1
|
Vijayan K. K. V, De Paris K. Nonhuman primate models of pediatric viral diseases. Front Cell Infect Microbiol 2024; 14:1493885. [PMID: 39691699 PMCID: PMC11649651 DOI: 10.3389/fcimb.2024.1493885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/08/2024] [Indexed: 12/19/2024] Open
Abstract
Infectious diseases are the leading cause of death in infants and children under 5 years of age. In utero exposure to viruses can lead to spontaneous abortion, preterm birth, congenital abnormalities or other developmental defects, often resulting in lifelong health sequalae. The underlying biological mechanisms are difficult to study in humans due to ethical concerns and limited sample access. Nonhuman primates (NHP) are closely related to humans, and pregnancy and immune ontogeny in infants are very similar to humans. Therefore, NHP are a highly relevant model for understanding fetal and postnatal virus-host interactions and to define immune mechanisms associated with increased morbidity and mortality in infants. We will discuss NHP models of viruses causing congenital infections, respiratory diseases in early life, and HIV. Cytomegalovirus (CMV) remains the most common cause of congenital defects worldwide. Measles is a vaccine-preventable disease, yet measles cases are resurging. Zika is an example of an emerging arbovirus with devastating consequences for the developing fetus and the surviving infant. Among the respiratory viruses, we will discuss influenza and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). We will finish with HIV as an example of a lifelong infection without a cure or vaccine. The review will highlight (i) the impact of viral infections on fetal and infant immune development, (ii) how differences in infant and adult immune responses to infection alter disease outcome, and emphasize the invaluable contribution of pediatric NHP infection models to the design of effective treatment and prevention strategies, including vaccines, for human infants.
Collapse
Affiliation(s)
- Vidya Vijayan K. K.
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
| | - Kristina De Paris
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
- Center for AIDS Research, University of North Carolina, Chapel Hill, NC, United States
- Children’s Research Institute, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
2
|
Hodel KVS, Fiuza BSD, Conceição RS, Aleluia ACM, Pitanga TN, Fonseca LMDS, Valente CO, Minafra-Rezende CS, Machado BAS. Pharmacovigilance in Vaccines: Importance, Main Aspects, Perspectives, and Challenges-A Narrative Review. Pharmaceuticals (Basel) 2024; 17:807. [PMID: 38931474 PMCID: PMC11206969 DOI: 10.3390/ph17060807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/29/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Pharmacovigilance plays a central role in safeguarding public health by continuously monitoring the safety of vaccines, being critical in a climate of vaccine hesitancy, where public trust is paramount. Pharmacovigilance strategies employed to gather information on adverse events following immunization (AEFIs) include pre-registration data, media reports, clinical trials, and societal reporting. Early detection of AEFIs during clinical trials is crucial for thorough safety analysis and preventing serious reactions once vaccines are deployed. This review highlights the importance of societal reporting, encompassing contributions from community members, healthcare workers, and pharmaceutical companies. Technological advancements such as quick response (QR) codes can facilitate prompt AEFI reporting. While vaccines are demonstrably safe, the possibility of adverse events necessitates continuous post-marketing surveillance. However, underreporting remains a challenge, underscoring the critical role of public engagement in pharmacovigilance. This narrative review comprehensively examines and synthesizes key aspects of virus vaccine pharmacovigilance, with special considerations for specific population groups. We explore applicable legislation, the spectrum of AEFIs associated with major vaccines, and the unique challenges and perspectives surrounding pharmacovigilance in this domain.
Collapse
Affiliation(s)
- Katharine Valéria Saraiva Hodel
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CIMATEC University Center, Salvador 41650-010, Bahia State, Brazil
| | - Bianca Sampaio Dotto Fiuza
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CIMATEC University Center, Salvador 41650-010, Bahia State, Brazil
| | - Rodrigo Souza Conceição
- Department of Medicine, College of Pharmacy, Federal University of Bahia, Salvador 40170-115, Bahia State, Brazil
| | - Augusto Cezar Magalhães Aleluia
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CIMATEC University Center, Salvador 41650-010, Bahia State, Brazil
- Department of Natural Sciences, Southwestern Bahia State University (UESB), Campus Vitória da Conquista, Vitória da Conquista 45031-300, Bahia State, Brazil
| | - Thassila Nogueira Pitanga
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CIMATEC University Center, Salvador 41650-010, Bahia State, Brazil
- Laboratory for Research in Genetics and Translational Hematology, Gonçalo Moniz Institute, FIOCRUZ-BA, Salvador 40296-710, Bahia State, Brazil
| | - Larissa Moraes dos Santos Fonseca
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CIMATEC University Center, Salvador 41650-010, Bahia State, Brazil
| | - Camila Oliveira Valente
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CIMATEC University Center, Salvador 41650-010, Bahia State, Brazil
| | | | - Bruna Aparecida Souza Machado
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CIMATEC University Center, Salvador 41650-010, Bahia State, Brazil
| |
Collapse
|
3
|
Belser JA, Kieran TJ, Mitchell ZA, Sun X, Mayfield K, Tumpey TM, Spengler JR, Maines TR. Key considerations to improve the normalization, interpretation and reproducibility of morbidity data in mammalian models of viral disease. Dis Model Mech 2024; 17:dmm050511. [PMID: 38440823 PMCID: PMC10941659 DOI: 10.1242/dmm.050511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
Viral pathogenesis and therapeutic screening studies that utilize small mammalian models rely on the accurate quantification and interpretation of morbidity measurements, such as weight and body temperature, which can vary depending on the model, agent and/or experimental design used. As a result, morbidity-related data are frequently normalized within and across screening studies to aid with their interpretation. However, such data normalization can be performed in a variety of ways, leading to differences in conclusions drawn and making comparisons between studies challenging. Here, we discuss variability in the normalization, interpretation, and presentation of morbidity measurements for four model species frequently used to study a diverse range of human viral pathogens - mice, hamsters, guinea pigs and ferrets. We also analyze findings aggregated from influenza A virus-infected ferrets to contextualize this discussion. We focus on serially collected weight and temperature data to illustrate how the conclusions drawn from this information can vary depending on how raw data are collected, normalized and measured. Taken together, this work supports continued efforts in understanding how normalization affects the interpretation of morbidity data and highlights best practices to improve the interpretation and utility of these findings for extrapolation to public health contexts.
Collapse
Affiliation(s)
- Jessica A. Belser
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Troy J. Kieran
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Zoë A. Mitchell
- Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Xiangjie Sun
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Kristin Mayfield
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Terrence M. Tumpey
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Jessica R. Spengler
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Taronna R. Maines
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| |
Collapse
|
4
|
Chandarana C, Tiwari A. A Review of Clinical Trials of Cancer and Its Treatment as a Vaccine. Rev Recent Clin Trials 2024; 19:7-33. [PMID: 37953617 DOI: 10.2174/0115748871260733231031081921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/20/2023] [Accepted: 09/11/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Cancer and infectious diseases are one of the greatest challenges of modern medicine. An unhealthy lifestyle, poor drug use, or drug misuse contribute to the rise in morbidity and mortality brought on by these illnesses. The inadequacies of the medications now being used to treat these disorders, along with the growing issue of drug resistance, have compelled researchers to look for novel compounds with therapeutic promise. The number of infections and diseases has significantly abated due to vaccine development and use over time, which is described in detail. Several novel vaccines can now be produced by manipulating Deoxyribonucleic acid (DNA), Ribonucleic acid (RNA), Messenger Ribonucleic acid (mRNA), proteins, viral vector Recombinant, and other molecules due to advances in genetic engineering and our understanding of the immune defense. OBJECTIVE The main topic of discussion is cancer-based vaccinations, which were developed less than a decade ago but have already been used to treat a wide range of both life-threatening and deadly diseases. It contains clinical studies for cancer vaccines against kidney, liver, prostate, cervix, and certain RNA-based cancer vaccines against breast and bladder cancer. RESULTS Numerous studies using various DNA and RNA-based methods have been conducted on the basis of cancer, with 9-10 diseases related to DNA and 8-9 diseases associated with RNA. Some of these studies have been completed, while others have been eliminated due to a lack of research; further studies are ongoing regarding the same. CONCLUSION This brief discussion of vaccines and their varieties with examples also discusses vaccine clinical trials in relation to cancer diseases in this DNA and RNA-based cancer vaccine that has had successful clinical trials like the cervical cancer drug VGX-3100, the kidney cancer drug Pembrolizumab, MGN-1601, the prostate cancer drug pTVG-HP with rhGM-CSF, the melanoma cancer drug proteasome siRNA, and the lung cancer drug FRAME-001.
Collapse
Affiliation(s)
- Chandani Chandarana
- Department of Quality Assurance, SSR College of Pharmacy, Sayli Road, Silvassa, U.T of Dadra Nagar and Haveli- 396230, India
| | - Anuradha Tiwari
- Department of Quality Assurance, SSR College of Pharmacy, Sayli Road, Silvassa, U.T of Dadra Nagar and Haveli- 396230, India
| |
Collapse
|
5
|
Lokhande KB, Shrivastava A, Singh A. In silico
discovery of potent inhibitors against monkeypox's major structural proteins. J Biomol Struct Dyn 2023; 41:14259-14274. [PMID: 36841550 DOI: 10.1080/07391102.2023.2183342] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/07/2023] [Indexed: 02/27/2023]
Abstract
Monkeypox virus (MPXV) outbreak in non-endemic countries is a worldwide public health emergency. An enveloped double-stranded DNA virus belongs to the genus Orth poxvirus. A viral zoonotic infection known as monkeypox has been a serious risk to public health, especially in Africa. However, it has recently spread to other continents, so it might soon become a worldwide problem. There is an increased risk of transmission of the virus because there is a lack of effective treatment that cures the disease. To stop the multi-country outbreak from spreading, it is important to discover effective medications urgently. The objective of the current study is to swiftly find new treatments for the monkeypox virus using advanced computational approaches. By investigating five potential MPXV targets (DNA ligase, Palmytilated Extracellular Enveloped Virus (EEV) membrane protein, Scaffold protein D13, Thymidylate Kinase, and Viral core cysteine proteinase), this research was carried out using cutting-edge computational techniques against human monkeypox virus infection. Here we present the accurate 3D structures and their binding cavities of the selected targets with higher confidence using AlphaFold 2 and SiteMap analysis. Molecular docking and MD simulation analysis revealed the top five potential lead compounds with higher binding affinity and stability toward selected targets. Binding free energy calculations and other essential dynamics analysis supports the finding. The selected lead compounds utilizing virtual screening and drug repurposing approach reported in this study are beneficial for medical scientists and experimental biologists in drug development for the treatment of human MPXV.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kiran Bharat Lokhande
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, India
| | - Ashish Shrivastava
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, India
| | - Ashutosh Singh
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, India
| |
Collapse
|
6
|
Kadji FMN, Kotani K, Tsukamoto H, Hiraoka Y, Hagiwara K. Stability of enveloped and nonenveloped viruses in hydrolyzed gelatin liquid formulation. Virol J 2022; 19:94. [PMID: 35624453 PMCID: PMC9137439 DOI: 10.1186/s12985-022-01819-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The thermal stability of viruses in gelatin liquid formulations for medical research and application is poorly understood and this study aimed to examine the thermal stability of 4 enveloped and nonenveloped DNA and RNA viruses in hydrolyzed gelatin liquid formulations. METHODS Bovine herpesvirus (BHV) was used as a model virus to examine the molecular weight (MW), concentration and gelatin type and to optimize virus stability in liquid formulations at 25 °C and 4 °C. Using the model virus liquid formulation, the stability of multiple enveloped and nonenveloped RNA and DNA viruses, including parainfluenza virus, reovirus (RV), BHV, and adenovirus (AdV), was monitored over up to a 30-week storage period. RESULTS The BHV model virus was considered stable after 3 weeks in hydrolyzed gelatin (MW: 4000) with a 0.8 LRV (log10 reduction value) at 25 °C or a 0.2 LRV at 4 °C, compared to the stabilities observed in higher MW gelatin (60,000 and 160,000) with an LRV above 1. Based on the gelatin type, BHV in alkaline-treated hydrolyzed gelatin samples were unexpectantly more stable than in acid-treated hydrolyzed gelatin sample. All four viruses exhibited stability at 4 °C for at least 8 weeks, BHV or AdV remained stable for over 30 weeks of storage, and at 25 °C, AdV and RV remained stable for 8 weeks. CONCLUSION The results demonstrated that 5% of 4000 MW hydrolyzed gelatin formulation can act as a relevant stabilizer for the thermal stability of viruses in medical research and application.
Collapse
Affiliation(s)
- Francois Marie Ngako Kadji
- Biomedical Department, R&D Center, Nitta Gelatin Inc., 2-22, Futamata, Yao City, Osaka, 581-0024, Japan.
| | - Kazuki Kotani
- Biomedical Department, R&D Center, Nitta Gelatin Inc., 2-22, Futamata, Yao City, Osaka, 581-0024, Japan
| | - Hiroshi Tsukamoto
- Biomedical Department, R&D Center, Nitta Gelatin Inc., 2-22, Futamata, Yao City, Osaka, 581-0024, Japan
| | - Yosuke Hiraoka
- Biomedical Department, R&D Center, Nitta Gelatin Inc., 2-22, Futamata, Yao City, Osaka, 581-0024, Japan
| | - Katsuro Hagiwara
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu City, Hokkaido, 069-8501, Japan.
| |
Collapse
|