1
|
Kurashima K, Kamikawa Y, Tsubouchi T. Embryonic stem cells maintain high origin activity and slow forks to coordinate replication with cell cycle progression. EMBO Rep 2024; 25:3757-3776. [PMID: 39054377 PMCID: PMC11387781 DOI: 10.1038/s44319-024-00207-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024] Open
Abstract
Embryonic stem (ES) cells are pluripotent stem cells that can produce all cell types of an organism. ES cells proliferate rapidly and are thought to experience high levels of intrinsic replication stress. Here, by investigating replication fork dynamics in substages of S phase, we show that mammalian pluripotent stem cells maintain a slow fork speed and high active origin density throughout the S phase, with little sign of fork pausing. In contrast, the fork speed of non-pluripotent cells is slow at the beginning of S phase, accompanied by increased fork pausing, but thereafter fork pausing rates decline and fork speed rates accelerate in an ATR-dependent manner. Thus, replication fork dynamics within the S phase are distinct between ES and non-ES cells. Nucleoside addition can accelerate fork speed and reduce origin density. However, this causes miscoordination between the completion of DNA replication and cell cycle progression, leading to genome instability. Our study indicates that fork slowing in the pluripotent stem cells is an integral aspect of DNA replication.
Collapse
Affiliation(s)
- Kiminori Kurashima
- Laboratory of Stem Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
- Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Yasunao Kamikawa
- Laboratory of Stem Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomomi Tsubouchi
- Laboratory of Stem Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan.
- Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan.
| |
Collapse
|
2
|
Salah RA, El-Derby AM, El-Gammal Z, Wadie B, Ahmed SM, Elshenawy SE, Magdy S, Salah A, Gabr M, Mohamed I, El-Badri N. Hepatocellular carcinoma patients serum modulates the regenerative capacities of adipose mesenchymal stromal cells. Heliyon 2024; 10:e24794. [PMID: 38333871 PMCID: PMC10850426 DOI: 10.1016/j.heliyon.2024.e24794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent cancers causing the highest mortality rate worldwide. Treatment options of surgery, radiation, cytotoxic drugs and liver transplantation suffer significant side effects and a high frequency of relapse. Stem cell therapy has been proposed as a new effective therapy, however, controversial reports are emerging on the role of mesenchymal stem cells in cancer. In this work, we aimed to assess the regenerative capacities of adipose mesenchymal stem cells when exposed to serum from HCC patients, by assessing the effect of the sera on modulating the regenerative capacities of h-AMSCs and the cancer properties in HCC cells. This will pave the way for maximizing the efficacy of MSCs in cancer therapy. Our data show that HCC serum-treated hA-MSCs suffered oncogene-induced senescence as shown by their altered morphology and ameliorated proliferation and differentiation. The cells were enlarged with small irregular nuclei, swollen rough endoplasmic reticulum cisternae, and aging lysosomes typified by dark residual bodies. HCC serum-treated Huh-7 cancer cells on the other hand displayed higher tumor aggressiveness as depicted by altered morphology, increased cellular proliferation and migration, and decreased percentage of early and late apoptotic cells. Our findings provide evidence that exposure of hA-MSCs to the serum of HCC patients decreases their regenerative capacities and should be considered when employed as a potential therapy in HCC patients.
Collapse
Affiliation(s)
- Radwa Ayman Salah
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Azza M. El-Derby
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Zaynab El-Gammal
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
- Stem Cells and Regenerative Medicine Department, Egypt Center for Research and Regenerative Medicine (ECRRM), Giza, 12578, Egypt
| | - Bishoy Wadie
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Sara M. Ahmed
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Shimaa E. Elshenawy
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
- Stem Cells and Regenerative Medicine Department, Egypt Center for Research and Regenerative Medicine (ECRRM), Giza, 12578, Egypt
| | - Shireen Magdy
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Ayman Salah
- Department of Hepatogastroenterology, Kasr El-Aini Cairo University, Cairo, Egypt
| | - Mahmoud Gabr
- Urology and Nephrology Center, Mansoura, 35516, Egypt
| | - Ihab Mohamed
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12578, Egypt
| |
Collapse
|
3
|
Nishino R, Nomura-Komoike K, Iida T, Fujieda H. Cell cycle-dependent activation of proneural transcription factor expression and reactive gliosis in rat Müller glia. Sci Rep 2023; 13:22712. [PMID: 38123648 PMCID: PMC10733309 DOI: 10.1038/s41598-023-50222-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023] Open
Abstract
Retinal Müller glia have a capacity to regenerate neurons in lower vertebrates like zebrafish, but such ability is extremely limited in mammals. In zebrafish, Müller glia proliferate after injury, which promotes their neurogenic reprogramming while inhibiting reactive gliosis. In mammals, however, how the cell cycle affects the fate of Müller glia after injury remains unclear. Here, we focused on the expression of proneural transcription factors, Ngn2 and Ascl1, and a gliosis marker glial fibrillary acidic protein (GFAP) in rat Müller glia after N-methyl-N-nitrosourea (MNU)-induced photoreceptor injury and analyzed the role of Müller glia proliferation in the regulation of their expression using retinal explant cultures. Thymidine-induced G1/S arrest of Müller glia proliferation significantly hampered the expression of Ascl1, Ngn2, and GFAP, and release from the arrest induced their upregulation. The migration of Müller glia nuclei into the outer nuclear layer was also shown to be cell cycle-dependent. These data suggest that, unlike the situation in zebrafish, cell cycle progression of Müller glia in mammals promotes both neurogenic reprogramming and reactive gliosis, which may be one of the mechanisms underlying the limited regenerative capacity of the mammalian retina.
Collapse
Affiliation(s)
- Reiko Nishino
- Department of Anatomy and Neurobiology, School of Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
- Department of Ophthalmology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Kaori Nomura-Komoike
- Department of Anatomy and Neurobiology, School of Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Tomohiro Iida
- Department of Ophthalmology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiroki Fujieda
- Department of Anatomy and Neurobiology, School of Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| |
Collapse
|
4
|
Kumazaki T, Yonekawa C, Tsubouchi T. Microscopic Analysis of Cell Fate Alteration Induced by Cell Fusion. Cell Reprogram 2023; 25:251-259. [PMID: 37847898 DOI: 10.1089/cell.2023.0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023] Open
Abstract
In mammals, differentiated cells generally do not de-differentiate nor undergo cell fate alterations. However, they can be experimentally guided toward a different lineage. Cell fusion involving two different cell types has long been used to study this process, as this method induces cell fate alterations within hours to days in a subpopulation of fused cells, as evidenced by changes in gene-expression profiles. Despite the robustness of this system, its use has been restricted by low fusion rates and difficulty in eliminating unfused populations, thereby compromising resolution. In this study, we address these limitations by isolating fused cells using antibody-conjugated beads. This approach enables the microscopic tracking of fused cells starting as early as 5 hours after fusion. By taking advantage of species-specific FISH probes, we show that a small population of fused cells resulting from the fusion of mouse ES and human B cells, expresses OCT4 from human nuclei at levels comparable to human induced pluripotent stem cells (iPSCs) as early as 25 hours after fusion. We also show that this response can vary depending on the fusion partner. Our study broadens the usage of the cell fusion system for comprehending the mechanisms underlying cell fate alterations. These findings hold promise for diverse fields, including regenerative medicine and cancer.
Collapse
Affiliation(s)
- Taisei Kumazaki
- Laboratory of Stem Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Shonah Village, Hayama, 240-0193, Japan
| | - Chinatsu Yonekawa
- Laboratory of Stem Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Japan
| | - Tomomi Tsubouchi
- Laboratory of Stem Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Shonah Village, Hayama, 240-0193, Japan
| |
Collapse
|
5
|
Nihad M, Sen U, Chaudhury D, Das UN, Shenoy P S, Bose B. Arachidonic acid modulates the cellular energetics of human pluripotent stem cells and protects the embryoid bodies from embryotoxicity effects in vitro. Reprod Toxicol 2023; 120:108438. [PMID: 37454977 DOI: 10.1016/j.reprotox.2023.108438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Arachidonic acid (AA), an ω-6 polyunsaturated fatty acid involved in signalling pathways that drive cell fate decisions, has an enhancing role in the immunomodulatory effect on mesenchymal stem cells and the vasculogenesis of embryonic stem cells. 3D embryoid bodies (EBs) from pluripotent stem cells (PSCs) have been used as in vitro models for embryotoxicity for various compounds/drugs. Valproic acid (VA), a common anti-epileptic drug, is known to be embryotoxic and cause malformations in embryos. As early embryogenesis depends on AA, we investigated the embryo protective effects of AA against the embryotoxic drug VA in this study. The effects of AA on the proliferation and cell cycle parameters of PSCs were studied. In particular, the potential of AA to abrogate VA-induced embryotoxicity in vitro was evaluated using ROS detection and antioxidant assays. In response to AA, we observed modulation in cell proliferation of induced pluripotent stem cells (iPSCs) and pluripotent NTERA-2 embryonal carcinoma (EC) cells. The present study substantiates the cytoprotective effects of AA against VA. These results imply that AA plays a critical role in the proliferation and differentiation of iPSCs and EC cells and protects the EBs from cytotoxic damage, thereby ensuring normal embryogenesis. Thus, the bioactive lipid AA may be explored for supplementation to benefit pregnant women treated with long-term anti-epileptic drugs to prevent in-utero fetal growth malformations.
Collapse
Affiliation(s)
- Muhammad Nihad
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, Mangalore 575018, Karnataka, India
| | - Utsav Sen
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, 15th Floor, New York, NY 10029, USA
| | - Debajit Chaudhury
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, Mangalore 575018, Karnataka, India
| | - Undurti N Das
- BioScience Research Centre, Department of Medicine, GVP Medical College and Hospital, Visakhapatnam 530048, India; UND Life Sciences, 2221 NW 5th St., Battle Ground, WA 98604, USA
| | - Sudheer Shenoy P
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, Mangalore 575018, Karnataka, India
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, Mangalore 575018, Karnataka, India.
| |
Collapse
|
6
|
Age- and cell cycle-related expression patterns of transcription factors and cell cycle regulators in Müller glia. Sci Rep 2022; 12:19584. [PMID: 36379991 PMCID: PMC9666513 DOI: 10.1038/s41598-022-23855-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Mammalian Müller glia express transcription factors and cell cycle regulators essential for the function of retinal progenitors, indicating the latent neurogenic capacity; however, the role of these regulators remains unclear. To gain insights into the role of these regulators in Müller glia, we analyzed expression of transcription factors (Pax6, Vsx2 and Nfia) and cell cycle regulators (cyclin D1 and D3) in rodent Müller glia, focusing on their age- and cell cycle-related expression patterns. Expression of Pax6, Vsx2, Nfia and cyclin D3, but not cyclin D1, increased in Müller glia during development. Photoreceptor injury induced cell cycle-associated increase of Vsx2 and cyclin D1, but not Pax6, Nfia, and cyclin D3. In dissociated cultures, cell cycle-associated increase of Pax6 and Vsx2 was observed in Müller glia from P10 mice but not from P21 mice. Nfia levels were highly correlated with EdU incorporation suggesting their activation during S phase progression. Cyclin D1 and D3 were transiently upregulated in G1 phase but downregulated after S phase entry. Our findings revealed previously unknown links between cell cycle progression and regulator protein expression, which likely affect the cell fate decision of proliferating Müller glia.
Collapse
|
7
|
Pokrovsky D, Forné I, Straub T, Imhof A, Rupp RAW. A systemic cell cycle block impacts stage-specific histone modification profiles during Xenopus embryogenesis. PLoS Biol 2021; 19:e3001377. [PMID: 34491983 PMCID: PMC8535184 DOI: 10.1371/journal.pbio.3001377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/22/2021] [Accepted: 07/30/2021] [Indexed: 11/26/2022] Open
Abstract
Forming an embryo from a zygote poses an apparent conflict for epigenetic regulation. On the one hand, the de novo induction of cell fate identities requires the establishment and subsequent maintenance of epigenetic information to harness developmental gene expression. On the other hand, the embryo depends on cell proliferation, and every round of DNA replication dilutes preexisting histone modifications by incorporation of new unmodified histones into chromatin. Here, we investigated the possible relationship between the propagation of epigenetic information and the developmental cell proliferation during Xenopus embryogenesis. We systemically inhibited cell proliferation during the G1/S transition in gastrula embryos and followed their development until the tadpole stage. Comparing wild-type and cell cycle-arrested embryos, we show that the inhibition of cell proliferation is principally compatible with embryo survival and cellular differentiation. In parallel, we quantified by mass spectrometry the abundance of a large set of histone modification states, which reflects the developmental maturation of the embryonic epigenome. The arrested embryos developed abnormal stage-specific histone modification profiles (HMPs), in which transcriptionally repressive histone marks were overrepresented. Embryos released from the cell cycle block during neurulation reverted toward normality on morphological, molecular, and epigenetic levels. These results suggest that the cell cycle block by HUA alters stage-specific HMPs. We propose that this influence is strong enough to control developmental decisions, specifically in cell populations that switch between resting and proliferating states such as stem cells.
Collapse
Affiliation(s)
- Daniil Pokrovsky
- Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Ignasi Forné
- Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Tobias Straub
- Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Axel Imhof
- Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Ralph A. W. Rupp
- Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| |
Collapse
|
8
|
Tsubouchi T, Pereira CF. Reprogramming Stars #1: Genome Programming Through the Cell Cycle-An Interview with Dr. Tomomi Tsubouchi. Cell Reprogram 2021; 23:153-157. [PMID: 34165359 DOI: 10.1089/cell.2021.29039.tt] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Tomomi Tsubouchi
- Laboratory of Stem Cell Biology, National Institute for Basic Biology, Okazaki, Japan
| | - Carlos-Filipe Pereira
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
9
|
Single-Cell Gene Network Analysis and Transcriptional Landscape of MYCN-Amplified Neuroblastoma Cell Lines. Biomolecules 2021; 11:biom11020177. [PMID: 33525507 PMCID: PMC7912277 DOI: 10.3390/biom11020177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 12/13/2022] Open
Abstract
Neuroblastoma (NBL) is a pediatric cancer responsible for more than 15% of cancer deaths in children, with 800 new cases each year in the United States alone. Genomic amplification of the MYC oncogene family member MYCN characterizes a subset of high-risk pediatric neuroblastomas. Several cellular models have been implemented to study this disease over the years. Two of these, SK-N-BE-2-C (BE2C) and Kelly, are amongst the most used worldwide as models of MYCN-Amplified human NBL. Here, we provide a transcriptome-wide quantitative measurement of gene expression and transcriptional network activity in BE2C and Kelly cell lines at an unprecedented single-cell resolution. We obtained 1105 Kelly and 962 BE2C unsynchronized cells, with an average number of mapped reads/cell of roughly 38,000. The single-cell data recapitulate gene expression signatures previously generated from bulk RNA-Seq. We highlight low variance for commonly used housekeeping genes between different cells (ACTB, B2M and GAPDH), while showing higher than expected variance for metallothionein transcripts in Kelly cells. The high number of samples, despite the relatively low read coverage of single cells, allowed for robust pathway enrichment analysis and master regulator analysis (MRA), both of which highlight the more mesenchymal nature of BE2C cells as compared to Kelly cells, and the upregulation of TWIST1 and DNAJC1 transcriptional networks. We further defined master regulators at the single cell level and showed that MYCN is not constantly active or expressed within Kelly and BE2C cells, independently of cell cycle phase. The dataset, alongside a detailed and commented programming protocol to analyze it, is fully shared and reusable.
Collapse
|
10
|
Brown N, Song L, Kollu NR, Hirsch ML. Adeno-Associated Virus Vectors and Stem Cells: Friends or Foes? Hum Gene Ther 2018; 28:450-463. [PMID: 28490211 DOI: 10.1089/hum.2017.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The infusion of healthy stem cells into a patient-termed "stem-cell therapy"-has shown great promise for the treatment of genetic and non-genetic diseases, including mucopolysaccharidosis type 1, Parkinson's disease, multiple sclerosis, numerous immunodeficiency disorders, and aplastic anemia. Stem cells for cell therapy can be collected from the patient (autologous) or collected from another "healthy" individual (allogeneic). The use of allogenic stem cells is accompanied with the potentially fatal risk that the transplanted donor T cells will reject the patient's cells-a process termed "graft-versus-host disease." Therefore, the use of autologous stem cells is preferred, at least from the immunological perspective. However, an obvious drawback is that inherently as "self," they contain the disease mutation. As such, autologous cells for use in cell therapies often require genetic "correction" (i.e., gene addition or editing) prior to cell infusion and therefore the requirement for some form of nucleic acid delivery, which sets the stage for the AAV controversy discussed herein. Despite being the most clinically applied gene delivery context to date, unlike other more concerning integrating and non-integrating vectors such as retroviruses and adenovirus, those based on adeno-associated virus (AAV) have not been employed in the clinic. Furthermore, published data regarding AAV vector transduction of stem cells are inconsistent in regards to vector transduction efficiency, while the pendulum swings far in the other direction with demonstrations of AAV vector-induced toxicity in undifferentiated cells. The variation present in the literature examining the transduction efficiency of AAV vectors in stem cells may be due to numerous factors, including inconsistencies in stem-cell collection, cell culture, vector preparation, and/or transduction conditions. This review summarizes the controversy surrounding AAV vector transduction of stem cells, hopefully setting the stage for future elucidation and eventual therapeutic applications.
Collapse
Affiliation(s)
- Nolan Brown
- 1 Gene Therapy Center, University of North Carolina at Chapel Hill , North Carolina.,2 Department of Ophthalmology, University of North Carolina at Chapel Hill , North Carolina
| | - Liujiang Song
- 1 Gene Therapy Center, University of North Carolina at Chapel Hill , North Carolina.,2 Department of Ophthalmology, University of North Carolina at Chapel Hill , North Carolina
| | - Nageswara R Kollu
- 1 Gene Therapy Center, University of North Carolina at Chapel Hill , North Carolina.,2 Department of Ophthalmology, University of North Carolina at Chapel Hill , North Carolina
| | - Matthew L Hirsch
- 1 Gene Therapy Center, University of North Carolina at Chapel Hill , North Carolina.,2 Department of Ophthalmology, University of North Carolina at Chapel Hill , North Carolina
| |
Collapse
|
11
|
Alternative dominance of the parental genomes in hybrid cells generated through the fusion of mouse embryonic stem cells with fibroblasts. Sci Rep 2017; 7:18094. [PMID: 29273752 PMCID: PMC5741742 DOI: 10.1038/s41598-017-18352-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 12/11/2017] [Indexed: 01/01/2023] Open
Abstract
For the first time, two types of hybrid cells with embryonic stem (ES) cell-like and fibroblast-like phenotypes were produced through the fusion of mouse ES cells with fibroblasts. Transcriptome analysis of 2,848 genes differentially expressed in the parental cells demonstrated that 34-43% of these genes are expressed in hybrid cells, consistent with their phenotypes; 25-29% of these genes display intermediate levels of expression, and 12-16% of these genes maintained expression at the parental cell level, inconsistent with the phenotype of the hybrid cell. Approximately 20% of the analyzed genes displayed unexpected expression patterns that differ from both parents. An unusual phenomenon was observed, namely, the illegitimate activation of Xist expression and the inactivation of one of two X-chromosomes in the near-tetraploid fibroblast-like hybrid cells, whereas both Xs were active before and after in vitro differentiation of the ES cell-like hybrid cells. These results and previous data obtained on heterokaryons suggest that the appearance of hybrid cells with a fibroblast-like phenotype reflects the reprogramming, rather than the induced differentiation, of the ES cell genome under the influence of a somatic partner.
Collapse
|
12
|
De Jaime-Soguero A, Aulicino F, Ertaylan G, Griego A, Cerrato A, Tallam A, del Sol A, Cosma MP, Lluis F. Wnt/Tcf1 pathway restricts embryonic stem cell cycle through activation of the Ink4/Arf locus. PLoS Genet 2017; 13:e1006682. [PMID: 28346462 PMCID: PMC5386305 DOI: 10.1371/journal.pgen.1006682] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 04/10/2017] [Accepted: 03/10/2017] [Indexed: 12/22/2022] Open
Abstract
Understanding the mechanisms regulating cell cycle, proliferation and potency of pluripotent stem cells guarantees their safe use in the clinic. Embryonic stem cells (ESCs) present a fast cell cycle with a short G1 phase. This is due to the lack of expression of cell cycle inhibitors, which ultimately determines naïve pluripotency by holding back differentiation. The canonical Wnt/β-catenin pathway controls mESC pluripotency via the Wnt-effector Tcf3. However, if the activity of the Wnt/β-catenin controls the cell cycle of mESCs remains unknown. Here we show that the Wnt-effector Tcf1 is recruited to and triggers transcription of the Ink4/Arf tumor suppressor locus. Thereby, the activation of the Wnt pathway, a known mitogenic pathway in somatic tissues, restores G1 phase and drastically reduces proliferation of mESCs without perturbing pluripotency. Tcf1, but not Tcf3, is recruited to a palindromic motif enriched in the promoter of cell cycle repressor genes, such as p15Ink4b, p16Ink4a and p19Arf, which mediate the Wnt-dependent anti-proliferative effect in mESCs. Consistently, ablation of β-catenin or Tcf1 expression impairs Wnt-dependent cell cycle regulation. All together, here we showed that Wnt signaling controls mESC pluripotency and proliferation through non-overlapping functions of distinct Tcf factors. Studying how to safely expand stem cells in culture is essential for regenerative medicine applications. Hence there is a clear need to decode how the cell cycle of mouse embryonic stem cells (mESCs) is regulated. Tcf3 and Tcf1 belong to the Tcf family of proteins. Tcf/Lef are effectors of the Wnt/β-catenin pathway and Tcf3 controls mESC pluripotency. Here we identified a recruitment site for Tcf1 embedded into a number of cell cycle repressor genes such as p15Ink4b, p16Ink4a and p19Arf. Tcf1-mediated activation of these genes drastically slows down proliferation of mESCs. In conclusion, here we showed that the Wnt pathway, besides controlling mESC pluripotency via Tcf3, also regulates mESC cell cycle through the recruitment of Tcf1 to the regulatory sites of key cell cycle genes.
Collapse
Affiliation(s)
- Anchel De Jaime-Soguero
- KU Leuven Stem Cell Institute, Department of Development and Regeneration, Stem Cell Signalling laboratory, Herestraat 49, Onderwijs en Navorsing 4, Leuven, Belgium
| | - Francesco Aulicino
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, Spain
| | - Gokhan Ertaylan
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University. Universiteitssingel 60, 6229 ER Maastricht, The Netherlands
| | - Anna Griego
- KU Leuven Stem Cell Institute, Department of Development and Regeneration, Stem Cell Signalling laboratory, Herestraat 49, Onderwijs en Navorsing 4, Leuven, Belgium
| | - Aniello Cerrato
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale "Gaetano Salvatore", CNR, Napoli, Italy
| | - Aravind Tallam
- TWINCORE, Zentrum für Experimentelle und Klinische Infektionsforschung, Hannover, Germany
| | - Antonio del Sol
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr Aiguader 88, Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, Spain
- * E-mail: ;
| | - Frederic Lluis
- KU Leuven Stem Cell Institute, Department of Development and Regeneration, Stem Cell Signalling laboratory, Herestraat 49, Onderwijs en Navorsing 4, Leuven, Belgium
- * E-mail: ;
| |
Collapse
|
13
|
Tian Z, Guo F, Biswas S, Deng W. Rationale and Methodology of Reprogramming for Generation of Induced Pluripotent Stem Cells and Induced Neural Progenitor Cells. Int J Mol Sci 2016; 17:E594. [PMID: 27104529 PMCID: PMC4849048 DOI: 10.3390/ijms17040594] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/14/2016] [Accepted: 04/14/2016] [Indexed: 01/23/2023] Open
Abstract
Great progress has been made regarding the capabilities to modify somatic cell fate ever since the technology for generation of induced pluripotent stem cells (iPSCs) was discovered in 2006. Later, induced neural progenitor cells (iNPCs) were generated from mouse and human cells, bypassing some of the concerns and risks of using iPSCs in neuroscience applications. To overcome the limitation of viral vector induced reprogramming, bioactive small molecules (SM) have been explored to enhance the efficiency of reprogramming or even replace transcription factors (TFs), making the reprogrammed cells more amenable to clinical application. The chemical induced reprogramming process is a simple process from a technical perspective, but the choice of SM at each step is vital during the procedure. The mechanisms underlying cell transdifferentiation are still poorly understood, although, several experimental data and insights have indicated the rationale of cell reprogramming. The process begins with the forced expression of specific TFs or activation/inhibition of cell signaling pathways by bioactive chemicals in defined culture condition, which initiates the further reactivation of endogenous gene program and an optimal stoichiometric expression of the endogenous pluri- or multi-potency genes, and finally leads to the birth of reprogrammed cells such as iPSCs and iNPCs. In this review, we first outline the rationale and discuss the methodology of iPSCs and iNPCs in a stepwise manner; and then we also discuss the chemical-based reprogramming of iPSCs and iNPCs.
Collapse
Affiliation(s)
- Zuojun Tian
- Department of Neurology, the Institute of Guangzhou Respiratory Disease, State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA 95817, USA.
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA.
| | - Fuzheng Guo
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA.
| | - Sangita Biswas
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA 95817, USA.
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA.
| | - Wenbin Deng
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA 95817, USA.
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA.
| |
Collapse
|
14
|
Cyclin D1 acts as a barrier to pluripotent reprogramming by promoting neural progenitor fate commitment. FEBS Lett 2014; 588:4008-17. [DOI: 10.1016/j.febslet.2014.08.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/11/2014] [Accepted: 08/27/2014] [Indexed: 11/21/2022]
|
15
|
Differential role of nonhomologous end joining factors in the generation, DNA damage response, and myeloid differentiation of human induced pluripotent stem cells. Proc Natl Acad Sci U S A 2014; 111:8889-94. [PMID: 24889605 DOI: 10.1073/pnas.1323649111] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nonhomologous end-joining (NHEJ) is a key pathway for efficient repair of DNA double-strand breaks (DSBs) and V(D)J recombination. NHEJ defects in humans cause immunodeficiency and increased cellular sensitivity to ionizing irradiation (IR) and are variably associated with growth retardation, microcephaly, and neurodevelopmental delay. Repair of DNA DSBs is important for reprogramming of somatic cells into induced pluripotent stem cells (iPSCs). To compare the specific contribution of DNA ligase 4 (LIG4), Artemis, and DNA-protein kinase catalytic subunit (PKcs) in this process and to gain insights into phenotypic variability associated with these disorders, we reprogrammed patient-derived fibroblast cell lines with NHEJ defects. Deficiencies of LIG4 and of DNA-PK catalytic activity, but not Artemis deficiency, were associated with markedly reduced reprogramming efficiency, which could be partially rescued by genetic complementation. Moreover, we identified increased genomic instability in LIG4-deficient iPSCs. Cell cycle synchronization revealed a severe defect of DNA repair and a G0/G1 cell cycle arrest, particularly in LIG4- and DNA-PK catalytically deficient iPSCs. Impaired myeloid differentiation was observed in LIG4-, but not Artemis- or DNA-PK-mutated iPSCs. These results indicate a critical importance of the NHEJ pathway for somatic cell reprogramming, with a major role for LIG4 and DNA-PKcs and a minor, if any, for Artemis.
Collapse
|
16
|
Aranda S, Rutishauser D, Ernfors P. Identification of a large protein network involved in epigenetic transmission in replicating DNA of embryonic stem cells. Nucleic Acids Res 2014; 42:6972-86. [PMID: 24852249 PMCID: PMC4066787 DOI: 10.1093/nar/gku374] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pluripotency of embryonic stem cells (ESCs) is maintained by transcriptional activities and chromatin modifying complexes highly organized within the chromatin. Although much effort has been focused on identifying genome-binding sites, little is known on their dynamic association with chromatin across cell divisions. Here, we used a modified version of the iPOND (isolation of proteins at nascent DNA) technology to identify a large protein network enriched at nascent DNA in ESCs. This comprehensive and unbiased proteomic characterization in ESCs reveals that, in addition to the core replication machinery, proteins relevant for pluripotency of ESCs are present at DNA replication sites. In particular, we show that the chromatin remodeller HDAC1–NuRD complex is enriched at nascent DNA. Interestingly, an acute block of HDAC1 in ESCs leads to increased acetylation of histone H3 lysine 9 at nascent DNA together with a concomitant loss of methylation. Consistently, in contrast to what has been described in tumour cell lines, these chromatin marks were found to be stable during cell cycle progression of ESCs. Our results are therefore compatible with a rapid deacetylation-coupled methylation mechanism during the replication of DNA in ESCs that may participate in the preservation of pluripotency of ESCs during replication.
Collapse
Affiliation(s)
- Sergi Aranda
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Dorothea Rutishauser
- Proteomics Karolinska, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Patrik Ernfors
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| |
Collapse
|
17
|
Brown KE, Bagci H, Soza-Ried J, Fisher AG. Atypical heterochromatin organization and replication are rapidly acquired by somatic cells following fusion-mediated reprogramming by mouse ESCs. Cell Cycle 2013; 12:3253-61. [PMID: 24036550 DOI: 10.4161/cc.26223] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We recently reported that mouse embryonic stem cells (ESCs) in S/G 2 are more efficient at reprogramming somatic cells than ESCs at other stages of the cell cycle. We also provided evidence that DNA replication is induced in the nuclei of somatic partners upon fusion with ESC partners, and showed that this was critical for their conversion toward a pluripotent state. (1) Here we have used counterflow centrifugal elutriation to enrich for ESCs at different cell cycle phases, so as to examine in detail the properties of S/G 2 phase cells. This revealed that the replication and organization of DAPI-intense heterochromatin in ESCs is unusual in two respects. First, replication of heterochromatin occurred earlier during S phase and was associated with precocious H3S10 phosphorylation. Second, heterochromatin protein 1 α (HP1α), which invariably marks DAPI-intense and H3K9me3-enriched pericentromeric domains in mouse somatic cells, (2) was not necessarily associated with these H3K9me3-enriched domains in undifferentiated ESCs. These data, which complement recent replication timing (3) and electron spectroscopic imaging (ESI) analyses, (4) suggest that heterochromatin is atypical in ESCs. Interestingly, as these unusual features were rapidly acquired by somatic nuclei upon ESC fusion-mediated reprogramming, our results suggest that fundamental changes in cell cycle structure and heterochromatin dynamics may be important for conferring pluripotency.
Collapse
Affiliation(s)
- Karen E Brown
- Lymphocyte Development Group; MRC Clinical Sciences Centre; Imperial College London; London, UK
| | | | | | | |
Collapse
|