulated in db/db mice, while the mRNA levels of RNF167 (E3 ligase) were increased. Corresponding LMP2 and LMP7 proteins were down-regulated in db/db mice, and RNF167 was elevated in Adult diabetic mice. The reduced expression of LMP2 and LMP7, along with increased RNF167 expression, may contribute to the future cardiac deterioration commonly observed in diabetes. This study enhances our understanding of UPS imbalances in the hearts of diabetic mice and raises questions about the interplay between the UPS and other cellular processes, such as autophagy. Further exploration in this area could provide valuable insights into the mechanisms underlying diabetic heart complications and potential therapeutic targets.
Collapse
Affiliation(s)
- Ortal Nahum-Ankonina
- The Division of Cardiovascular and Thoracic Surgery, Rabin Medical Center, Petach-Tikva 4941492, Israel; (O.N.-A.); (E.K.-J.); (M.W.); (O.S.-R.); (E.H.); (S.J.M.); (D.A.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Efrat Kurtzwald-Josefson
- The Division of Cardiovascular and Thoracic Surgery, Rabin Medical Center, Petach-Tikva 4941492, Israel; (O.N.-A.); (E.K.-J.); (M.W.); (O.S.-R.); (E.H.); (S.J.M.); (D.A.)
| | - Aaron Ciechanover
- The Ruth & Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3109601, Israel;
| | - Maayan Waldman
- The Division of Cardiovascular and Thoracic Surgery, Rabin Medical Center, Petach-Tikva 4941492, Israel; (O.N.-A.); (E.K.-J.); (M.W.); (O.S.-R.); (E.H.); (S.J.M.); (D.A.)
| | - Orna Shwartz-Rohaker
- The Division of Cardiovascular and Thoracic Surgery, Rabin Medical Center, Petach-Tikva 4941492, Israel; (O.N.-A.); (E.K.-J.); (M.W.); (O.S.-R.); (E.H.); (S.J.M.); (D.A.)
| | - Edith Hochhauser
- The Division of Cardiovascular and Thoracic Surgery, Rabin Medical Center, Petach-Tikva 4941492, Israel; (O.N.-A.); (E.K.-J.); (M.W.); (O.S.-R.); (E.H.); (S.J.M.); (D.A.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Sam J. Meyer
- The Division of Cardiovascular and Thoracic Surgery, Rabin Medical Center, Petach-Tikva 4941492, Israel; (O.N.-A.); (E.K.-J.); (M.W.); (O.S.-R.); (E.H.); (S.J.M.); (D.A.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Dan Aravot
- The Division of Cardiovascular and Thoracic Surgery, Rabin Medical Center, Petach-Tikva 4941492, Israel; (O.N.-A.); (E.K.-J.); (M.W.); (O.S.-R.); (E.H.); (S.J.M.); (D.A.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Moshe Phillip
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
- The Division of Endocrinology, Schneider Medical Center, Petach-Tikva 4920235, Israel
| | - Yaron D. Barac
- The Division of Cardiovascular and Thoracic Surgery, Rabin Medical Center, Petach-Tikva 4941492, Israel; (O.N.-A.); (E.K.-J.); (M.W.); (O.S.-R.); (E.H.); (S.J.M.); (D.A.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
| |
Collapse
|
9
|
Baur B, Shin J, Schreiber J, Zhang S, Zhang Y, Manjunath M, Song JS, Stafford Noble W, Roy S. Leveraging epigenomes and three-dimensional genome organization for interpreting regulatory variation. PLoS Comput Biol 2023; 19:e1011286. [PMID: 37428809 PMCID: PMC10358954 DOI: 10.1371/journal.pcbi.1011286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 06/20/2023] [Indexed: 07/12/2023] Open
Abstract
Understanding the impact of regulatory variants on complex phenotypes is a significant challenge because the genes and pathways that are targeted by such variants and the cell type context in which regulatory variants operate are typically unknown. Cell-type-specific long-range regulatory interactions that occur between a distal regulatory sequence and a gene offer a powerful framework for examining the impact of regulatory variants on complex phenotypes. However, high-resolution maps of such long-range interactions are available only for a handful of cell types. Furthermore, identifying specific gene subnetworks or pathways that are targeted by a set of variants is a significant challenge. We have developed L-HiC-Reg, a Random Forests regression method to predict high-resolution contact counts in new cell types, and a network-based framework to identify candidate cell-type-specific gene networks targeted by a set of variants from a genome-wide association study (GWAS). We applied our approach to predict interactions in 55 Roadmap Epigenomics Mapping Consortium cell types, which we used to interpret regulatory single nucleotide polymorphisms (SNPs) in the NHGRI-EBI GWAS catalogue. Using our approach, we performed an in-depth characterization of fifteen different phenotypes including schizophrenia, coronary artery disease (CAD) and Crohn's disease. We found differentially wired subnetworks consisting of known as well as novel gene targets of regulatory SNPs. Taken together, our compendium of interactions and the associated network-based analysis pipeline leverages long-range regulatory interactions to examine the context-specific impact of regulatory variation in complex phenotypes.
Collapse
Affiliation(s)
- Brittany Baur
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Junha Shin
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jacob Schreiber
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington, United States of America
| | - Shilu Zhang
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Yi Zhang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Mohith Manjunath
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jun S Song
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - William Stafford Noble
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Sushmita Roy
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
10
|
Faria-Reis A, Santos-Araújo S, Pereira J, Rios T, Majerowicz D, Gondim KC, Ramos I. Silencing of the 20S proteasomal subunit-α6 triggers full oogenesis arrest and increased mRNA levels of the selective autophagy adaptor protein p62/SQSTM1 in the ovary of the vector Rhodnius prolixus. PLoS Negl Trop Dis 2023; 17:e0011380. [PMID: 37267415 DOI: 10.1371/journal.pntd.0011380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/15/2023] [Indexed: 06/04/2023] Open
Abstract
The high reproductive rates of insects contribute significantly to their ability to act as vectors of a variety of vector-borne diseases. Therefore, it is strategically critical to find molecular targets with biotechnological potential through the functional study of genes essential for insect reproduction. The ubiquitin-proteasome system is a vital degradative pathway that contributes to the maintenance of regular eukaryotic cell proteostasis. This mechanism involves the action of enzymes to covalently link ubiquitin to proteins that are meant to be delivered to the 26S proteasome and broken down. The 26S proteasome is a large protease complex (including the 20S and 19S subcomplexes) that binds, deubiquitylates, unfolds, and degrades its substrates. Here, we used bioinformatics to identify the genes that encode the seven α and β subunits of the 20S proteasome in the genome of R. prolixus and learned that those transcripts are accumulated into mature oocytes. To access proteasome function during oogenesis, we conducted RNAi functional tests employing one of the 20S proteasome subunits (Prosα6) as a tool to suppress 20S proteasomal activity. We found that Prosα6 silencing resulted in no changes in TAG buildup in the fat body and unaffected availability of yolk proteins in the hemolymph of vitellogenic females. Despite this, the silencing of Prosα6 culminated in the impairment of oocyte maturation at the early stages of oogenesis. Overall, we discovered that proteasome activity is especially important for the signals that initiate oogenesis in R. prolixus and discuss in what manner further investigations on the regulation of proteasome assembly and activity might contribute to the unraveling of oogenesis molecular mechanisms and oocyte maturation in this vector.
Collapse
Affiliation(s)
- Allana Faria-Reis
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Samara Santos-Araújo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Jéssica Pereira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - Thamara Rios
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | - David Majerowicz
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia
- Programa de Pós-Graduação em Biociências, Universidade do Estado do Rio de Janeiro
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular-INCT-EM/CNPq
| | - Katia C Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular-INCT-EM/CNPq
| | - Isabela Ramos
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular-INCT-EM/CNPq
| |
Collapse
|
11
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
12
|
Yang CY, Yang CF, Tang XF, Machado LESF, Singh JP, Peti W, Chen CS, Meng TC. Active-site cysteine 215 sulfonation targets protein tyrosine phosphatase PTP1B for Cullin1 E3 ligase-mediated degradation. Free Radic Biol Med 2023; 194:147-159. [PMID: 36462629 DOI: 10.1016/j.freeradbiomed.2022.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/14/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
Reactive oxygen species (ROS), released as byproducts of mitochondrial metabolism or as products of NADPH oxidases and other processes, can directly oxidize the active-site cysteine (Cys) residue of protein tyrosine phosphatases (PTPs) in a mammalian cell. Robust degradation of irreversibly oxidized PTPs is essential for preventing accumulation of these permanently inactive enzymes. However, the mechanism underlying the degradation of these proteins was unknown. In this study, we found that the active-site Cys215 of endogenous PTP1B is sulfonated in H9c2 cardiomyocytes under physiological conditions. The sulfonation of Cys215 led PTP1B to exhibit a conformational change, and drive the subsequent ubiquitination and degradation of this protein. We then discovered that Cullin1, an E3 ligase, interacts with the Cys215-sulfonated PTP1B. The functional impairment of Cullin1 prevented PTP1B from oxidation-dependent ubiquitination and degradation in H9c2 cells. Moreover, delivery of the terminally oxidized PTP1B resulted in proteotoxicity-caused injury in the affected cells. In conclusion, we elucidate how sulfonation of the active-site Cys215 can direct turnover of endogenous PTP1B through the engagement of ubiquitin-proteasome system. These data highlight a novel mechanism that maintains PTP homeostasis in cardiomyocytes with constitutive ROS production.
Collapse
Affiliation(s)
- Chun-Yi Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, 115, Taiwan
| | - Chiu-Fen Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan; Department of Cardiology, Cardiovascular Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan
| | - Xiao-Fang Tang
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, 300 Jhongda Road, Jhongli, 320, Taiwan
| | - Luciana E S F Machado
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Jai Prakash Singh
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Wolfgang Peti
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Chien-Sheng Chen
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, 300 Jhongda Road, Jhongli, 320, Taiwan; Department of Biomedical Science and Engineering, National Central University, Jongli District, Taoyuan City, 32001, Taiwan; Department of Food Safety / Hygiene and Risk Management, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Ching Meng
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, 115, Taiwan.
| |
Collapse
|
13
|
Pathophysiology of heart failure and an overview of therapies. Cardiovasc Pathol 2022. [DOI: 10.1016/b978-0-12-822224-9.00025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
14
|
Zhao Q, Tohda M. Clarifying the pharmacological mechanisms of action of Shenfu Decoction on cardiovascular diseases using a network pharmacology approach. Drug Discov Ther 2021; 15:197-203. [PMID: 34471004 DOI: 10.5582/ddt.2021.01071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Since the molecular mechanisms underlying in the pathogenesis of cardiovascular diseases (CVD) are extremely complex and have not yet been elucidated in detail, CVD remain the leading cause of death worldwide. Traditional Chinese medicine involves the treatment of disease from an overall perspective, and its therapeutic effects on CVD have been demonstrated. However, the mechanisms contributing to the multiscale treatment of cardiovascular diseases at the systematic level remain unclear. Network pharmacology methods and a gene chip data analysis were integrated and applied in the present study, which was conducted to investigate the potential target genes and related pathways of Shenfu Decoction (SFD) for the treatment of myocardial injury. The gene chip analysis was initially performed, followed by network pharmacology to identify differentially expressed genes (DEG) and a functional enrichment analysis. Protein-protein networks were constructed and a module analysis was conducted. A network analysis was used to identify the target genes of SFD. Regarding the results obtained, 1134 DEG were identified using the STRING website. The module analysis revealed that nine hub genes exhibited ubiquitin-protein ligase activity. Therefore, SFD significantly alters the expression of ubiquitination-related genes and, thus, plays an important therapeutic role in the treatment of heart failure. In conclusion, hub genes may provide a more detailed understanding of the molecular mechanisms of action of as well as candidate targets for SFD therapy.
Collapse
Affiliation(s)
- Qingfeng Zhao
- Field of Consilienceology for Wakan-yaku, Major of Biological Information System Course, Graduate School of Innovative Life Science, University of Toyama, Toyama, Japan
| | - Michihisa Tohda
- Field of Consilienceology for Wakan-yaku, Major of Biological Information System Course, Graduate School of Innovative Life Science, University of Toyama, Toyama, Japan.,Laboratory of Consilienceology for Wakan-yaku, Section of Neuromedical Science, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
15
|
Mikhail P, Rogers J, Forsyth C, Ford TJ. Proteasome inhibitor-induced coronary vasospasm in multiple myeloma: a case report. Eur Heart J Case Rep 2021; 5:ytab076. [PMID: 34345762 PMCID: PMC8323061 DOI: 10.1093/ehjcr/ytab076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/02/2020] [Accepted: 02/01/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Coronary vasospasm is an increasingly recognized cause of myocardial infarction or myocardial ischaemia in patients without obstructive coronary artery disease. A thorough medication review may identify drugs or toxins that could trigger coronary vasospasm. This case provides mechanistic insight into the off-target effect of proteasome inhibition leading to coronary vasospasm in a patient referred with chest pain consistent with typical angina. CASE SUMMARY A 72-year-old lady presented with anginal chest pain at rest with electrocardiogram evidence of myocardial ischaemia who was referred for invasive coronary angiography. This demonstrated minor coronary disease without an obstructive lesion. Vasoreactivity testing revealed diffuse coronary vasospasm of the left anterior descending artery. Carfilzomib was identified as the trigger for coronary vasospasm. Symptoms resolved without recurrence after appropriate treatment including cessation of the triggering agent. CONCLUSION Coronary spasm is a rare but important adverse reaction to proteasome inhibitors. This case supports the clinical utility of invasive coronary vasoreactivity testing in patients with ischaemia with no obstructive coronary artery disease.
Collapse
Affiliation(s)
- Philopatir Mikhail
- Cardiology Department, Gosford Hospital, Central Coast Local Health District, Holden St, Gosford, NSW 2250, Australia
- Haematology Department, Gosford Hospital, Central Coast Local Health District, Holden St, Gosford, NSW 2250, Australia
| | - James Rogers
- Cardiology Department, Gosford Hospital, Central Coast Local Health District, Holden St, Gosford, NSW 2250, Australia
| | - Cecily Forsyth
- Haematology Department, Gosford Hospital, Central Coast Local Health District, Holden St, Gosford, NSW 2250, Australia
| | - Thomas J Ford
- Cardiology Department, Gosford Hospital, Central Coast Local Health District, Holden St, Gosford, NSW 2250, Australia
- University of Newcastle, Newcastle, University Drive, Callaghan, NSW 2308 Australia
- University of Glasgow (ICAMS), Scotland
| |
Collapse
|
16
|
Zhang J, Jiang S, Lu C, Pang J, Xu H, Yang F, Zhuang S. SYVN1/GPX5 axis affects ischemia/reperfusion induced apoptosis of AC16 cells by regulating ROS generation. Am J Transl Res 2021; 13:4055-4067. [PMID: 34149998 PMCID: PMC8205806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Ischemia/reperfusion (I/R) induced injury is a major cause of coronary heart disease (CHD). Increased production of reactive oxygen species (ROS) can lead to an I/R injury in CHD, and the ROS level can be regulated by Glutathione peroxidase (GPX) enzyme family. In this study, we investigated the role and underlying molecular mechanism of GPX5 in I/R-induced AC16 cells. We found that the serum level of GPX5 was down-regulated in patients with CHD and I/R-induced AC16 cells. Overexpression of GPX5 inhibited I/R-induced apoptosis by suppressing the production of ROS. On the other hand, knock-down of GPX5 promoted apoptosis in AC16 cells by up-regulating the level of ROS. Furthermore, we found that GPX5 was regulated by synovial apoptosis inhibitor 1 (SYVN1)-mediated ubiquitination in AC16 cells. In I/R-induced AC16 cells, the expression of SYVN1 was up-regulated, and SYVN1 knock-down decreased the ROS levels and apoptotic rate but increased GPX5 levels. Moreover, GPX5 knockdown promoted ROS production and apoptosis, while its effects were attenuated by SYVN1 knockdown. Furthermore, SYVN1 was up-regulated while GPX5 was down-regulated in the myocardial tissue of I/R-injured rats. Taken together, our data demonstrate that GPX5 inhibits I/R-induced apoptosis of AC16 cells by down-regulating ROS level, and its stabilization is regulated by SYVN1-mediated ubiquitination.
Collapse
Affiliation(s)
- Jiehan Zhang
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Shengyang Jiang
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Cheng Lu
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Jiadong Pang
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Huajie Xu
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Fenghua Yang
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Shaowei Zhuang
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine Shanghai, China
| |
Collapse
|
17
|
Bryan L, Clynes M, Meleady P. The emerging role of cellular post-translational modifications in modulating growth and productivity of recombinant Chinese hamster ovary cells. Biotechnol Adv 2021; 49:107757. [PMID: 33895332 DOI: 10.1016/j.biotechadv.2021.107757] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023]
Abstract
Chinese hamster ovary (CHO) cells are one of the most commonly used host cell lines used for the production human therapeutic proteins. Much research over the past two decades has focussed on improving the growth, titre and cell specific productivity of CHO cells and in turn lowering the costs associated with production of recombinant proteins. CHO cell engineering has become of particular interest in recent years following the publication of the CHO cell genome and the availability of data relating to the proteome, transcriptome and metabolome of CHO cells. However, data relating to the cellular post-translational modification (PTMs) which can affect the functionality of CHO cellular proteins has only begun to be presented in recent years. PTMs are important to many cellular processes and can further alter proteins by increasing the complexity of proteins and their interactions. In this review, we describe the research presented from CHO cells to date related on three of the most important PTMs; glycosylation, phosphorylation and ubiquitination.
Collapse
Affiliation(s)
- Laura Bryan
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| |
Collapse
|
18
|
Abstract
The 26S proteasome is the most complex ATP-dependent protease machinery, of ~2.5 MDa mass, ubiquitously found in all eukaryotes. It selectively degrades ubiquitin-conjugated proteins and plays fundamentally indispensable roles in regulating almost all major aspects of cellular activities. To serve as the sole terminal "processor" for myriad ubiquitylation pathways, the proteasome evolved exceptional adaptability in dynamically organizing a large network of proteins, including ubiquitin receptors, shuttle factors, deubiquitinases, AAA-ATPase unfoldases, and ubiquitin ligases, to enable substrate selectivity and processing efficiency and to achieve regulation precision of a vast diversity of substrates. The inner working of the 26S proteasome is among the most sophisticated, enigmatic mechanisms of enzyme machinery in eukaryotic cells. Recent breakthroughs in three-dimensional atomic-level visualization of the 26S proteasome dynamics during polyubiquitylated substrate degradation elucidated an extensively detailed picture of its functional mechanisms, owing to progressive methodological advances associated with cryogenic electron microscopy (cryo-EM). Multiple sites of ubiquitin binding in the proteasome revealed a canonical mode of ubiquitin-dependent substrate engagement. The proteasome conformation in the act of substrate deubiquitylation provided insights into how the deubiquitylating activity of RPN11 is enhanced in the holoenzyme and is coupled to substrate translocation. Intriguingly, three principal modes of coordinated ATP hydrolysis in the heterohexameric AAA-ATPase motor were discovered to regulate intermediate functional steps of the proteasome, including ubiquitin-substrate engagement, deubiquitylation, initiation of substrate translocation and processive substrate degradation. The atomic dissection of the innermost working of the 26S proteasome opens up a new era in our understanding of the ubiquitin-proteasome system and has far-reaching implications in health and disease.
Collapse
Affiliation(s)
- Youdong Mao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, 02215, Massachusetts, USA. .,School of Physics, Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| |
Collapse
|
19
|
Evangelisti A, Butler H, del Monte F. The Heart of the Alzheimer's: A Mindful View of Heart Disease. Front Physiol 2021; 11:625974. [PMID: 33584340 PMCID: PMC7873884 DOI: 10.3389/fphys.2020.625974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Purpose of Review: This review summarizes the current evidence for the involvement of proteotoxicity and protein quality control systems defects in diseases of the central nervous and cardiovascular systems. Specifically, it presents the commonalities between the pathophysiology of protein misfolding diseases in the heart and the brain. Recent Findings: The involvement of protein homeostasis dysfunction has been for long time investigated and accepted as one of the leading pathophysiological causes of neurodegenerative diseases. In cardiovascular diseases instead the mechanistic focus had been on the primary role of Ca2+ dishomeostasis, myofilament dysfunction as well as extracellular fibrosis, whereas no attention was given to misfolding of proteins as a pathogenetic mechanism. Instead, in the recent years, several contributions have shown protein aggregates in failing hearts similar to the ones found in the brain and increasing evidence have highlighted the crucial importance that proteotoxicity exerts via pre-amyloidogenic species in cardiovascular diseases as well as the prominent role of the cellular response to misfolded protein accumulation. As a result, proteotoxicity, unfolding protein response (UPR), and ubiquitin-proteasome system (UPS) have recently been investigated as potential key pathogenic pathways and therapeutic targets for heart disease. Summary: Overall, the current knowledge summarized in this review describes how the misfolding process in the brain parallels in the heart. Understanding the folding and unfolding mechanisms involved early through studies in the heart will provide new knowledge for neurodegenerative proteinopathies and may prepare the stage for targeted and personalized interventions.
Collapse
Affiliation(s)
| | - Helen Butler
- School of Medicine, Department of Molecular and Cellular Biology and Pathobiology, Medical University of South Carolina, Charleston, SC, United States
| | - Federica del Monte
- Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
20
|
Under construction: The dynamic assembly, maintenance, and degradation of the cardiac sarcomere. J Mol Cell Cardiol 2020; 148:89-102. [PMID: 32920010 DOI: 10.1016/j.yjmcc.2020.08.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/11/2022]
Abstract
The sarcomere is the basic contractile unit of striated muscle and is a highly ordered protein complex with the actin and myosin filaments at its core. Assembling the sarcomere constituents into this organized structure in development, and with muscle growth as new sarcomeres are built, is a complex process coordinated by numerous factors. Once assembled, the sarcomere requires constant maintenance as its continuous contraction is accompanied by elevated mechanical, thermal, and oxidative stress, which predispose proteins to misfolding and toxic aggregation. To prevent protein misfolding and maintain sarcomere integrity, the sarcomere is monitored by an assortment of protein quality control (PQC) mechanisms. The need for effective PQC is heightened in cardiomyocytes which are terminally differentiated and must survive for many years while preserving optimal mechanical output. To prevent toxic protein aggregation, molecular chaperones stabilize denatured sarcomere proteins and promote their refolding. However, when old and misfolded proteins cannot be salvaged by chaperones, they must be recycled via degradation pathways: the calpain and ubiquitin-proteasome systems, which operate under basal conditions, and the stress-responsive autophagy-lysosome pathway. Mutations to and deficiency of the molecular chaperones and associated factors charged with sarcomere maintenance commonly lead to sarcomere structural disarray and the progression of heart disease, highlighting the necessity of effective sarcomere PQC for maintaining cardiac function. This review focuses on the dynamic regulation of assembly and turnover at the sarcomere with an emphasis on the chaperones involved in these processes and describes the alterations to chaperones - through mutations and deficient expression - implicated in disease progression to heart failure.
Collapse
|
21
|
Zhang Y, Qian H, Wu B, You S, Wu S, Lu S, Wang P, Cao L, Zhang N, Sun Y. E3 Ubiquitin ligase NEDD4 family‑regulatory network in cardiovascular disease. Int J Biol Sci 2020; 16:2727-2740. [PMID: 33110392 PMCID: PMC7586430 DOI: 10.7150/ijbs.48437] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022] Open
Abstract
Protein ubiquitination represents a critical modification occurring after translation. E3 ligase catalyzes the covalent binding of ubiquitin to the protein substrate, which could be degraded. Ubiquitination as an important protein post-translational modification is closely related to cardiovascular disease. The NEDD4 family, belonging to HECT class of E3 ubiquitin ligases can recognize different substrate proteins, including PTEN, ENaC, Nav1.5, SMAD2, PARP1, Septin4, ALK1, SERCA2a, TGFβR3 and so on, via the WW domain to catalyze ubiquitination, thus participating in multiple cardiovascular-related disease such as hypertension, arrhythmia, myocardial infarction, heart failure, cardiotoxicity, cardiac hypertrophy, myocardial fibrosis, cardiac remodeling, atherosclerosis, pulmonary hypertension and heart valve disease. However, there is currently no review comprehensively clarifying the important role of NEDD4 family proteins in the cardiovascular system. Therefore, the present review summarized recent studies about NEDD4 family members in cardiovascular disease, providing novel insights into the prevention and treatment of cardiovascular disease. In addition, assessing transgenic animals and performing gene silencing would further identify the ubiquitination targets of NEDD4. NEDD4 quantification in clinical samples would also constitute an important method for determining NEDD4 significance in cardiovascular disease.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Hao Qian
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Boquan Wu
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Shilong You
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Shaojun Wu
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Saien Lu
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Pingyuan Wang
- Staff scientist, Center for Molecular Medicine National Heart Lung and Blood Institute, National Institutes of Health, the United States
| | - Liu Cao
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning, China
| | - Naijin Zhang
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Yingxian Sun
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| |
Collapse
|
22
|
Oeing CU, Mishra S, Dunkerly-Eyring BL, Ranek MJ. Targeting Protein Kinase G to Treat Cardiac Proteotoxicity. Front Physiol 2020; 11:858. [PMID: 32848832 PMCID: PMC7399205 DOI: 10.3389/fphys.2020.00858] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022] Open
Abstract
Impaired or insufficient protein kinase G (PKG) signaling and protein quality control (PQC) are hallmarks of most forms of cardiac disease, including heart failure. Their dysregulation has been shown to contribute to and exacerbate cardiac hypertrophy and remodeling, reduced cell survival and disease pathogenesis. Enhancement of PKG signaling and PQC are associated with improved cardiac function and survival in many pre-clinical models of heart disease. While many clinically used pharmacological approaches exist to stimulate PKG, there are no FDA-approved therapies to safely enhance cardiomyocyte PQC. The latter is predominantly due to our lack of knowledge and identification of proteins regulating cardiomyocyte PQC. Recently, multiple studies have demonstrated that PKG regulates PQC in the heart, both during physiological and pathological states. These studies tested already FDA-approved pharmacological therapies to activate PKG, which enhanced cardiomyocyte PQC and alleviated cardiac disease. This review examines the roles of PKG and PQC during disease pathogenesis and summarizes the experimental and clinical data supporting the utility of stimulating PKG to target cardiac proteotoxicity.
Collapse
Affiliation(s)
- Christian U Oeing
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD, United States.,Department of Cardiology, Charité - University Medicine Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Sumita Mishra
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Brittany L Dunkerly-Eyring
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Mark J Ranek
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD, United States
| |
Collapse
|
23
|
Tsai FC, Chang GJ, Lai YJ, Chang SH, Chen WJ, Yeh YH. Ubiquitin Pathway Is Associated with Worsening Left Ventricle Function after Mitral Valve Repair: A Global Gene Expression Study. Int J Mol Sci 2020; 21:ijms21145073. [PMID: 32708358 PMCID: PMC7404186 DOI: 10.3390/ijms21145073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/25/2022] Open
Abstract
The molecular mechanism for worsening left ventricular (LV) function after mitral valve (MV) repair for chronic mitral regurgitation remains unknown. We wished to assess the LV transcriptome and identify determinants associated with worsening LV function post-MV repair. A total of 13 patients who underwent MV repair for chronic primary mitral regurgitation were divided into two groups, preserved LV function (N = 8) and worsening LV function (N = 5), for the study. Specimens of LV from the patients taken during surgery were used for the gene microarray study. Cardiomyocyte cell line HL-1 cells were transfected with gene-containing plasmids and further evaluated for mRNA and protein expression, apoptosis, and contractile protein degradation. Of 67,258 expressed sequence tags, microarrays identified 718 genes to be differentially expressed between preserved-LVF and worsening-LVF, including genes related to the protein ubiquitination pathway, bone morphogenetic protein (BMP) receptors, and regulation of eIF4 and p70S6K signaling. In addition, worsening-LVF was associated with altered expressions of genes pathologically relevant to heart failure, such asdownregulated apelin receptors and upregulated peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A). HL-1 cardiomyocyte cells transfected with ubiquitination-related genes demonstrated activation of the protein ubiquitination pathwaywith an increase in the ubiquitin activating enzyme E1 (UAE-E1). It also led to increased apoptosis, downregulated and ubiquitinated X-linked inhibitor of apoptosis protein (XIAP), and reduced cell viability. Overexpression of ubiquitination-related genes also resulted in degradation and increased ubiquitination of α-smooth muscle actin (SMA). In conclusion, worsening-LVF presented differential gene expression profiles from preserved-LVF after MV repair. Upregulation of protein ubiquitination-related genes associated with worsening-LVF after MV repair may exert adverse effects on LV through increased apoptosis and contractile protein degradation.
Collapse
Affiliation(s)
- Feng-Chun Tsai
- Division of Cardiovascular and Thoracic Surgery, Chang-Gung Memorial Hospital, Taoyuan 333, Taiwan;
- College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan; (S.-H.C.); (W.-J.C.)
| | - Gwo-Jyh Chang
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan 333, Taiwan;
| | - Ying-Ju Lai
- Department of Respiratory Therapy, Chang-Gung University College of Medicine, Taoyuan 333, Taiwan;
| | - Shang-Hung Chang
- College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan; (S.-H.C.); (W.-J.C.)
- Cardiovascular Department, Chang-Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Wei-Jan Chen
- College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan; (S.-H.C.); (W.-J.C.)
- Cardiovascular Department, Chang-Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Yung-Hsin Yeh
- College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan; (S.-H.C.); (W.-J.C.)
- Cardiovascular Department, Chang-Gung Memorial Hospital, Taoyuan 333, Taiwan
- Correspondence: ; Tel./Fax: +886-3-3271192
| |
Collapse
|
24
|
Abstract
Ubiquitination is a modification after protein transcription that plays a vital role in maintaining the homeostasis of the cellular environment. The Homologous to E6AP C-terminus (HECT) family E3 ubiquitin ligases are a kind of E3 ubiquitin ligases with a C-terminal HECT domain that mediates the binding of ubiquitin to substrate proteins and a variable-length N-terminal extension. HECT-ubiquitinated ligases can be divided into three categories: NEDD4 superfamily, HERC superfamily, and other HECT superfamilies. HECT ubiquitin ligase plays an essential role in the development of many human diseases. In this review, we focus on the physiological and pathological processes involved in oxidative stress and the role of E3 ubiquitin ligase of the HECT family.
Collapse
|
25
|
Wang L, Zhang R. Towards Computational Models of Identifying Protein Ubiquitination Sites. Curr Drug Targets 2020; 20:565-578. [PMID: 30246637 DOI: 10.2174/1389450119666180924150202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/29/2018] [Accepted: 09/04/2018] [Indexed: 12/25/2022]
Abstract
Ubiquitination is an important post-translational modification (PTM) process for the regulation of protein functions, which is associated with cancer, cardiovascular and other diseases. Recent initiatives have focused on the detection of potential ubiquitination sites with the aid of physicochemical test approaches in conjunction with the application of computational methods. The identification of ubiquitination sites using laboratory tests is especially susceptible to the temporality and reversibility of the ubiquitination processes, and is also costly and time-consuming. It has been demonstrated that computational methods are effective in extracting potential rules or inferences from biological sequence collections. Up to the present, the computational strategy has been one of the critical research approaches that have been applied for the identification of ubiquitination sites, and currently, there are numerous state-of-the-art computational methods that have been developed from machine learning and statistical analysis to undertake such work. In the present study, the construction of benchmark datasets is summarized, together with feature representation methods, feature selection approaches and the classifiers involved in several previous publications. In an attempt to explore pertinent development trends for the identification of ubiquitination sites, an independent test dataset was constructed and the predicting results obtained from five prediction tools are reported here, together with some related discussions.
Collapse
Affiliation(s)
- Lidong Wang
- College of Science, Dalian Maritime University, Dalian, China
| | - Ruijun Zhang
- College of Science, Dalian Maritime University, Dalian, China
| |
Collapse
|
26
|
Zhang XM, Li YC, Chen P, Ye S, Xie SH, Xia WJ, Yang JH. MG-132 attenuates cardiac deterioration of viral myocarditis via AMPK pathway. Biomed Pharmacother 2020; 126:110091. [PMID: 32278272 DOI: 10.1016/j.biopha.2020.110091] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Coxsackievirus B3 (CVB3) is the primary cause of infectious myocarditis. Aggressive immunological activation and apoptosis of myocytes contributes to progressive dysfunction of cardiac contraction and poor prognosis. MG-132, a proteasome inhibitor, regulates mitochondrial-mediated intrinsic myocardial apoptosis and downregulates NF-κB-mediated inflammation. Here, we determined whether AMPK pathway participates in MG-132-mediated myocardial protection in viral-induced myocarditis. METHODS AND RESULTS Acute viral myocarditis models were established by intraperitoneal inoculation of CVB3 in male BALB/c mice. Myocarditis and age-matched control mice were administered MG-132 and/or BML-275 dihydrochloride (BML) (AMPK antagonist) intraperitoneally daily from the day following CVB3 inoculation. MG-132 improved hemodynamics and inhibited the structural remodeling of the ventricle in mice with myocarditis, while BML largely blunted these effects. TUNEL staining and immunochemistry suggested that MG-132 exerts anti-apoptotic and anti-inflammatory effects against CVB3-induced myocardial injuries. BML attenuated the effects of MG-132 on anti-apoptosis and anti-inflammation. CONCLUSION MG-132 modulated apoptosis and inflammation, improved hemodynamics, and inhibited the structural remodeling of ventricles in a myocarditis mouse model via regulation of the AMPK signal pathway.
Collapse
Affiliation(s)
- Xin-Min Zhang
- The First Affiliated Hospital of Soochow University, Suzhou, 215006, China; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yue-Chun Li
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Peng Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Sheng Ye
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Shang-He Xie
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Wu-Jie Xia
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Jun-Hua Yang
- The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
27
|
Proteostasis Failure in Neurodegenerative Diseases: Focus on Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5497046. [PMID: 32308803 PMCID: PMC7140146 DOI: 10.1155/2020/5497046] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/03/2020] [Indexed: 12/11/2022]
Abstract
Protein homeostasis or proteostasis is an essential balance of cellular protein levels mediated through an extensive network of biochemical pathways that regulate different steps of the protein quality control, from the synthesis to the degradation. All proteins in a cell continuously turn over, contributing to development, differentiation, and aging. Due to the multiple interactions and connections of proteostasis pathways, exposure to stress conditions may cause various types of protein damage, altering cellular homeostasis and disrupting the entire network with additional cellular stress. Furthermore, protein misfolding and/or alterations during protein synthesis results in inactive or toxic proteins, which may overload the degradation mechanisms. The maintenance of a balanced proteome, preventing the formation of impaired proteins, is accomplished by two major catabolic routes: the ubiquitin proteasomal system (UPS) and the autophagy-lysosomal system. The proteostasis network is particularly important in nondividing, long-lived cells, such as neurons, as its failure is implicated with the development of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. These neurological disorders share common risk factors such as aging, oxidative stress, environmental stress, and protein dysfunction, all of which alter cellular proteostasis, suggesting that general mechanisms controlling proteostasis may underlay the etiology of these diseases. In this review, we describe the major pathways of cellular proteostasis and discuss how their disruption contributes to the onset and progression of neurodegenerative diseases, focusing on the role of oxidative stress.
Collapse
|
28
|
Liao J, Yang X, Lin Q, Liu S, Xie Y, Xia Y, Li HH. Inhibition of the Ubiquitin-Activating Enzyme UBA1 Suppresses Diet-Induced Atherosclerosis in Apolipoprotein E-Knockout Mice. J Immunol Res 2020; 2020:7812709. [PMID: 32258175 PMCID: PMC7109586 DOI: 10.1155/2020/7812709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/04/2020] [Accepted: 02/28/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Ubiquitin-like modifier activating enzyme 1 (UBA1) is the first and major E1 activating enzyme in ubiquitin activation, the initial step of the ubiquitin-proteasome system. Defects in the expression or activity of UBA1 correlate with several neurodegenerative and cardiovascular disorders. However, whether UBA1 contributes to atherosclerosis is not defined. METHODS AND RESULTS Atherosclerosis was induced in apolipoprotein E-knockout (Apoe-/-) mice fed on an atherogenic diet. UBA1 expression, detected by immunohistochemical staining, was found to be significantly increased in the atherosclerotic plaques, which confirmed to be mainly derived from lesional CD68+ macrophages via immunofluorescence costaining. Inactivation of UBA1 by the specific inhibitor PYR-41 did not alter the main metabolic parameters during atherogenic diet feeding but suppressed atherosclerosis development with less macrophage infiltration and plaque necrosis. PYR-41 did not alter circulating immune cells determined by flow cytometry but significantly reduced aortic mRNA levels of cytokines related to monocyte recruitment (Mcp-1, Vcam-1, and Icam-1) and macrophage proinflammatory responses (Il-1β and Il-6). Besides, PYR-41 also suppressed aortic mRNA expression of NADPH oxidase (Nox1, Nox2, and Nox4) and lesional oxidative stress levels, determined by DHE staining. In vitro, PYR-41 blunted ox-LDL-induced lipid deposition and expression of proinflammatory cytokines (Il-1β and Il-6) and NADPH oxidases (Nox1, Nox2, and Nox4) in cultured RAW264.7 macrophages. CONCLUSIONS We demonstrated that UBA1 expression was upregulated and mainly derived from macrophages in the atherosclerotic plaques and inactivation of UBA1 by PYR-41 suppressed atherosclerosis development probably through inhibiting macrophage proinflammatory response and oxidative stress. Our data suggested that UBA1 might be explored as a potential pharmaceutical target against atherosclerosis.
Collapse
Affiliation(s)
- Jiawei Liao
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaolei Yang
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Qiuyue Lin
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Shuang Liu
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, Dalian 116011, China
| | - Yunpeng Xie
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yunlong Xia
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Hui-Hua Li
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
29
|
Qian H, Zhang N, Wu B, Wu S, You S, Zhang Y, Sun Y. The E3 ubiquitin ligase Smurf2 regulates PARP1 stability to alleviate oxidative stress-induced injury in human umbilical vein endothelial cells. J Cell Mol Med 2020; 24:4600-4611. [PMID: 32167680 PMCID: PMC7176845 DOI: 10.1111/jcmm.15121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/02/2020] [Accepted: 02/07/2020] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress injury is involved in many cardiovascular diseases, like hypertension and myocardial infarction. Ubiquitination is a ubiquitous protein post-translational modification that controls a wide range of biological functions and plays a crucial role in maintaining the homeostasis of cells in physiology and disease. Many studies have shown that oxidative stress damage is inextricably linked to ubiquitination. We demonstrate that Smurf2, an E3 ubiquitinated ligase, is involved in HUVEC apoptosis induced by oxidative stress to alleviate H2 O2 -induced reactive oxygen species (ROS) production and the apoptosis of human umbilical vein endothelial cells (HUVECs). At the same time, we found that Smurf2 can bind the poly(ADP-ribose) polymerase-1(PARP1), and the interaction is enhanced under the stimulation of oxidative stress. We further study and prove that Smurf2 can promote PARP1 ubiquitination and degradation. Collectively, we demonstrate Smurf2 degradation of overactivated PARP1 by ubiquitin-proteasome pathway to protect HUVEC and alleviate oxidative stress injury.
Collapse
Affiliation(s)
- Hao Qian
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, China
| | - Naijin Zhang
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, China
| | - Boquan Wu
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, China
| | - Shaojun Wu
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, China
| | - Shilong You
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, China
| | - Ying Zhang
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, China
| | - Yingxian Sun
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
30
|
Wang B, Cai W, Ai D, Zhang X, Yao L. The Role of Deubiquitinases in Vascular Diseases. J Cardiovasc Transl Res 2019; 13:131-141. [DOI: 10.1007/s12265-019-09909-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/21/2019] [Indexed: 12/15/2022]
|
31
|
Wei L, Zhang Y, Qi X, Sun X, Li Y, Xu Y. Ubiquitin‑proteasomes are the dominant mediators of the regulatory effect of microRNA‑1 on cardiac remodeling after myocardial infarction. Int J Mol Med 2019; 44:1899-1907. [PMID: 31485642 PMCID: PMC6777676 DOI: 10.3892/ijmm.2019.4330] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 08/20/2019] [Indexed: 12/25/2022] Open
Abstract
Patients with ischemic hearts who have refused coronary vascular reconstruction may exhibit dynamic myocardial remodeling and cardiac dysfunction. In the present study, the role of miRNA-1 and its association with the ubiquitin-proteasome system (UPS) in regulating myocardial remodeling was investigated. A myocardial infarction (MI) model was constructed and the hearts were treated with miRNA-1 antagomir, miRNA-1 lentiviral vectors and the UPS proteasome blocker bortezomib. The expression levels of miRNA-1 were evaluated using reverse transcription PCR and the abundance of the ubiquitin-proteasome protein and caspase-3 were evaluated via western blot analysis. Furthermore, the collagen volume fraction was calculated using Masson's trichrome staining, and the apoptosis index was detected via terminal deoxynucleotidyl transferase dUTP-biotin nick end labeling staining. Transforming growth factor (TGF)-β expression was assessed via immunohistochemical staining. Echocardiographic characteristics and myocardial infarct size were analyzed. miRNA-1 expression levels were found to be increased following MI. miRNA-1 antagomir administration clearly inhibited miRNA-1 expression, whereas the miRNA-1 lentiviral vector exerted the opposite effect. The levels of 19s proteasome, 20S proteasome and ubiquitin ligase E3 were decreased in the miRNA-1 antagomir group, but were significantly increased in the miRNA-1 lentiviral group; however, only 20S proteasome expression was decreased in the bortezomib group. Collagen hyperplasia and TGF-β expression were decreased in both the miRNA-1 antagomir and bortezomib groups, although the effects of the miRNA-1 antagomir were more noticeable. The miRNA-1 antagomir and the UPS proteasome blocker both alleviated the ultrastructural impairments, demonstrated by a decreased left ventricular (LV) end-diastolic diameter and LV mass, but the miRNA-1 antagomir was also able to increase LV ejection fraction and LV fractional shortening. miRNA-1 regulated UPS-associated mRNA expression and affected the majority of the UPS components in the myocardium, thereby leading to increased myocardial cell apoptosis, myocardial fibrosis and remodeling. The miRNA-1 antagomir exerted a more prominent cardioprotective effect compared with the UPS proteasome blocker bortezomib.
Collapse
Affiliation(s)
- Liping Wei
- Department of Cardiology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin 300121, P.R. China
| | - Yufan Zhang
- School of Graduate Studies, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Xin Qi
- Department of Cardiology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin 300121, P.R. China
| | - Xuseng Sun
- School of Graduate Studies, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Yuanyang Li
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Yue Xu
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| |
Collapse
|
32
|
Salcan S, Bongardt S, Monteiro Barbosa D, Efimov IR, Rassaf T, Krüger M, Kötter S. Elastic titin properties and protein quality control in the aging heart. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118532. [PMID: 31421188 DOI: 10.1016/j.bbamcr.2019.118532] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 07/12/2019] [Accepted: 08/12/2019] [Indexed: 01/09/2023]
Abstract
Cardiac aging affects the heart on the functional, structural, and molecular level and shares characteristic hallmarks with the development of chronic heart failure. Apart from age-dependent left ventricular hypertrophy and fibrosis that impairs diastolic function, diminished activity of cardiac protein-quality-control systems increases the risk of cytotoxic accumulation of defective proteins. Here, we studied the impact of cardiac aging on the sarcomeric protein titin by analyzing titin-based cardiomyocyte passive tension, titin modification and proteasomal titin turnover. We analyzed left ventricular samples from young (6 months) and old (20 months) wild-type mice and healthy human donor patients grouped according to age in young (17-50 years) and aged hearts (51-73 years). We found no age-dependent differences in titin isoform composition of mouse or human hearts. In aged hearts from mice and human we determined altered titin phosphorylation at serine residues S4010 and S4099 in the elastic N2B domain, but no significant changes in phosphorylation of S11878 and S12022 in the elastic PEVK region. Importantly, overall titin-based cardiomyocyte passive tension remained unchanged. In aged hearts, the calcium-activated protease calpain-1, which provides accessibility to ubiquitination by releasing titin from the sarcomere, showed decreased proteolytic activity. In addition, we observed a reduction in the proteasomal activities. Taken together, our data indicate that cardiac aging does not affect titin-based passive properties of the cardiomyocytes, but impairs protein-quality control, including titin, which may result in a diminished adaptive capacity of the aged myocardium.
Collapse
Affiliation(s)
- Senem Salcan
- Department of Cardiovascular Physiology, Medical Faculty, Heinrich Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Sabine Bongardt
- Department of Cardiovascular Physiology, Medical Faculty, Heinrich Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - David Monteiro Barbosa
- Department of Cardiovascular Physiology, Medical Faculty, Heinrich Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Igor R Efimov
- George Washington University, Department of Biomedical Engineering, Science and Engineering Hall, Washington DC-20052, USA
| | - Tienush Rassaf
- University Hospital Essen, Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, 45147 Essen, Germany
| | - Martina Krüger
- Department of Cardiovascular Physiology, Medical Faculty, Heinrich Heine-University Düsseldorf, D-40225 Düsseldorf, Germany.
| | - Sebastian Kötter
- Department of Cardiovascular Physiology, Medical Faculty, Heinrich Heine-University Düsseldorf, D-40225 Düsseldorf, Germany.
| |
Collapse
|
33
|
Lino CA, Demasi M, Barreto-Chaves ML. Ubiquitin proteasome system (UPS) activation in the cardiac hypertrophy of hyperthyroidism. Mol Cell Endocrinol 2019; 493:110451. [PMID: 31112742 DOI: 10.1016/j.mce.2019.110451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/13/2019] [Accepted: 05/17/2019] [Indexed: 11/16/2022]
Abstract
Ubiquitin proteasome system (UPS) is the main proteolytic pathway in eukaryotic cells. Changes in proteasome expression and activity have been associated to cardiovascular diseases as cardiac hypertrophy. Considering that cardiac hypertrophy is commonly associated to hyperthyroidism condition, the present study aimed to investigate the contribution of UPS in cardiac hypertrophy induced by thyroid hormones. Hyperthyroidism was induced in male Wistar rats by intraperitoneal injections of triiodothyronine (T3; 7 μg/100 g of body weight) for 7 days and confirmed by raised levels of total T3 and decreased levels of total T4. In addition, systolic blood pressure and heart rate were significantly increased in hyperthyroid group. Cardiac hypertrophy was confirmed in hyperthyroid group by increased heart weight/tibia length ratio and by increased α-MHC/β-MHC relative expression. Both catalytic (20SPT) and regulatory subunits (19SPT) of the constitutive proteasome were upregulated in hyperthyroid hearts. In addition, the transcripts that encode immunoproteasome subunits were also elevated. Furthermore, ATP-dependent chymotrypsin-like activity (26SPT) was significantly increased in hyperthyroid group. Despite the upregulation and activation of UPS in hyperthyroid hearts, the content of polyubiquitinated proteins was unaltered in relation to control. Together, these results evidence the activation of cardiac proteasome by thyroid hormones, which possibly contribute to the maintenance of protein quality control and regulation of cardiac hypertrophy in response to thyroid hormones.
Collapse
Affiliation(s)
- Caroline Antunes Lino
- Laboratory of Cellular Biology and Functional Anatomy, Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Marilene Demasi
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Sao Paulo, Brazil
| | - Maria Luiza Barreto-Chaves
- Laboratory of Cellular Biology and Functional Anatomy, Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
34
|
Singh Gautam AK, Martinez-Fonts K, Matouschek A. Scalable In Vitro Proteasome Activity Assay. Methods Mol Biol 2019; 1844:321-341. [PMID: 30242719 DOI: 10.1007/978-1-4939-8706-1_21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
We developed a degradation assay based on fluorescent protein substrates that are efficiently recognized, unfolded, translocated, and hydrolyzed by the proteasome. The substrates consist of three components: a proteasome-binding tag, a folded domain, and an initiation region. All the components of the model substrate can be changed to modulate degradation, and the assay can be performed in parallel in 384-well plates. These properties allow the assay to be used to explore a wide range of experimental conditions and to screen proteasome modulators.
Collapse
Affiliation(s)
| | - Kirby Martinez-Fonts
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Andreas Matouschek
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
35
|
Zhang G, Zhang W. Protein-protein interaction network analysis of insecticide resistance molecular mechanism in Drosophila melanogaster. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 100:e21523. [PMID: 30478906 DOI: 10.1002/arch.21523] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 10/15/2018] [Accepted: 10/27/2018] [Indexed: 06/09/2023]
Abstract
The problem of resistance has not been solved fundamentally at present, because the development speed of new insecticides can not keep pace with the development speed of resistance, and the lack of understanding of molecular mechanism of resistance. Here we collected seed genes and their interacting proteins involved in insecticide resistance molecular mechanism in Drosophila melanogaster by literature mining and the String database. We identified a total of 528 proteins and 13514 protein-protein interactions. The protein interaction network was constructed by String and Pajek, and we analyzed the topological properties, such as degree centrality and eigenvector centrality. Proteasome complexes and drug metabolism-cytochrome P450 were an enrichment by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. This is the first time to explore the insecticide resistance molecular mechanism of D. melanogaster by the methods and tools of network biology, it can provide the bioinformatic foundation for further understanding the mechanisms of insecticide resistance.
Collapse
Affiliation(s)
- GuiLu Zhang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - WenJun Zhang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
36
|
Ullah K, Zubia E, Narayan M, Yang J, Xu G. Diverse roles of the E2/E3 hybrid enzyme
UBE
2O in the regulation of protein ubiquitination, cellular functions, and disease onset. FEBS J 2018; 286:2018-2034. [DOI: 10.1111/febs.14708] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/18/2018] [Accepted: 11/19/2018] [Indexed: 12/01/2022]
Affiliation(s)
- Kifayat Ullah
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
| | - Emmanuel Zubia
- Department of Chemistry and Biochemistry The University of Texas at El Paso TX USA
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry The University of Texas at El Paso TX USA
| | - Jing Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
| |
Collapse
|
37
|
Chandra D, Londino J, Alexander S, Bednash JS, Zhang Y, Friedlander RM, Daskivich G, Carlisle DL, Lariviere WR, Nakassa ACI, Ross M, St Croix C, Nyunoya T, Sciurba F, Chen B, Mallampalli RK. The SCFFBXO3 ubiquitin E3 ligase regulates inflammation in atherosclerosis. J Mol Cell Cardiol 2018; 126:50-59. [PMID: 30448480 DOI: 10.1016/j.yjmcc.2018.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 11/13/2018] [Indexed: 12/21/2022]
Abstract
Inflammation is critical in the pathobiology of atherosclerosis. An essential player in the inflammatory process in atherosclerosis are macrophages that scavenge oxidatively modified low-density lipoproteins (OxLDL) deposited in the subendothelium of systemic arteries that secrete a myriad of pro-inflammatory mediators. Here, we identified that a subunit of the Skp-Cullin-F-box ubiquitin E3 ligase apparatus, termed FBXO3, modulates the inflammatory response in atherosclerosis. Specifically, individuals with a hypofunctioning genetic variant of FBXO3 develop less atherosclerosis. FBXO3 protein is present in cells of monocytic lineage within carotid plaques and its levels increase in those with symptomatic compared with asymptomatic atherosclerosis. Further, cellular depletion or small molecule inhibition of FBXO3 significantly reduced the inflammatory response to OxLDL by macrophages without altering OxLDL uptake. Thus, FBXO3 potentiates vascular inflammation and atherosclerosis that can be effectively mitigated by a small molecule inhibitor.
Collapse
Affiliation(s)
- Divay Chandra
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - James Londino
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Shaun Alexander
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joseph S Bednash
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yingze Zhang
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Robert M Friedlander
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Grant Daskivich
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Diane L Carlisle
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - William R Lariviere
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Mark Ross
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, United States
| | - Claudette St Croix
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, United States; Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Toru Nyunoya
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, United States
| | - Frank Sciurba
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bill Chen
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rama K Mallampalli
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, United States.
| |
Collapse
|
38
|
Ranek MJ, Stachowski MJ, Kirk JA, Willis MS. The role of heat shock proteins and co-chaperones in heart failure. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0530. [PMID: 29203715 DOI: 10.1098/rstb.2016.0530] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2017] [Indexed: 12/18/2022] Open
Abstract
The ongoing contractile and metabolic demands of the heart require a tight control over protein quality control, including the maintenance of protein folding, turnover and synthesis. In heart disease, increases in mechanical and oxidative stresses, post-translational modifications (e.g., phosphorylation), for example, decrease protein stability to favour misfolding in myocardial infarction, heart failure or ageing. These misfolded proteins are toxic to cardiomyocytes, directly contributing to the common accumulation found in human heart failure. One of the critical class of proteins involved in protecting the heart against these threats are molecular chaperones, including the heat shock protein70 (HSP70), HSP90 and co-chaperones CHIP (carboxy terminus of Hsp70-interacting protein, encoded by the Stub1 gene) and BAG-3 (BCL2-associated athanogene 3). Here, we review their emerging roles in the maintenance of cardiomyocytes in human and experimental models of heart failure, including their roles in facilitating the removal of misfolded and degraded proteins, inhibiting apoptosis and maintaining the structural integrity of the sarcomere and regulation of nuclear receptors. Furthermore, we discuss emerging evidence of increased expression of extracellular HSP70, HSP90 and BAG-3 in heart failure, with complementary independent roles from intracellular functions with important therapeutic and diagnostic considerations. While our understanding of these major HSPs in heart failure is incomplete, there is a clear potential role for therapeutic modulation of HSPs in heart failure with important contextual considerations to counteract the imbalance of protein damage and endogenous protein quality control systems.This article is part of the theme issue 'Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective'.
Collapse
Affiliation(s)
- Mark J Ranek
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Marisa J Stachowski
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University, Chicago, IL 60302, USA
| | - Jonathan A Kirk
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University, Chicago, IL 60302, USA
| | - Monte S Willis
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, CB#7525, Chapel Hill, NC 27599-7525, USA
| |
Collapse
|
39
|
Ubiquitin Proteasome pathway proteins as potential drug targets in parasite Trypanosoma cruzi. Sci Rep 2018; 8:8399. [PMID: 29849031 PMCID: PMC5976635 DOI: 10.1038/s41598-018-26532-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/15/2018] [Indexed: 12/11/2022] Open
Abstract
Trypanosomiasis infects more than 21 million people and claims approximately 2 million lives annually. Due to the development of resistance against currently available anti-trypanosomal drugs, there is a growing need for specific inhibitors and novel drug targets. Of late, the proteins from the Ubiquitin Proteasome Pathway (UPP): ubiquitin ligases and deubiquitinase have received attention as potential drug targets in other parasites from the apicomplexan family. The completion of Trypanosoma cruzi (Tc) genome sequencing in 2005 and subsequent availability of database resources like TriTrypDB has provided a platform for the systematic study of the proteome of this parasite. Here, we present the first comprehensive survey of the UPP enzymes, their homologs and other associated proteins in trypanosomes and the UPPs from T. cruzi were explored in detail. After extensive computational analyses using various bioinformatics tools, we have identified 269 putative UPP proteins in the T. cruzi proteome along with their homologs in other Trypanosoma species. Characterization of T. cruzi proteome was done based on their predicted subcellular localization, domain architecture and overall expression profiles. Specifically, unique domain architectures of the enzymes and the UPP players expressed exclusively in the amastigote stage provide a rationale for designing inhibitors against parasite UPP proteins.
Collapse
|
40
|
Tumor growth suppressive effect of IL-4 through p21-mediated activation of STAT6 in IL-4Rα overexpressed melanoma models. Oncotarget 2018; 7:23425-38. [PMID: 26993600 PMCID: PMC5029637 DOI: 10.18632/oncotarget.8111] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 02/28/2016] [Indexed: 01/16/2023] Open
Abstract
To evaluate the significance of interleukin 4 (IL-4) in tumor development, we compared B16F10 melanoma growth in IL-4-overespressing transgenic mice (IL-4 mice) and non-transgenic mice. In IL-4 mice, reduced tumor volume and weight were observed when compared with those of non-transgenic mice. Significant activation of DNA binding activity of STAT6, phosphorylation of STAT6 as well as IL-4, IL-4Rα and p21 expression were found in the tumor tissues of IL-4 mice compared to non-transgenic mice. Higher expression of IL-4, STAT6 and p21 in human melanoma tissue compared to normal human skin tissue was also found. Higher expression of apoptotic protein such as cleaved caspase-3, cleaved caspase-8, cleaved caspase-9, Bax, p53 and p21, but lower expression levels of survival protein such as Bcl-2 were found in the tumor of IL-4 mice. In vitro study, we found that overexpression of IL-4 significantly inhibited SK-MEL-28 human melanoma cell and B16F10 murine melanoma cell growth via p21-mediated activation of STAT6 pathway as well as increased expression of apoptotic cell death proteins. Moreover, p21 knockdown with siRNA abolished IL-4 induced activation of STAT6 and expression of p53 and p21 accompanied with reduced IL-4 expression as well as melanoma cell growth inhibition. Therefore, these results showed that IL-4 overexpression suppressed tumor development through p21-mediated activation of STAT6 pathways in melanoma models.
Collapse
|
41
|
Gouveia M, Xia K, Colón W, Vieira SI, Ribeiro F. Protein aggregation, cardiovascular diseases, and exercise training: Where do we stand? Ageing Res Rev 2017; 40:1-10. [PMID: 28757291 DOI: 10.1016/j.arr.2017.07.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 07/11/2017] [Accepted: 07/24/2017] [Indexed: 12/11/2022]
Abstract
Cells ensure their protein quality control through the proteostasis network. Aging and age-related diseases, such as neurodegenerative and cardiovascular diseases, have been associated to the reduction of proteostasis network efficiency and, consequently, to the accumulation of protein misfolded aggregates. The decline in protein homeostasis has been associated with the development and progression of atherosclerotic cardiovascular disease, cardiac hypertrophy, cardiomyopathies, and heart failure. Exercise training is a key component of the management of patients with cardiovascular disease, consistently improving quality of life and prognosis. In this review, we give an overview on age-related protein aggregation, the role of the increase of misfolded protein aggregates on cardiovascular pathophysiology, and describe the beneficial or deleterious effects of the proteostasis network on the development of cardiovascular disease. We subsequently discuss how exercise training, a key lifestyle intervention in those with cardiovascular disease, could restore proteostasis and improve disease status.
Collapse
|
42
|
Laubach JP, Moslehi JJ, Francis SA, Miguel JFS, Sonneveld P, Orlowski RZ, Moreau P, Rosiñol L, Faber EA, Voorhees P, Mateos MV, Marquez L, Feng H, Desai A, van de Velde H, Elliott J, Shi H, Dow E, Jobanputra N, Esseltine DL, Niculescu L, Anderson KC, Lonial S, Richardson PG. A retrospective analysis of 3954 patients in phase 2/3 trials of bortezomib for the treatment of multiple myeloma: towards providing a benchmark for the cardiac safety profile of proteasome inhibition in multiple myeloma. Br J Haematol 2017; 178:547-560. [PMID: 28466536 PMCID: PMC6812508 DOI: 10.1111/bjh.14708] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/16/2017] [Indexed: 01/09/2023]
Abstract
This retrospective analysis aimed to establish the overall cardiac safety profile of bortezomib using patient-level data from one phase 2 and seven phase 3 studies in previously untreated and relapsed/refractory multiple myeloma (MM). Seven clinically relevant primary [congestive heart failure (CHF), arrhythmias, ischaemic heart disease (IHD), cardiac death] and secondary (hypertension, dyspnoea, oedema) cardiac endpoints were defined based on MedDRA v16.0 preferred terms. 2509 bortezomib-treated patients and 1445 patients in non-bortezomib-based control arms were included. The incidence of grade ≥3 CHF was 1·3-4·0% in studies in relapsed/refractory MM and 1·2-4·7% in previously untreated MM (2·0-7·6% all grades), with no significant differences between bortezomib- and non-bortezomib-based arms in comparative studies. Incidences of arrhythmias (1·3-5·9% grade ≥2; 0·6-4·1% grade ≥3), IHD (1·2-2·9% all grades; 0·4-2·7% grade ≥3) and cardiac death (0-1·4%) were low, with no differences between bortezomib-based and non-bortezomib-based arms. Higher rates of oedema (mostly grade 1/2) were seen in bortezomib-based versus non-bortezomib-based arms in one study and a pooled transplant study analysis. Logistic regression analyses of comparative studies showed no impact on cardiac risk with bortezomib-based versus non-bortezomib-based treatment. Bortezomib-based treatment was associated with low incidences of cardiac events.
Collapse
Affiliation(s)
| | - Javid J. Moslehi
- Cardiovascular Division, Vanderbilt–Ingram Cancer Center, Cardio-Oncology Program, Vanderbilt University School of Medicine, Nashville, TN
| | - Sanjeev A. Francis
- Formerly Cardio-Oncology Program, Massachusetts General Hospital, Boston, MA, USA
| | - Jesús F. San Miguel
- Clinica Universidad de Navarra, IDISNA, Centro Investigación Medica Aplicada (CIMA), Pamplona, Spain
| | - Pieter Sonneveld
- Department of Haematology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Robert Z. Orlowski
- Department of Lymphoma/Myeloma, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | | | - Laura Rosiñol
- Hospital Clínic de Barcelona, IDIBAPS, Barcelona, Spain
| | | | - Peter Voorhees
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Charlotte, NC, USA
| | - Maria-Victoria Mateos
- Hospital Universitario Salamanca, Instituto de Investigación Biomédica de Salamanca; Instituto de Biología Molecular y Celular del Cáncer, Universidad de Salamanca-Consejo Superior de Investigaciones Cientificas, Salamanca, Spain
| | | | | | | | | | | | | | - Edward Dow
- Foundation Medicine, Inc., Cambridge, MA
| | | | | | | | | | - Sagar Lonial
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | | |
Collapse
|
43
|
Luo Y, He J, Yang C, Orange M, Ren X, Blair N, Tan T, Yang JM, Zhu H. UCH-L1 promotes invasion of breast cancer cells through activating Akt signaling pathway. J Cell Biochem 2017. [PMID: 28636190 DOI: 10.1002/jcb.26232] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
As a de-ubiquitin enzyme, ubiquitin C-terminal hydrolase (UCH)-L1 has been shown to be overexpressed in several human cancers. However, the function of UCH-L1 in invasion of breast cancers is still unclear. Here we report that the expression of UCH-L1 is significantly higher in cancer cells with higher invasive ability. While ectopic UCH-L1 expression failed to alter cell proliferation in MCF-7 cells, it caused a significant upregulation of cellular invasion. Furthermore, siRNA mediated knockdown of UCH-L1 led to suppression of invasion in UCH-L1 overexpressing MCF-7 cells. In order to identify molecular mechanisms underlying these observations, a novel in vitro proximity-dependent biotin identification method was developed by fusing UCH-L1 protein with a bacterial biotin ligase (Escherichia coli BirA R118G, BioID). Streptavidin magnetic beads pulldown assay revealed that UCH-L1 can interact with Akt in MCF-7 cells. Pulldown assay with His tagged recombinant UCH-L1 protein and cell lysate from MCF-7 cells further demonstrated that UCH-L1 preferentially binds to Akt2 for Akt activation. Finally, we demonstrated that overexpression of UCH-L1 led to activation of Akt as evidenced by upregulation of phosphorylated Akt. Thus, these findings demonstrated that UCH-L1 promotes invasion of breast cancer cells and might serve as a potential therapeutic target for treatment of human patients with breast cancers.
Collapse
Affiliation(s)
- Yanhong Luo
- Children's Hospital of Chongqing Medical University, Chongqing, P.R.China
| | - Jianfeng He
- Children's Hospital of Chongqing Medical University, Chongqing, P.R.China
| | - Chunlin Yang
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Matthew Orange
- Department of Physical Education and Human Performance, Central Connecticut State University, New Britain, Connecticut
| | - Xingcong Ren
- Department of Pharmacology, The Penn State Hershey Cancer Institute, College of Medicine and Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, Pennsylvania
| | - Nick Blair
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Tao Tan
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Jin-Ming Yang
- Department of Pharmacology, The Penn State Hershey Cancer Institute, College of Medicine and Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, Pennsylvania
| | - Hua Zhu
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
44
|
Fernández-Fernández MR, Gragera M, Ochoa-Ibarrola L, Quintana-Gallardo L, Valpuesta JM. Hsp70 - a master regulator in protein degradation. FEBS Lett 2017; 591:2648-2660. [PMID: 28696498 DOI: 10.1002/1873-3468.12751] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/04/2017] [Accepted: 07/07/2017] [Indexed: 12/31/2022]
Abstract
Proteostasis, the controlled balance of protein synthesis, folding, assembly, trafficking and degradation, is a paramount necessity for cell homeostasis. Impaired proteostasis is a hallmark of ageing and of many human diseases. Molecular chaperones are essential for proteostasis in eukaryotic cells, and their function has traditionally been linked to protein folding, assembly and disaggregation. More recent findings suggest that chaperones also contribute to key steps in protein degradation. In particular, Hsp70 has an essential role in substrate degradation through the ubiquitin-proteasome system, as well as through different autophagy pathways. Accumulated knowledge suggests that the fate of an Hsp70 substrate is dictated by the combination of partners (cochaperones and other chaperones) that interact with Hsp70 in a given cell context.
Collapse
Affiliation(s)
| | - Marcos Gragera
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | | | | | | |
Collapse
|
45
|
Fu HY, Mukai M, Awata N, Sakata Y, Hori M, Minamino T. Protein Quality Control Dysfunction in Cardiovascular Complications Induced by Anti-Cancer Drugs. Cardiovasc Drugs Ther 2017; 31:109-117. [PMID: 28120277 DOI: 10.1007/s10557-016-6709-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cardiovascular complications, including heart failure, hypertension, ischemic syndromes and venous thromboembolism, have been identified in patients treated with anti-cancer drugs. Oxidative stress, mitochondrial dysfunction and DNA synthesis inhibition are considered to be responsible for the cardiotoxicity induced by these agents. Protein quality control (PQC) has 3 major components, including the endoplasmic reticulum (ER), the ubiquitin-proteasome system (UPS) and the autophagy-lysosome system, and participates in protein folding and degradation to maintain protein homeostasis. We have demonstrated that PQC dysfunction is a new causal mechanism for the development of cardiac hypertrophy and failure. Increasing evidence shows that anti-cancer drugs, such as tyrosine kinase inhibitors, proteasome inhibitors, anthracyclines and autophagy inhibitors, cause PQC dysfunction. Here, we provide an overview of the potential role of PQC dysfunction in the development of cardiovascular complications induced by anti-cancer drugs.
Collapse
Affiliation(s)
- Hai Ying Fu
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Mikio Mukai
- Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Nobuhisa Awata
- Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masatsugu Hori
- Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Tetsuo Minamino
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Mikicho, Kita-gun, Kagawa Prefecture, 761-0793, Japan.
| |
Collapse
|
46
|
Zhang M, Li L, Xie W, Wu JF, Yao F, Tan YL, Xia XD, Liu XY, Liu D, Lan G, Zeng MY, Gong D, Cheng HP, Huang C, Zhao ZW, Zheng XL, Tang CK. Apolipoprotein A-1 binding protein promotes macrophage cholesterol efflux by facilitating apolipoprotein A-1 binding to ABCA1 and preventing ABCA1 degradation. Atherosclerosis 2016; 248:149-59. [DOI: 10.1016/j.atherosclerosis.2016.03.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 01/29/2016] [Accepted: 03/04/2016] [Indexed: 01/27/2023]
|
47
|
Ghosh R, Hwang SM, Cui Z, Gilda JE, Gomes AV. Different effects of the nonsteroidal anti-inflammatory drugs meclofenamate sodium and naproxen sodium on proteasome activity in cardiac cells. J Mol Cell Cardiol 2016; 94:131-144. [PMID: 27049794 DOI: 10.1016/j.yjmcc.2016.03.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/10/2016] [Accepted: 03/28/2016] [Indexed: 02/06/2023]
Abstract
The use of nonsteroidal anti-inflammatory drugs (NSAIDs) like meclofenamate sodium (MS), used to reduce pain, has been associated with an increased risk of cardiovascular disease (CVD). Naproxen (NAP), another NSAID, is not associated with increased risk of CVD. The molecular mechanism(s) by which NSAIDs induce CVD is unknown. We investigated the effects of MS and NAP on protein homeostasis and cardiotoxicity in rat cardiac H9c2 cells and murine neonatal cardiomyocytes. MS, but not NAP, significantly inhibited proteasome activity and reduced cardiac cell viability at pharmacological levels found in humans. Although proteasome subunit gene and protein expression were unaffected by NSAIDs, MS treated cell lysates showed higher 20S proteasome content, while purified proteasomes from MS treated cells had lower proteasome activity and higher levels of oxidized subunits than proteasomes from control cells. Addition of exogenous proteasome to MS treated cells improved cell viability. Both MS and NAP increased ROS production, but the rate of ROS production was greater in MS than in NAP treated cells. The ROS production is likely from mitochondria, as MS inhibited mitochondrial Complexes I and III, major sources of ROS, while NAP inhibited Complex I. MS also impaired mitochondrial membrane potential while NAP did not. Antioxidants were able to prevent the reduced cell viability caused by MS treatment. These results suggest that NSAIDs induce cardiotoxicity by a ROS dependent mechanism involving mitochondrial and proteasome dysfunction and may explain why some NSAIDs should not be given to patients for long periods.
Collapse
Affiliation(s)
- Rajeshwary Ghosh
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, United States
| | - Soyun M Hwang
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, United States
| | - Ziyou Cui
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, United States
| | - Jennifer E Gilda
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, United States
| | - Aldrin V Gomes
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, United States; Department of Physiology and Membrane Biology, University of California, Davis, CA 95616, United States.
| |
Collapse
|
48
|
ROS and ROS-Mediated Cellular Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4350965. [PMID: 26998193 PMCID: PMC4779832 DOI: 10.1155/2016/4350965] [Citation(s) in RCA: 1204] [Impact Index Per Article: 133.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/01/2015] [Accepted: 12/20/2015] [Indexed: 12/22/2022]
Abstract
It has long been recognized that an increase of reactive oxygen species (ROS) can modify the cell-signaling proteins and have functional consequences, which successively mediate pathological processes such as atherosclerosis, diabetes, unchecked growth, neurodegeneration, inflammation, and aging. While numerous articles have demonstrated the impacts of ROS on various signaling pathways and clarify the mechanism of action of cell-signaling proteins, their influence on the level of intracellular ROS, and their complex interactions among multiple ROS associated signaling pathways, the systemic summary is necessary. In this review paper, we particularly focus on the pattern of the generation and homeostasis of intracellular ROS, the mechanisms and targets of ROS impacting on cell-signaling proteins (NF-κB, MAPKs, Keap1-Nrf2-ARE, and PI3K-Akt), ion channels and transporters (Ca(2+) and mPTP), and modifying protein kinase and Ubiquitination/Proteasome System.
Collapse
|
49
|
Xu L, Brink M. mTOR, cardiomyocytes and inflammation in cardiac hypertrophy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1894-903. [PMID: 26775585 DOI: 10.1016/j.bbamcr.2016.01.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/30/2015] [Accepted: 01/07/2016] [Indexed: 02/07/2023]
Abstract
Mammalian target of rapamycin (mTOR) is an evolutionary conserved kinase that senses the nutrient and energy status of cells, the availability of growth factors, stress stimuli and other cellular and environmental cues. It responds by regulating a range of cellular processes related to metabolism and growth in accordance with the available resources and intracellular needs. mTOR has distinct functions depending on its assembly in the structurally distinct multiprotein complexes mTORC1 or mTORC2. Active mTORC1 enhances processes including glycolysis, protein, lipid and nucleotide biosynthesis, and it inhibits autophagy. Reported functions for mTORC2 after growth factor stimulation are very diverse, are tissue and cell-type specific, and include insulin-stimulated glucose transport and enhanced glycogen synthesis. In accordance with its cellular functions, mTOR has been demonstrated to regulate cardiac growth in response to pressure overload and is also known to regulate cells of the immune system. The present manuscript presents recently obtained insights into mechanisms whereby mTOR may change anabolic, catabolic and stress response pathways in cardiomocytes and discusses how mTOR may affect inflammatory cells in the heart during hemodynamic stress. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Lifen Xu
- Department of Biomedicine, University of Basel and University Hospital Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
| | - Marijke Brink
- Department of Biomedicine, University of Basel and University Hospital Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland.
| |
Collapse
|
50
|
Berthiaume J, Kirk J, Ranek M, Lyon R, Sheikh F, Jensen B, Hoit B, Butany J, Tolend M, Rao V, Willis M. Pathophysiology of Heart Failure and an Overview of Therapies. Cardiovasc Pathol 2016. [DOI: 10.1016/b978-0-12-420219-1.00008-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|