1
|
Kibenge F, Kibenge M, Montes de Oca M, Godoy M. Parvoviruses of Aquatic Animals. Pathogens 2024; 13:625. [PMID: 39204226 PMCID: PMC11357303 DOI: 10.3390/pathogens13080625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Family Parvoviridae consists of small, non-enveloped viruses with linear, single-stranded DNA genomes of approximately 4-6 kilobases, subdivided into three subfamilies, Parvovirinae, Densovirinae, and Hamaparvovirinae, and unassigned genus Metalloincertoparvovirus. Parvoviruses of aquatic animals infect crustaceans, mollusks, and finfish. This review describes these parvoviruses, which are highly host-specific and associated with mass morbidity and mortality in both farmed and wild aquatic animals. They include Cherax quadricarinatus densovirus (CqDV) in freshwater crayfish in Queensland, Australia; sea star-associated densovirus (SSaDV) in sunflower sea star on the Northeastern Pacific Coast; Clinch densovirus 1 in freshwater mussels in the Clinch River, Virginia, and Tennessee, USA, in subfamily Densovirinae; hepatopancreatic parvovirus (HPV) and infectious hypodermal and hematopoietic necrosis virus (IHHNV) in farmed shrimp worldwide; Syngnathid ichthamaparvovirus 1 in gulf pipefish in the Gulf of Mexico and parts of South America; tilapia parvovirus (TiPV) in farmed tilapia in China, Thailand, and India, in the subfamily Hamaparvovirinae; and Penaeus monodon metallodensovirus (PmMDV) in Vietnamese P. monodon, in unassigned genus Metalloincertoparvovirus. Also included in the family Parvoviridae are novel parvoviruses detected in both diseased and healthy animals using metagenomic sequencing, such as zander parvovirus from zander in Hungary and salmon parvovirus from sockeye salmon smolts in British Columbia, Canada.
Collapse
Affiliation(s)
- Frederick Kibenge
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada;
| | - Molly Kibenge
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada;
| | - Marco Montes de Oca
- Centro de Investigaciones Biológicas Aplicadas (CIBA), Puerto Montt 5480000, Chile; (M.M.d.O.); or (M.G.)
| | - Marcos Godoy
- Centro de Investigaciones Biológicas Aplicadas (CIBA), Puerto Montt 5480000, Chile; (M.M.d.O.); or (M.G.)
- Laboratorio de Biotecnología Aplicada, Facultad de Ciencias de la Naturaleza, Escuela de Medicina Veterinaria, Sede de la Patagonia, Universidad San Sebastián, Puerto Montt 5480000, Chile
| |
Collapse
|
2
|
Xu F, Wei Y, Lu J, Chen J. Prevalence of Infectious Hypodermal and Hematopoietic Necrosis Virus (IHHNV) in Farmed Procambarus clarkii of the Middle and Lower Reaches of the Yangtze River in China. Pathogens 2023; 12:1038. [PMID: 37623998 PMCID: PMC10459460 DOI: 10.3390/pathogens12081038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
Procambarus clarkii is an important economic aquaculture species worldwide. Infectious hypodermal and hematopoietic necrosis virus (IHHNV) infects numerous crustacean hosts, including P. clarkii. However, there have been few reports on the prevalence of IHHNV in P. clarkii. In this study, 200 farmed P. clarkii were collected from Anhui, Jiangsu, Zhejiang, Hunan, Hubei, and Sichuan provinces in China. PCR detection was employed per the protocol by the World Organization for Animal Health (WOAH) to identify and detect the presence of IHHNV. The positive rate of IHHNV in different provinces ranged from 16.7 to 56.7%, and the overall IHHNV-positive rate was 38.5%. IHHNV strains isolated in this study related closely to infectious IHHNV and split into two major distinct branches. Besides, the IHHNV strains shared a high homology (93.4-99.4%). These findings suggest that a high prevalence of IHHNV was established in farmed P. clarkii in the middle and lower reaches of the Yangtze River.
Collapse
Affiliation(s)
- Feng Xu
- Central Laboratory of the Medical Research Center, The First Affiliated Hospital of Ningbo University, Ningbo 315211, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China
| | - Yongwei Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquacultral Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Jianfei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquacultral Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquacultral Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
| |
Collapse
|
3
|
Wang Z, Aweya JJ, Yao D, Zheng Z, Wang C, Zhao Y, Li S, Zhang Y. Taurine metabolism is modulated in Vibrio-infected Penaeus vannamei to shape shrimp antibacterial response and survival. MICROBIOME 2022; 10:213. [PMID: 36464721 PMCID: PMC9721036 DOI: 10.1186/s40168-022-01414-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 11/05/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Numerous microorganisms are found in aquaculture ponds, including several pathogenic bacteria. Infection of cultured animals by these pathogens results in diseases and metabolic dysregulation. However, changes in the metabolic profiles that occur at different infection stages in the same ponds and how these metabolic changes can be modulated by exogenous metabolites in Penaeus vannamei remain unknown. RESULTS Here, we collected gastrointestinal tract (GIT) samples from healthy, diseased, and moribund P. vannamei in the same aquaculture pond for histological, metabolic, and transcriptome profiling. We found that diseased and moribund shrimp with empty GITs and atrophied hepatopancreas were mainly infected with Vibrio parahaemolyticus and Vibrio harveyi. Although significant dysregulation of crucial metabolites and their enzymes were observed in diseased and moribund shrimps, diseased shrimp expressed high levels of taurine and taurine metabolism-related enzymes, while moribund shrimp expressed high levels of hypoxanthine and related metabolism enzymes. Moreover, a strong negative correlation was observed between taurine levels and the relative abundance of V. parahaemolyticus and V. harveyi. Besides, exogenous taurine enhanced shrimp survival against V. parahaemolyticus challenge by increasing the expression of key taurine metabolism enzymes, mainly, cysteine dioxygenase (CDO) and cysteine sulfinic acid decarboxylase (CSD). CONCLUSIONS Our study revealed that taurine metabolism could be modulated by exogenous supplementation to improve crustacean immune response against pathogenic microbes. Video Abstract.
Collapse
Affiliation(s)
- Zhongyan Wang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou, 515063, Guangdong, China
| | - Jude Juventus Aweya
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, 361021, Fujian, China
| | - Defu Yao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou, 515063, Guangdong, China
| | - Zhihong Zheng
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou, 515063, Guangdong, China
| | - Chuanqi Wang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou, 515063, Guangdong, China
| | - Yongzhen Zhao
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, 530021, China
| | - Shengkang Li
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou, 515063, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China
| | - Yueling Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou, 515063, Guangdong, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China.
| |
Collapse
|
4
|
Huerlimann R, Cowley JA, Wade NM, Wang Y, Kasinadhuni N, Chan CKK, Jabbari JS, Siemering K, Gordon L, Tinning M, Montenegro JD, Maes GE, Sellars MJ, Coman GJ, McWilliam S, Zenger KR, Khatkar MS, Raadsma HW, Donovan D, Krishna G, Jerry DR. Genome assembly of the Australian black tiger shrimp (Penaeus monodon) reveals a novel fragmented IHHNV EVE sequence. G3 (BETHESDA, MD.) 2022; 12:6526390. [PMID: 35143647 PMCID: PMC8982415 DOI: 10.1093/g3journal/jkac034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/02/2022] [Indexed: 01/08/2023]
Abstract
Shrimp are a valuable aquaculture species globally; however, disease remains a major hindrance to shrimp aquaculture sustainability and growth. Mechanisms mediated by endogenous viral elements have been proposed as a means by which shrimp that encounter a new virus start to accommodate rather than succumb to infection over time. However, evidence on the nature of such endogenous viral elements and how they mediate viral accommodation is limited. More extensive genomic data on Penaeid shrimp from different geographical locations should assist in exposing the diversity of endogenous viral elements. In this context, reported here is a PacBio Sequel-based draft genome assembly of an Australian black tiger shrimp (Penaeus monodon) inbred for 1 generation. The 1.89 Gbp draft genome is comprised of 31,922 scaffolds (N50: 496,398 bp) covering 85.9% of the projected genome size. The genome repeat content (61.8% with 30% representing simple sequence repeats) is almost the highest identified for any species. The functional annotation identified 35,517 gene models, of which 25,809 were protein-coding and 17,158 were annotated using interproscan. Scaffold scanning for specific endogenous viral elements identified an element comprised of a 9,045-bp stretch of repeated, inverted, and jumbled genome fragments of infectious hypodermal and hematopoietic necrosis virus bounded by a repeated 591/590 bp host sequence. As only near complete linear ∼4 kb infectious hypodermal and hematopoietic necrosis virus genomes have been found integrated in the genome of P. monodon previously, its discovery has implications regarding the validity of PCR tests designed to specifically detect such linear endogenous viral element types. The existence of joined inverted infectious hypodermal and hematopoietic necrosis virus genome fragments also provides a means by which hairpin double-stranded RNA could be expressed and processed by the shrimp RNA interference machinery.
Collapse
Affiliation(s)
- Roger Huerlimann
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.,Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4811, Australia
| | - Jeff A Cowley
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,CSIRO Agriculture and Food, St Lucia, QLD 4067, Australia
| | - Nicholas M Wade
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,CSIRO Agriculture and Food, St Lucia, QLD 4067, Australia
| | - Yinan Wang
- Australian Genome Research Facility Ltd, Level 13, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
| | - Naga Kasinadhuni
- Australian Genome Research Facility Ltd, Level 13, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
| | - Chon-Kit Kenneth Chan
- Australian Genome Research Facility Ltd, Level 13, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
| | - Jafar S Jabbari
- Australian Genome Research Facility Ltd, Level 13, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
| | - Kirby Siemering
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,Australian Genome Research Facility Ltd, Level 13, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
| | - Lavinia Gordon
- Australian Genome Research Facility Ltd, Level 13, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
| | - Matthew Tinning
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,Australian Genome Research Facility Ltd, Level 13, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
| | - Juan D Montenegro
- Australian Genome Research Facility Ltd, Level 13, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
| | - Gregory E Maes
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.,Laboratory of Biodiversity and Evolutionary Genomics, Biogenomics-consultancy, KU Leuven, Leuven 3000, Belgium.,Center for Human Genetics, UZ Leuven- Genomics Core, KU Leuven, Leuven 3000, Belgium
| | | | - Greg J Coman
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,CSIRO Agriculture and Food, Bribie Island Research Centre, Woorim, QLD 4507, Australia
| | - Sean McWilliam
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,CSIRO Agriculture and Food, St Lucia, QLD 4067, Australia
| | - Kyall R Zenger
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Mehar S Khatkar
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, NSW 2570, Australia
| | - Herman W Raadsma
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, NSW 2570, Australia
| | - Dallas Donovan
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,Seafarms Group Ltd, Darwin, NT 0800, Australia
| | - Gopala Krishna
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,Seafarms Group Ltd, Darwin, NT 0800, Australia
| | - Dean R Jerry
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.,Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
5
|
Dhar AK, Cruz-Flores R, Warg J, Killian ML, Orry A, Ramos J, Garfias M, Lyons G. Genetic Relatedness of Infectious Hypodermal and Hematopoietic Necrosis Virus Isolates, United States, 2019. Emerg Infect Dis 2022; 28:373-381. [PMID: 35075996 PMCID: PMC8798669 DOI: 10.3201/eid2802.211874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
6
|
Caesar L, Cibulski SP, Canal CW, Blochtein B, Sattler A, Haag KL. The virome of an endangered stingless bee suffering from annual mortality in southern Brazil. J Gen Virol 2019; 100:1153-1164. [PMID: 31169486 DOI: 10.1099/jgv.0.001273] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Meliponiculture - the management of stingless bee colonies - is an expanding activity in Brazil with economic, social and environmental potential. However, unlike in apiculture, the pathogens that impact on meliponiculture remain largely unknown. In southern Brazil, every year at the end of the summer, managed colonies of the stingless bee Melipona quadrifasciata manifest a syndrome that eventually leads to collapse. Here we characterize the M. quadrifasciata virome using high-throughput sequencing, with the aim of identifying potentially pathogenic viruses, and test whether they are related to the syndrome outbreaks. Two paired viromes are explored, one from healthy bees and another from unhealthy ones. Each virome is built from metagenomes assembled from sequencing reads derived either from RNA or DNA. A total of 40 621 reads map to viral contigs of the unhealthy bees' metagenomes, whereas only 11 reads map to contigs identified as viruses of healthy bees. The viruses showing the largest copy numbers in the virome of unhealthy bees belong to the family Dicistroviridae - common pathogenic honeybee viruses - as well as Parvoviridae and Circoviridae, which have never been reported as being pathogenic in insects. Our analyses indicate that they represent seven novel viruses associated with stingless bees. PCR-based detection of these viruses in individual bees (healthy or unhealthy) from three different localities revealed a statistically significant association between viral infection and symptom manifestation in one meliponary. We conclude that although viral infections may contribute to colony collapses in the annual syndrome in some meliponaries, viruses spread opportunistically during the outbreak, perhaps due to colony weakness.
Collapse
Affiliation(s)
- Lílian Caesar
- 1 Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, CEP 91501-970, Porto Alegre, RS, Brazil
| | - Samuel Paulo Cibulski
- 2 Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, CEP 91540-000, Porto Alegre, RS, Brazil
| | - Cláudio Wageck Canal
- 2 Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, CEP 91540-000, Porto Alegre, RS, Brazil
| | - Betina Blochtein
- 3 Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, CEP 90619-900, Porto Alegre, RS, Brazil
| | - Aroni Sattler
- 4 Laboratório de Apicultura, Departamento de Fitossanidade, Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 7712, CEP 91540-000, Porto Alegre, RS, Brazil
| | - Karen Luisa Haag
- 1 Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, CEP 91501-970, Porto Alegre, RS, Brazil
- 5 Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, CEP 91501-970, Porto Alegre, RS, Brazil
| |
Collapse
|
7
|
Dhar AK, Cruz-Flores R, Caro LFA, Siewiora HM, Jory D. Diversity of single-stranded DNA containing viruses in shrimp. Virusdisease 2019; 30:43-57. [PMID: 31143831 PMCID: PMC6517454 DOI: 10.1007/s13337-019-00528-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 03/26/2019] [Indexed: 12/13/2022] Open
Abstract
Over the past four decades, shrimp aquaculture has turned into a major industry providing jobs for millions of people worldwide especially in countries with large coastal boundaries. While the shrimp industry continues to expand, the sustainability of shrimp aquaculture has been threatened by the emergence of diseases. Diseases caused by single-stranded DNA containing viruses, such as infectious hypodermal and hematopoietic necrosis virus (IHHNV) and hepatopancreatic parvovirus (HPV), have caused immense losses in shrimp aquaculture since the early 1980s. In fact, the disease outbreak in the blue shrimp (Penaeus stylirostris) caused by IHHNV in early 1980s ultimately led to the captive breeding program in shrimp being shifted from P. stylirostris to the white shrimp (Penaeus vannamei), and today P. vannamei is the preferred cultured shrimp species globally. To date, four single-stranded DNA viruses are known to affect shrimp; these include IHHNV, HPV, spawner-isolated mortality virus (SMV) and lymphoidal parvo-like virus (LPV). Due to the economic losses caused by IHHNV and HPV, most studies have focused on these two viruses, and only IHHNV is included in the OIE list of Crustacean Diseases. Hence this review will focus on IHHNV and HPV. IHHNV and HPV virions are icosahedral in morphology measuring 20-22 nm in size and contain a single-stranded DNA (ssDNA) of 4-6 kb in size. Both IHHNV and HPV are classified into the sub-order Brevidensoviruses, family Densovirinae. The genome architecture of both viruses are quite similar as they contain two completely (as in IHHNV) or partially overlapping (as in HPV) non-structural and one structural gene. Histopathology and polymerase chain reaction (PCR)-based methods are available for both viruses. Currently, there is no anti-viral therapy for any viral diseases in shrimp. Therefore, biosecurity and the use of genetically resistant lines remains as the corner stone in the management of viral diseases. In recent years, gene silencing using the RNA interference (RNAi) approach has been reported for both IHHNV and HPV via injection. However, the delivery of RNAi molecules via oral route remains a challenge, and the utility of RNAi-based therapy has yet to be materialized in shrimp aquaculture.
Collapse
Affiliation(s)
- Arun K. Dhar
- Aquaculture Pathology Laboratory, School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ USA
| | - Roberto Cruz-Flores
- Aquaculture Pathology Laboratory, School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ USA
| | - Luis Fernando Aranguren Caro
- Aquaculture Pathology Laboratory, School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ USA
| | - Halina M. Siewiora
- Aquaculture Pathology Laboratory, School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ USA
| | - Darryl Jory
- Global Aquaculture Alliance, 85 New Hampshire Avenue, Portsmouth, NH USA
| |
Collapse
|
8
|
Complete Genome Sequences of Four Major Viruses Infecting Marine Shrimp in Egypt. Microbiol Resour Announc 2018; 7:MRA00809-18. [PMID: 30533940 PMCID: PMC6256532 DOI: 10.1128/mra.00809-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/07/2018] [Indexed: 12/11/2022] Open
Abstract
The genome sequences of four economically important shrimp viruses, Penaeus stylirostris densovirus 1, hepatopancreatic parvovirus, yellow head virus, and gill-associated virus, are reported here. Genome data are fundamental for epidemiological studies in determining the origins of these viruses detected for the first time in Egypt and in developing disease management strategies. The genome sequences of four economically important shrimp viruses, Penaeus stylirostris densovirus 1, hepatopancreatic parvovirus, yellow head virus, and gill-associated virus, are reported here. Genome data are fundamental for epidemiological studies in determining the origins of these viruses detected for the first time in Egypt and in developing disease management strategies.
Collapse
|
9
|
Schoonvaere K, Smagghe G, Francis F, de Graaf DC. Study of the Metatranscriptome of Eight Social and Solitary Wild Bee Species Reveals Novel Viruses and Bee Parasites. Front Microbiol 2018; 9:177. [PMID: 29491849 PMCID: PMC5817871 DOI: 10.3389/fmicb.2018.00177] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 01/25/2018] [Indexed: 01/05/2023] Open
Abstract
Bees are associated with a remarkable diversity of microorganisms, including unicellular parasites, bacteria, fungi, and viruses. The application of next-generation sequencing approaches enables the identification of this rich species composition as well as the discovery of previously unknown associations. Using high-throughput polyadenylated ribonucleic acid (RNA) sequencing, we investigated the metatranscriptome of eight wild bee species (Andrena cineraria, Andrena fulva, Andrena haemorrhoa, Bombus terrestris, Bombus cryptarum, Bombus pascuorum, Osmia bicornis, and Osmia cornuta) sampled from four different localities in Belgium. Across the RNA sequencing libraries, 88–99% of the taxonomically informative reads were of the host transcriptome. Four viruses with homology to insect pathogens were found including two RNA viruses (belonging to the families Iflaviridae and Tymoviridae that harbor already viruses of honey bees), a double stranded DNA virus (family Nudiviridae) and a single stranded DNA virus (family Parvoviridae). In addition, we found genomic sequences of 11 unclassified arthropod viruses (related to negeviruses, sobemoviruses, totiviruses, rhabdoviruses, and mononegaviruses), seven plant pathogenic viruses, and one fungal virus. Interestingly, nege-like viruses appear to be widespread, host-specific, and capable of attaining high copy numbers inside bees. Next to viruses, three novel parasite associations were discovered in wild bees, including Crithidia pragensis and a tubulinosematid and a neogregarine parasite. Yeasts of the genus Metschnikowia were identified in solitary bees. This study gives a glimpse of the microorganisms and viruses associated with social and solitary wild bees and demonstrates that their diversity exceeds by far the subset of species first discovered in honey bees.
Collapse
Affiliation(s)
- Karel Schoonvaere
- Laboratory of Molecular Entomology and Bee Pathology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium.,Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | - Dirk C de Graaf
- Laboratory of Molecular Entomology and Bee Pathology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
Valenzuela-Castillo A, Mendoza-Cano F, Enríquez-Espinosa T, Grijalva-Chon JM, Sánchez-Paz A. Selection and validation of candidate reference genes for quantitative real-time PCR studies in the shrimp Penaeus vannamei under viral infection. Mol Cell Probes 2017; 33:42-50. [DOI: 10.1016/j.mcp.2017.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 12/19/2022]
|
11
|
Saksmerprome V, Charoonnart P, Flegel TW. Feasibility of dsRNA treatment for post-clearing SPF shrimp stocks of newly discovered viral infections using Laem Singh virus (LSNV) as a model. Virus Res 2017; 235:73-76. [DOI: 10.1016/j.virusres.2017.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 11/17/2022]
|
12
|
Xu P, Graham RI, Wilson K, Wu K. Structure and transcription of the Helicoverpa armigera densovirus (HaDV2) genome and its expression strategy in LD652 cells. Virol J 2017; 14:23. [PMID: 28173863 PMCID: PMC5296992 DOI: 10.1186/s12985-017-0691-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/18/2017] [Indexed: 12/04/2022] Open
Abstract
Background Densoviruses (DVs) are highly pathogenic to their hosts. However, we previously reported a mutualistic DV (HaDV2). Very little was known about the characteristics of this virus, so herein we undertook a series of experiments to explore the molecular biology of HaDV2 further. Results Phylogenetic analysis showed that HaDV2 was similar to members of the genus Iteradensovirus. However, compared to current members of the genus Iteradensovirus, the sequence identity of HaDV2 is less than 44% at the nucleotide-level, and lower than 36, 28 and 19% at the amino-acid-level of VP, NS1 and NS2 proteins, respectively. Moreover, NS1 and NS2 proteins from HaDV2 were smaller than those from other iteradensoviruses due to their shorter N-terminal sequences. Two transcripts of about 2.2 kb coding for the NS proteins and the VP proteins were identified by Northern Blot and RACE analysis. Using specific anti-NS1 and anti-NS2 antibodies, Western Blot analysis revealed a 78 kDa and a 48 kDa protein, respectively. Finally, the localization of both NS1 and NS2 proteins within the cell nucleus was determined by using Green Fluorescent Protein (GFP) labelling. Conclusion The genome organization, terminal hairpin structure, transcription and expression strategies as well as the mutualistic relationship with its host, suggested that HaDV2 was a novel member of the genus Iteradensovirus within the subfamily Densovirinae. Electronic supplementary material The online version of this article (doi:10.1186/s12985-017-0691-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pengjun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuan Ming Yuan Road, Beijing, 100193, People's Republic of China.,Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No. 11 Ke Yuan Jing Si Road, Qingdao, 266101, People's Republic of China
| | - Robert I Graham
- Crop and Environment Sciences, Harper Adams University, Newport, TF10 8NB, UK
| | - Kenneth Wilson
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuan Ming Yuan Road, Beijing, 100193, People's Republic of China.
| |
Collapse
|
13
|
Salasc F, Mutuel D, Debaisieux S, Perrin A, Dupressoir T, Grenet ASG, Ogliastro M. Role of the phosphatidylinositol-3-kinase/Akt/target of rapamycin pathway during ambidensovirus infection of insect cells. J Gen Virol 2015; 97:233-245. [PMID: 26508507 DOI: 10.1099/jgv.0.000327] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The phosphatidylinositol-3-kinase (PI3K)/Akt/target of rapamycin (TOR) signalling pathway controls cell growth and survival, and is targeted by a number of viruses at different phases of their infection cycle to control translation. Whether and how insect viruses interact with this pathway remain poorly addressed. Here, we investigated the role of PI3K/Akt/TOR signalling during lethal infection of insect cells with an insect parvovirus. Using Junonia coenia densovirus (JcDV; lepidopteran ambidensovirus 1) and susceptible insect cells as experimental models, we first described JcDV cytopathology, and showed that viral infection affects cell size, cell proliferation and survival. We deciphered the role of PI3K/Akt/TOR signalling in the course of infection and found that non-structural (NS) protein expression correlates with the inhibition of TOR and the shutdown of cellular synthesis, concomitant with the burst of viral protein expression. Together, these results suggest that NS proteins control the cellular translational machinery to favour the translation of viral mRNAs at the expense of cellular mRNAs. As a consequence of TOR inhibition, cell autophagy is activated. These results highlight new functions for NS proteins in the course of multiplication of an insect parvovirus.
Collapse
Affiliation(s)
- F Salasc
- EPHE, Pathologie Comparée des Invertébrés, UMR 1333, 34000 Montpellier, France.,INRA, UMR 1333, 34000 Montpellier, France
| | - D Mutuel
- INRA, UMR 1333, 34000 Montpellier, France
| | | | - A Perrin
- INRA, UMR 1333, 34000 Montpellier, France.,Invivo Agrosolutions, 06560 Valbonne, France
| | - T Dupressoir
- EPHE, Pathologie Comparée des Invertébrés, UMR 1333, 34000 Montpellier, France.,INRA, UMR 1333, 34000 Montpellier, France
| | - A-S Gosselin Grenet
- INRA, UMR 1333, 34000 Montpellier, France.,Université de Montpellier, UMR 1333, 34000 Montpellier, France
| | | |
Collapse
|
14
|
Wei YW, Fan DD, Chen J. Development of an overlapping PCR method to clone the full genome of infectious hypodermal and hematopoietic necrosis virus (IHHNV). J Virol Methods 2015; 224:16-9. [PMID: 26277910 DOI: 10.1016/j.jviromet.2015.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 08/05/2015] [Accepted: 08/11/2015] [Indexed: 11/25/2022]
Abstract
Decapod Penstyldensovirus 1, previously named as infectious hypodermal and hematopoietic necrosis virus (IHHNV), is an economically important pathogen that causes shrimp diseases worldwide. However, a rapid method for cloning full-length IHHNV genome sequences is still lacking, which makes it difficult to study the genomics and molecular epidemiology of IHHNV. Here, a novel and rapid PCR technique was developed to determine the complete genomic sequences of IHHNV. The IHHNV genome was amplified in two overlapping fragments which each yielded a 2kb PCR product covering the first half or the second half of IHHNV genome, respectively. Using this method, six complete genomic sequences of IHHNV, which were collected from different regions of Zhejiang province in China, were cloned and sequenced successfully. The new cloning method will greatly facilitate the study on the genomics and molecular epidemiology of IHHNV.
Collapse
Affiliation(s)
- Yong-Wei Wei
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Dong-Dong Fan
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; The Donghai Sea Collaborative Innovation Center for Industrial Upgrading Mariculture, Ningbo University, Ningbo 315211, China.
| |
Collapse
|