1
|
Saak TM, Tervo JP, Moore BM, Wang AS, DiMango E, Sadeghi H, Gudis DA, Overdevest JB. Exploration of Olfaction and ChiPSO in Pediatric Cystic Fibrosis. J Clin Med 2025; 14:2583. [PMID: 40283411 PMCID: PMC12027488 DOI: 10.3390/jcm14082583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Olfactory dysfunction (OD) is a common symptom among people with cystic fibrosis (PwCF) and contributes to environmental safety concerns, nutritional challenges, and an overall diminished quality of life. OD is perceived to progress along the lifespan in PwCF, often due to worsening sinonasal disease. Among children with cystic fibrosis (CwCF), OD is poorly characterized as limited resources and tolerance contribute to challenges in psychophysical olfactory evaluation among pediatric populations. The Children's Personal Significance of Olfaction (ChiPSO) questionnaire was recently proposed as a tool to assess olfaction and the importance of olfactory stimulation among children. This pilot study aimed to evaluate the utility of ChiPSO among a cohort of ethnically diverse CwCF. Methods: Individuals aged 7-17 with physician-diagnosed CF were asked to complete questionnaires, including ChiPSO and the brief questionnaire on olfactory dysfunction (bQOD-NS), prior to undergoing psychophysical olfactory evaluation with the U-Sniff Identification test. Potential associations between questionnaires and olfactory performance, pulmonary function, and demographic characteristics were evaluated using Pearson and Spearman correlations, independent-sample t-tests, Wilcoxon rank sum tests, and multiple linear regression. Results: U-Sniff Identification score positively correlated with the overall ChiPSO total score [r(13) = 0.640, p = 0.010] and its environmental subdomain score [r(13) = 0.774, p < 0.001], though not with the food subdomain [r(13) = 0.450, p = 0.093], the social subdomain [r(13) = 0.343, p = 0.2], or bQOD-NS score [r(11) = -0.125, p = 0.7]. Hispanic ethnicity is associated with ChiPSO (p = 0.041). Conclusions: In this preliminary study, olfactory importance increases with olfactory function among an ethnically diverse sample of CwCF, with a preferential influence of olfactory function on personal importance of environmental olfactory information. While these results should be interpreted with limitations imposed by the pilot nature of our sample size, our pilot data highlights associations with early adolescent development of importance of olfaction that can be disrupted in the setting of progressive disease among CwCF.
Collapse
Affiliation(s)
- Tiana M. Saak
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jeremy P. Tervo
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Brandon M. Moore
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Alicia S. Wang
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Emily DiMango
- Division of Pulmonary, Allergy, and Critical Care Medicine, New York Presbyterian, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hossein Sadeghi
- Division of Pediatric Pulmonology, New York Presbyterian, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - David A. Gudis
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Department of Otolaryngology-Head and Neck Surgery, New York Presbyterian, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jonathan B. Overdevest
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Department of Otolaryngology-Head and Neck Surgery, New York Presbyterian, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
2
|
Prosperi G, Marchetti N, D'Elia A, Massari R, Giusto M, Pietrodangelo A, Rossi T, Nucara A, Scavizzi F, Strimpakos G, Marinelli S, Mandillo S, D'Amato FR, Farioli-Vecchioli S. Inhalation of nanoplastics in the mouse model: Tissue bio-distribution and effects on the olfactory system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 968:178853. [PMID: 39970562 DOI: 10.1016/j.scitotenv.2025.178853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/31/2025] [Accepted: 02/12/2025] [Indexed: 02/21/2025]
Abstract
The impact of plastic fragments on human health is currently under investigation, with nanoplastics (NPs) being particularly concerning due to their small size. This allows them to be inhaled, pass through blood barriers, and reach various organs. In this study, we evaluated the effects of airborne NPs on the mouse olfactory system, which is a primary target of NPs inhalation. Adult mice were exposed to an aerosol solution containing synthetic polystyrene nanoplastics (PS-NPs) labelled with a red fluorophore for 5 h a day over 7 days. Biodistribution analysis revealed that PS-NPs accumulated in tissues, such as brain, lung, adipose tissue, and testicles, but were cleared after one month. This study is the first to investigate the effects of inhaled PS-NPs on the olfactory bulb (OB) and subventricular neurogenesis in adult mice. We observed long-term impairments in olfactory discrimination, decreased neuronal functionality, and pro-inflammatory activation in microglia in OB following PS-NPs exposure. Surprisingly, we noted a compensatory increase in olfactory neurogenesis, although insufficient to counteract the olfaction impairment induced by the PS-NPs. These results provide novel insights into the potential neurotoxic effects of inhaled PS-NPs and emphasize the importance of assessing occupational and environmental exposure to these pollutants.
Collapse
Affiliation(s)
- G Prosperi
- Institute of Biochemistry and Cell Biology, CNR, Via Ramarini 32, 00015 Monterotondo, RM, Italy
| | - N Marchetti
- Institute of Biochemistry and Cell Biology, CNR, Via Ramarini 32, 00015 Monterotondo, RM, Italy; PhD Course in Sciences of Nutrition, Aging, Metabolism and Gender Pathologies, Catholic University of Rome, 00100 Rome, Italy
| | - A D'Elia
- Institute of Biochemistry and Cell Biology, CNR, Via Ramarini 32, 00015 Monterotondo, RM, Italy
| | - R Massari
- Institute of Biochemistry and Cell Biology, CNR, Via Ramarini 32, 00015 Monterotondo, RM, Italy
| | - M Giusto
- Institute of Atmospheric Pollution Research, CNR, Monterotondo St., Rome 00015, Italy
| | - A Pietrodangelo
- Institute of Atmospheric Pollution Research, CNR, Monterotondo St., Rome 00015, Italy
| | - T Rossi
- Institute of Atmospheric Pollution Research, CNR, Monterotondo St., Rome 00015, Italy
| | - A Nucara
- Department of Physics, Sapienza University of Rome, 00185 Rome, Italy
| | - F Scavizzi
- Institute of Biochemistry and Cell Biology, CNR, Via Ramarini 32, 00015 Monterotondo, RM, Italy
| | - G Strimpakos
- Institute of Biochemistry and Cell Biology, CNR, Via Ramarini 32, 00015 Monterotondo, RM, Italy
| | - S Marinelli
- Institute of Biochemistry and Cell Biology, CNR, Via Ramarini 32, 00015 Monterotondo, RM, Italy
| | - S Mandillo
- Institute of Biochemistry and Cell Biology, CNR, Via Ramarini 32, 00015 Monterotondo, RM, Italy
| | - F R D'Amato
- Institute of Biochemistry and Cell Biology, CNR, Via Ramarini 32, 00015 Monterotondo, RM, Italy.
| | - S Farioli-Vecchioli
- Institute of Biochemistry and Cell Biology, CNR, Via Ramarini 32, 00015 Monterotondo, RM, Italy.
| |
Collapse
|
3
|
Cameron EL, Doty RL. Non-monotonic psychometric functions for α-ionone in young adults. Physiol Behav 2025; 290:114749. [PMID: 39549869 DOI: 10.1016/j.physbeh.2024.114749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
The mathematical relationship between the ability to detect an odorant and its concentration appears for some odorants to be non-monotonic, with reversals ("notches") in performance appearing at points along the psychometric function. Like visual adaptation curves that reflect the differential sensitivities of cones and rods, such reversals may provide information about underlying olfactory receptor processes. However, the presence of such reversals is rarely acknowledged, few participants and odorants have been tested, and methodological concerns abound. In this study, we examined in detail the psychometric function for the odorant α-ionone using a sizable number of young participants and 10 log-based concentrations of α-ionone presented in a random fashion. A trial consisted of the counterbalanced presentation of an odorless mineral oil and a concentration of α-ionone in rapid succession using Snap & Sniff® wands. The participants reported which of the two seemed stronger and indicated their confidence on a 9-point scale. In Study 1, 24 participants completed a single 30-minute test session of 60 trials. In Study 2, 600 trials were obtained from each of nine participants over the course of ten 30-minute sessions. In both studies, notches were consistently found in the psychometric function near the 10-5 and 10-3.5 vol/vol concentrations. Participants' trial-by-trial confidence judgments corresponded with their detection performance, but their self-rated sense of smell did not. This research definitively demonstrates the presence of reliable reversals in the human α-ionone psychometric function and begs the question as to whether such reversals reflect the recruitment of receptive elements with differing response profiles.
Collapse
Affiliation(s)
- E Leslie Cameron
- Department of Psychological Science, Carthage College, 2001 Alford Park Drive, Kenosha, Wisconsin 53140, USA.
| | - Richard L Doty
- Smell & Taste Center, Department of Otorhinolaryngology: Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
4
|
Ramos-Cazorla P, Carazo-Barrios L, Reyes-Bueno JA, Sagües-Sesé E, de Rojas-Leal C, Barbancho MA, Garzón-Maldonado FJ, de la Cruz-Cosme C, García-Arnés JA, García-Casares N. Olfactory Dysfunction as a Biomarker for Early Diagnosis of Cognitive Impairment in Patients With Type 2 Diabetes: A Systematic Review. J Diabetes Res 2024; 2024:9933957. [PMID: 39735414 PMCID: PMC11681984 DOI: 10.1155/jdr/9933957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 09/17/2024] [Accepted: 10/29/2024] [Indexed: 12/31/2024] Open
Abstract
Background: Olfactory dysfunction and cognitive impairment (CI) have been associated with Type 2 diabetes (T2DM), but the mechanisms underlying this association are broadly unknown. This systematic review tends to investigate the relationship between the onset of olfactory dysfunction and CI in patients with T2DM and to explore the potential role of olfactory dysfunction as an early diagnosis biomarker of CI. Methods: We conducted a systematic review consulting PubMed and Scopus. The articles considered eligible included patients with T2DM and cognitive and olfactory test. Results: The search identified a total of 145 articles, of which 13 were finally selected. The majority of these studies discovered a correlation between olfactory dysfunction and CI in individuals with T2DM. Additionally, other biomarkers such as functional magnetic resonance imaging demonstrated changes in brain regions associated with the sense of smell in T2DM patients. Conclusions: Olfactory dysfunction could be a biomarker for early diagnosis of CI in T2DM. However, these alterations are highly heterogeneous and more studies that include neuroimaging need to be conducted.
Collapse
Affiliation(s)
- Paula Ramos-Cazorla
- Department of Medicine, Faculty of Medicine, University of Málaga, Málaga, Spain
| | | | - Jose A. Reyes-Bueno
- Department of Neurology, Regional University Hospital of Málaga, Málaga, Spain
| | - Elena Sagües-Sesé
- Department of Medicine, Faculty of Medicine, University of Málaga, Málaga, Spain
| | - Carmen de Rojas-Leal
- Department of Neurology, University Hospital Virgen de la Victoria of Málaga, Málaga, Spain
- Biomedical Research Institute of Málaga-Nanomedicine Platform (IBIMA-Plataforma BIONAND), Málaga, Spain
| | - Miguel A. Barbancho
- Biomedical Research Institute of Málaga-Nanomedicine Platform (IBIMA-Plataforma BIONAND), Málaga, Spain
- Clinical Neurology Unit, Centro de Investigaciones Médico-Sanitarias (CIMES), Málaga, Spain
- Department of Physiology, Faculty of Medicine, University of Malaga, Málaga, Spain
| | - Francisco J. Garzón-Maldonado
- Department of Neurology, University Hospital Virgen de la Victoria of Málaga, Málaga, Spain
- Biomedical Research Institute of Málaga-Nanomedicine Platform (IBIMA-Plataforma BIONAND), Málaga, Spain
| | - C. de la Cruz-Cosme
- Department of Medicine, Faculty of Medicine, University of Málaga, Málaga, Spain
- Department of Neurology, University Hospital Virgen de la Victoria of Málaga, Málaga, Spain
- Biomedical Research Institute of Málaga-Nanomedicine Platform (IBIMA-Plataforma BIONAND), Málaga, Spain
| | - Juan A. García-Arnés
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Malaga, Málaga, Spain
| | - Natalia García-Casares
- Department of Medicine, Faculty of Medicine, University of Málaga, Málaga, Spain
- Biomedical Research Institute of Málaga-Nanomedicine Platform (IBIMA-Plataforma BIONAND), Málaga, Spain
- Clinical Neurology Unit, Centro de Investigaciones Médico-Sanitarias (CIMES), Málaga, Spain
| |
Collapse
|
5
|
Xiao T, Roland A, Chen Y, Guffey S, Kash T, Kimbrough A. A role for circuitry of the cortical amygdala in excessive alcohol drinking, withdrawal, and alcohol use disorder. Alcohol 2024; 121:151-159. [PMID: 38447789 PMCID: PMC11371945 DOI: 10.1016/j.alcohol.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/30/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
Alcohol use disorder (AUD) poses a significant public health challenge. Individuals with AUD engage in chronic and excessive alcohol consumption, leading to cycles of intoxication, withdrawal, and craving behaviors. This review explores the involvement of the cortical amygdala (CoA), a cortical brain region that has primarily been examined in relation to olfactory behavior, in the expression of alcohol dependence and excessive alcohol drinking. While extensive research has identified the involvement of numerous brain regions in AUD, the CoA has emerged as a relatively understudied yet promising candidate for future study. The CoA plays a vital role in rewarding and aversive signaling and olfactory-related behaviors and has recently been shown to be involved in alcohol-dependent drinking in mice. The CoA projects directly to brain regions that are critically important for AUD, such as the central amygdala, bed nucleus of the stria terminalis, and basolateral amygdala. These projections may convey key modulatory signaling that drives excessive alcohol drinking in alcohol-dependent subjects. This review summarizes existing knowledge on the structure and connectivity of the CoA and its potential involvement in AUD. Understanding the contribution of this region to excessive drinking behavior could offer novel insights into the etiology of AUD and potential therapeutic targets.
Collapse
Affiliation(s)
- Tiange Xiao
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Alison Roland
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, United States; Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Yueyi Chen
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Skylar Guffey
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Thomas Kash
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, United States; Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Adam Kimbrough
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States; Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
6
|
Leon M, Troscianko ET, Woo CC. Inflammation and olfactory loss are associated with at least 139 medical conditions. Front Mol Neurosci 2024; 17:1455418. [PMID: 39464255 PMCID: PMC11502474 DOI: 10.3389/fnmol.2024.1455418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024] Open
Abstract
Olfactory loss accompanies at least 139 neurological, somatic, and congenital/hereditary conditions. This observation leads to the question of whether these associations are correlations or whether they are ever causal. Temporal precedence and prospective predictive power suggest that olfactory loss is causally implicated in many medical conditions. The causal relationship between olfaction with memory dysfunction deserves particular attention because this sensory system has the only direct projection to memory centers. Mechanisms that may underlie the connections between medical conditions and olfactory loss include inflammation as well as neuroanatomical and environmental factors, and all 139 of the medical conditions listed here are also associated with inflammation. Olfactory enrichment shows efficacy for both prevention and treatment, potentially mediated by decreasing inflammation.
Collapse
Affiliation(s)
- Michael Leon
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Emily T. Troscianko
- The Oxford Research Centre in the Humanities, University of Oxford, Oxford, United Kingdom
| | - Cynthia C. Woo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
7
|
Tambasco N, Mechelli A, Nigro P, Simoni S, Paolini Paoletti F, Eusebi P, Brahimi E, Maremmani C, Parnetti L. Hyposmia correlates with axial signs and gait disorder in Parkinson's disease: an Italian Olfactory Identification Test study. Neurol Sci 2024; 45:3791-3798. [PMID: 38499888 DOI: 10.1007/s10072-024-07462-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/11/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Olfactory dysfunction is a non-motor symptom and an important biomarker of Parkinson's disease (PD) because of its high prevalence (> 90%). Whether hyposmia correlates with motor symptoms is unclear. In the present study, we aim to investigate the relationship between olfactory impairment with both motor and non-motor features and disease variables (disease duration, stage, and severity). METHODS One-hundred fifty-four PD patients were evaluated. Odor identification ability was tested using Italian Olfactory Identification Test (IOIT). A comprehensive spectrum of motor and non-motor features was assessed. Cognitive function was investigated through MMSE. Patients were divided into 3 different clinical phenotypes using UPDRS-III: tremor-dominant type (TDT), akinetic-rigid type (ART), and mixed type (MXT). RESULTS Three of the 33 IOIT items were most frequently misidentified: basil (74.3%), coffee (66.9%), and mushroom (59.6%). Hyposmia was found in 93%. Hyposmic patients were older than controls (p = 0.01). Hoehn & Yahr (H&Y) score of 2 or greater was associated with higher probability of being hyposmic (OR = 5.2, p = 0.01). IOIT score did not significantly differ between TDT, ART, and MXT of analyzed PD patients. Performance to IOIT inversely correlated with age (p < 0.01), disease duration (p = 0.01), and H&Y score of 2 or higher (p < 0.01). Clinical features that associated with higher IOIT score were freezing of gait (FOG) (p < 0.001) and camptocormia (p < 0.05). CONCLUSIONS In our cohort, IOIT scores showed a positive correlation with axial motor signs, but not with non-motor symptoms. IOIT may be a useful tool not only for supporting PD diagnosis but also for providing prognostic information about motor function.
Collapse
Affiliation(s)
- Nicola Tambasco
- Movement Disorders Center, Neurology Department, Perugia General Hospital and University of Perugia, Perugia, Italy.
- Neurology Department, Perugia General Hospital and University of Perugia, Perugia, Italy.
| | - Alessandro Mechelli
- Neurology Department, Perugia General Hospital and University of Perugia, Perugia, Italy
- Institute of Neurology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Pasquale Nigro
- Movement Disorders Center, Neurology Department, Perugia General Hospital and University of Perugia, Perugia, Italy
| | - Simone Simoni
- Movement Disorders Center, Neurology Department, Perugia General Hospital and University of Perugia, Perugia, Italy
| | | | - Paolo Eusebi
- Neurology Department, Perugia General Hospital and University of Perugia, Perugia, Italy
| | - Elona Brahimi
- Neurology Department, Regina Montis Regalis Hospital, Cuneo, Italy
| | - Carlo Maremmani
- Neurology Unit, Ospedale Apuane, Azienda USL Toscana Nord Ovest, Massa, Italy
| | - Lucilla Parnetti
- Neurology Department, Perugia General Hospital and University of Perugia, Perugia, Italy
| |
Collapse
|
8
|
Kovalová M, Gottfriedová N, Mrázková E, Janout V, Janoutová J. Cognitive impairment, neurodegenerative disorders, and olfactory impairment: A literature review. OTOLARYNGOLOGIA POLSKA 2024; 78:1-17. [PMID: 38623856 DOI: 10.5604/01.3001.0053.6158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
<br><b>Introduction:</b> The early detection and diagnosis of dementia are of key importance in treatment, slowing disease progression, or suppressing symptoms. The possible role of changes in the sense of smell is considered with regard to potential markers for early detection of Alzheimer's disease (AD).</br> <br><b>Materials and methods:</b> A literature search was conducted using the electronic databases PubMed, Scopus, and Web of Science between May 30, 2022 and August 2, 2022. The term "dementia" was searched with keyword combinations related to olfaction.</br> <br><b>Results:</b> A total of 1,288 records were identified through the database search. Of these articles, 49 were ultimately included in the analysis. The results showed the potential role of changes in the sense of smell as potential biomarkers for early detection of AD. Multiple studies have shown that olfactory impairment may be observed in patients with AD, PD, MCI, or other types of dementia. Even though smell tests are able to detect olfactory loss caused by neurodegenerative diseases, they cannot reliably distinguish between certain diseases.</br> <br><b>Conclusions:</b> In individuals with cognitive impairment or neurodegenerative diseases, olfactory assessment has repeatedly been reported to be used for early diagnosis, but not for differential diagnosis.</br>.
Collapse
Affiliation(s)
- Martina Kovalová
- Center for Research and Science, Faculty of Health Sciences, Palacký University Olomouc, Czech Republic
| | - Nikol Gottfriedová
- Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, Czech Republic
| | - Eva Mrázková
- Center for Research and Science, Faculty of Health Sciences, Palacký University Olomouc, Czech Republic
| | - Vladimír Janout
- Center for Research and Science, Faculty of Health Sciences, Palacký University Olomouc, Czech Republic
| | - Jana Janoutová
- Center for Research and Science, Faculty of Health Sciences, Palacký University Olomouc, Czech Republic
| |
Collapse
|
9
|
Li KY, Pickett KA, Fu HW, Chen RS. Proprioceptive and olfactory deficits in individuals with Parkinson disease and mild cognitive impairment. Acta Neurol Belg 2024; 124:419-430. [PMID: 37962784 DOI: 10.1007/s13760-023-02420-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Individuals with neurodegenerative diseases such as Parkinson disease (PD) and Alzheimer's (AD) disease often present with perceptual impairments at an early clinical stage. Therefore, early identification and quantification of these impairments could facilitate diagnosis and early intervention. OBJECTIVES This study aimed to compare proprioceptive and olfactory sensitivities in individuals diagnosed with PD and mild cognitive impairment (MCI). METHODS Proprioception in the forearm and olfactory function were measured in neurotypical older adults, individuals with PD, and individuals with MCI. Position and passive motion senses were assessed using a passive motion apparatus. The traditional Chinese version of the University of Pennsylvania smell identification test (UPSIT-TC) and the smell threshold test (STT) were used to identify and discriminate smell, respectively. RESULTS Position sense threshold between the groups differed significantly (p < 0.001), with the PD (p < 0.001) and MCI (p = 0.004) groups showing significantly higher than the control group. The control group had significantly higher mean UPSIT-TC scores than the PD (p < 0.001) and MCI (p = 0.006) groups. The control group had a significantly lower mean STT threshold than the PD and MCI groups (p < 0.001 and p = 0.008, respectively). UPSIT-TC scores significantly correlated with disease progression in PD (r = - 0.50, p = 0.008) and MCI (r = 0.44, p = 0.04). CONCLUSIONS Proprioceptive and olfactory sensitivities were reduced in individuals with PD and MCI, and these deficits were related to disease severity. These findings support previous findings indicating that perceptual loss may be a potential biomarker for diagnosing and monitoring disease progression in individuals with neurodegenerative diseases.
Collapse
Affiliation(s)
- Kuan-Yi Li
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Tao-Yuan, Taiwan
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
- Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Kristen A Pickett
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA
- Occupational Therapy Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Hsuan-Wei Fu
- Department of Rehabilitation, Kuang Tien General Hospital, Taichung, Taiwan
| | - Rou-Shayn Chen
- Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| |
Collapse
|
10
|
Igeta Y, Hemmi I, Yuyama K, Ouchi Y. Odor identification score as an alternative method for early identification of amyloidogenesis in Alzheimer's disease. Sci Rep 2024; 14:4658. [PMID: 38409432 PMCID: PMC10897211 DOI: 10.1038/s41598-024-54322-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 02/11/2024] [Indexed: 02/28/2024] Open
Abstract
A simple screening test to identify the early stages of Alzheimer's disease (AD) is urgently needed. We investigated whether odor identification impairment can be used to differentiate between stages of the A/T/N classification (amyloid, tau, neurodegeneration) in individuals with amnestic mild cognitive impairment or AD and in healthy controls. We collected data from 132 Japanese participants visiting the Toranomon Hospital dementia outpatient clinic. The odor identification scores correlated significantly with major neuropsychological scores, regardless of apolipoprotein E4 status, and with effective cerebrospinal fluid (CSF) biomarkers [amyloid β 42 (Aβ42) and the Aβ42/40 and phosphorylated Tau (p-Tau)/Aβ42 ratios] but not with ineffective biomarkers [Aβ40 and the p-Tau/total Tau ratio]. A weak positive correlation was observed between the corrected odor identification score (adjusted for age, sex, ApoE4 and MMSE), CSF Aβ42, and the Aβ42/40 ratio. The odor identification score demonstrated excellent discriminative power for the amyloidogenesis stage , according to the A/T/N classification, but was unsuitable for differentiating between the p-Tau accumulation and the neurodegeneration stages. After twelve odor species were analyzed, a version of the score comprising only four odors-India ink, wood, curry, and sweaty socks-proved highly effective in identifying AD amyloidogenesis, showing promise for the screening of preclinical AD.
Collapse
Affiliation(s)
- Yukifusa Igeta
- Department of Dementia, Dementia Center, Federation of National Public Service Personnel Mutual Aid Associations, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan.
- Division of Dementia Research, Okinaka Memorial Institute for Medical Research, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan.
| | - Isao Hemmi
- Japanese Red Cross College of Nursing, 4-1-3 Hiroo, Shibuya-ku, Tokyo, 150-0012, Japan
| | - Kohei Yuyama
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo, 001-0021, Japan
| | - Yasuyoshi Ouchi
- Department of Dementia, Dementia Center, Federation of National Public Service Personnel Mutual Aid Associations, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan
- Division of Dementia Research, Okinaka Memorial Institute for Medical Research, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan
| |
Collapse
|
11
|
Hunter SR, Lin C, Nguyen H, Hannum ME, Bell K, Huang A, Joseph PV, Parma V, Dalton PH, Reed DR. Effects of genetics on odor perception: Can a quick smell test effectively screen everyone? Chem Senses 2024; 49:bjae025. [PMID: 38877790 PMCID: PMC11519045 DOI: 10.1093/chemse/bjae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Indexed: 06/16/2024] Open
Abstract
SCENTinel, a rapid smell test designed to screen for olfactory disorders, including anosmia (no ability to smell an odor) and parosmia (distorted sense of smell), measures 4 components of olfactory function: detection, intensity, identification, and pleasantness. Each test card contains one of 9 odorant mixtures. Some people born with genetic insensitivities to specific odorants (i.e. specific anosmia) may fail the test if they cannot smell an odorant but otherwise have a normal sense of smell. However, using odorant mixtures has largely been found to prevent this from happening. To better understand whether genetic differences affect SCENTinel test results, we asked genetically informative adult participants (twins or triplets, N = 630; singletons, N = 370) to complete the SCENTinel test. A subset of twins (n = 304) also provided a saliva sample for genotyping. We examined data for differences between the 9 possible SCENTinel odors; effects of age, sex, and race on SCENTinel performance, test-retest variability; and heritability using both structured equation modeling and SNP-based statistical methods. None of these strategies provided evidence for specific anosmia for any of the odors, but ratings of pleasantness were, in part, genetically determined (h2 = 0.40) and were nominally associated with alleles of odorant receptors (e.g. OR2T33 and OR1G1; P < 0.001). These results provide evidence that using odorant mixtures protected against effects of specific anosmia for ratings of intensity but that ratings of pleasantness showed effects of inheritance, possibly informed by olfactory receptor genotypes.
Collapse
Affiliation(s)
| | - Cailu Lin
- Monell Chemical Senses Center, Philadelphia, PA, United States
| | - Ha Nguyen
- Monell Chemical Senses Center, Philadelphia, PA, United States
| | | | - Katherine Bell
- Monell Chemical Senses Center, Philadelphia, PA, United States
| | - Amy Huang
- Monell Chemical Senses Center, Philadelphia, PA, United States
| | - Paule V Joseph
- National Institute of Alcohol Abuse and Alcoholism, Section of Sensory Science and Metabolism & National Institute of Nursing Research, Bethesda, MD, United States
| | - Valentina Parma
- Monell Chemical Senses Center, Philadelphia, PA, United States
| | - Pamela H Dalton
- Monell Chemical Senses Center, Philadelphia, PA, United States
| | - Danielle R Reed
- Monell Chemical Senses Center, Philadelphia, PA, United States
| |
Collapse
|
12
|
Dias BG. Legacies of salient environmental experiences-insights from chemosensation. Chem Senses 2024; 49:bjae002. [PMID: 38219073 PMCID: PMC10825851 DOI: 10.1093/chemse/bjae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Indexed: 01/15/2024] Open
Abstract
Evidence for parental environments profoundly influencing the physiology, biology, and neurobiology of future generations has been accumulating in the literature. Recent efforts to understand this phenomenon and its underlying mechanisms have sought to use species like rodents and insects to model multi-generational legacies of parental experiences like stress and nutritional exposures. From these studies, we have come to appreciate that parental exposure to salient environmental experiences impacts the cadence of brain development, hormonal responses to stress, and the expression of genes that govern cellular responses to stress in offspring. Recent studies using chemosensory exposure have emerged as a powerful tool to shed new light on how future generations come to be influenced by environments to which parents are exposed. With a specific focus on studies that have leveraged such use of salient chemosensory experiences, this review synthesizes our current understanding of the concept, causes, and consequences of the inheritance of chemosensory legacies by future generations and how this field of inquiry informs the larger picture of how parental experiences can influence offspring biology.
Collapse
Affiliation(s)
- Brian G Dias
- Developmental Neuroscience and Neurogenetics Program, The Saban Research Institute, Los Angeles, CA, United States
- Division of Endocrinology, Diabetes and Metabolism, Children’s Hospital Los Angeles, Los Angeles, CA, United States
- Department of Pediatrics, Keck School of Medicine of USC, Los Angeles, CA, United States
| |
Collapse
|
13
|
Bothwell AR, Resnick SM, Ferrucci L, Tian Q. Associations of olfactory function with brain structural and functional outcomes. A systematic review. Ageing Res Rev 2023; 92:102095. [PMID: 37913831 PMCID: PMC10872938 DOI: 10.1016/j.arr.2023.102095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/03/2023]
Abstract
In aging, olfactory deficits have been associated with lower cognition and motor function. Olfactory dysfunction is also one of the earliest features of neurodegenerative disease. A comprehensive review of the neural correlates of olfactive function may reveal mechanisms underlying the associations among olfaction, cognition, motor function, and neurodegenerative diseases. Here, we summarize existing knowledge on the relationship between brain structural and functional measures and olfaction in older adults without and with cognitive impairment, including Alzheimer's disease. We identified 33 eligible studies (30 MRI/DTI,3 fMRI); 31 were cross-sectional, most assessed odor identification, and few examined multiple brain areas. Lower olfactory function was associated with smaller volumes in the temporal lobe (hippocampus,parahippocampal gyrus,fusiform gyrus), olfactory-related regions (piriform cortex,amygdala,entorhinal cortex), pre- and postcentral gyri, and globus pallidus. During aging, olfactory impairment may be associated with pathology in brain areas important for motor function and cognition, especially memory. Future longitudinal studies that include neuroimaging across different brain areas are warranted to determine the neurobiological changes underlying olfactory changes in the aging brain and the progression of neurodegeneration.
Collapse
Affiliation(s)
- Adam R Bothwell
- Longitudinal Studies Section, National Institute on Aging, 251 Bayview Blvd., Suite 100, Baltimore, MD 21224, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, 251 Bayview Blvd., Suite 100, Baltimore, MD 21224, USA
| | - Luigi Ferrucci
- Longitudinal Studies Section, National Institute on Aging, 251 Bayview Blvd., Suite 100, Baltimore, MD 21224, USA
| | - Qu Tian
- Longitudinal Studies Section, National Institute on Aging, 251 Bayview Blvd., Suite 100, Baltimore, MD 21224, USA.
| |
Collapse
|
14
|
Hujamberdieva LM, Chimed-Ochir O, Yumiya Y, Tanaka J, Ohge H, Kuwabara M, Kishita E, Kubo T. Relationship between clinical symptom profiles and COVID-19 infection status during Delta-dominant period versus Omicron-dominant period-analysis of real-world data collected in Hiroshima Prefecture, Japan. Int J Infect Dis 2023; 136:92-99. [PMID: 37717650 DOI: 10.1016/j.ijid.2023.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023] Open
Abstract
OBJECTIVES The present study investigates the diagnosis and prediction of COVID-19 based on clinical symptoms, and corresponding difference between the Delta- and Omicron-dominant periods, using data collected at polymerase chain reaction (PCR) centers in Hiroshima Prefecture, Japan. METHODS Data was collected using a J-SPEED-style COVID-19 standard data collection form. The analysis was done in two directions: calculating the likelihood ratio that clinical symptoms will manifest in "infected" versus "non-infected" individuals and calculating the diagnostic odds ratio (OR) of infection for those who have symptoms compared to those without symptoms. RESULTS COVID-19 was more strongly associated with smell and taste disorders during the Delta-dominant period, and muscle pain during the Omicron-dominant period. An age-specific analysis of likelihood and diagnostic ORs found cold-like symptoms had the lowest ability to diagnose COVID-19, and the lowest predictability of COVID-19 with children during both periods. The likelihood and diagnostic ORs of other symptoms for COVID-19 were highest in adults and lowest in those over 65. CONCLUSION Symptoms are an important indicator of COVID-19, but the association between specific symptoms and COVID-19 is dependent on the dominant variant of the virus.
Collapse
Affiliation(s)
- Lola Mamazairovna Hujamberdieva
- Department of Public Health and Health Policy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Odgerel Chimed-Ochir
- Department of Public Health and Health Policy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Yui Yumiya
- Department of Public Health and Health Policy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Junko Tanaka
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroki Ohge
- Department of Infectious Diseases, Hiroshima University Hospital, Hiroshima, Japan
| | - Masao Kuwabara
- Hiroshima Prefectural Center for Disease Control and Prevention, Hiroshima, Japan
| | - Eisaku Kishita
- Medical Economics Division, Health Insurance Bureau, Ministry of Health, Labour and Welfare, Japan
| | - Tatsuhiko Kubo
- Department of Public Health and Health Policy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
15
|
Piura Y, Karni A, Kolb H, Vigiser I, Regev K. Olfactory function in Susac syndrome. Clin Neurol Neurosurg 2023; 233:107909. [PMID: 37524045 DOI: 10.1016/j.clineuro.2023.107909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 08/02/2023]
Abstract
OBJECTIVES Susac syndrome is a rare autoimmune endotheliopathy involving the brain, retina, and inner ear. Olfactory dysfunction is a common early manifestation of several central nervous system diseases, including neurodegenerative diseases and autoimmune-mediated diseases such as Multiple Sclerosis. While the literature is abundant about the Susac syndrome classic triad of encephalopathy, branch retinal artery occlusion, and low-frequency sensorineural hearing loss, little is known about the extent of olfactory sense involvement. METHODS Using the Sniffin' Sticks test, this study evaluated olfactory function (identification and threshold) in ten recovering Susac syndrome patients under our clinic surveillance with a median of 3.1 (SD=1.53) years post-disease onset. RESULTS olfactory assessment by threshold and odor identification were within the normal range. No differences between recovering Susac syndrome patients to standard norms of odor identification and threshold were found. CONCLUSIONS Our findings do not support olfactory dysfunction in Susac syndrome and thereby, do not support olfactory assessment as a reliable biomarker for this condition.
Collapse
Affiliation(s)
- Yoav Piura
- Department of Neurology, Assuta Medical Center, Ashdod, Israel; Neuroimmunology Clinic, Assuta Medical Center, Ashdod, Israel.
| | - Arnon Karni
- Department of Neurology, Sourasky Tel Aviv Medical Center, Tel Aviv, Israel; Neuroimmunology Unit, Neurological Institute Aviv Medical Center, Tel Aviv, Israel
| | - Hadar Kolb
- Department of Neurology, Sourasky Tel Aviv Medical Center, Tel Aviv, Israel; Neuroimmunology Unit, Neurological Institute Aviv Medical Center, Tel Aviv, Israel
| | - Ifat Vigiser
- Department of Neurology, Sourasky Tel Aviv Medical Center, Tel Aviv, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Neuroimmunology Unit, Neurological Institute Aviv Medical Center, Tel Aviv, Israel
| | - Keren Regev
- Department of Neurology, Sourasky Tel Aviv Medical Center, Tel Aviv, Israel; Neuroimmunology Unit, Neurological Institute Aviv Medical Center, Tel Aviv, Israel
| |
Collapse
|
16
|
Shrestha S, Zhu X, Sullivan KJ, Blackshear C, Deal JA, Sharrett AR, Kamath V, Schneider ALC, Jack CR, Huang J, Palta P, Reid RI, Knopman DS, Gottesman RF, Chen H, Windham BG, Griswold ME, Mosley TH. Association of Olfaction and Microstructural Integrity of Brain Tissue in Community-Dwelling Adults: Atherosclerosis Risk in Communities Neurocognitive Study. Neurology 2023; 101:e1328-e1340. [PMID: 37541841 PMCID: PMC10558165 DOI: 10.1212/wnl.0000000000207636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/30/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Research on olfaction and brain neuropathology may help understand brain regions associated with normal olfaction and dementia pathophysiology. To identify early regional brain structures affected in poor olfaction, we examined cross-sectional associations of microstructural integrity of the brain with olfaction in the Atherosclerosis Risk in Communities Neurocognitive Study. METHODS Participants were selected from a prospective cohort study of community-dwelling adults; selection criteria included the following: evidence of cognitive impairment, participation in a previous MRI study, and a random sample of cognitively normal participants. Microstructural integrity was measured by 2 diffusion tensor imaging (DTI) measures, fractional anisotropy (FA) and mean diffusivity (MD), and olfaction by a 12-item odor identification test at the same visit. Higher FA and MD values indicate better and worse microstructural integrity, respectively, and higher odor identification scores indicate better olfaction. We used brain region-specific linear regression models to examine associations between DTI measures and olfaction, adjusting for potential confounders. RESULTS Among 1,418 participants (mean age 76 ± 5 years, 41% male, 21% Black race, 59% with normal cognition), the mean olfaction score was 9 ± 2.3. Relevant to olfaction, higher MD in the medial temporal lobe (MTL) regions, namely the hippocampus (β -0.79 [95% CI -0.94 to -0.65] units lower olfaction score per 1 SD higher MD), amygdala, entorhinal area, and some white matter (WM) tracts connecting to these regions, was associated with olfaction. We also observed associations with MD and WM FA in multiple atlas regions that were not previously implicated in olfaction. The associations between MD and olfaction were particularly stronger in the MTL regions among individuals with mild cognitive impairment (MCI) compared with those with normal cognition (e.g., βhippocampus -0.75 [95% CI -1.02 to -0.49] and -0.44 [95% CI -0.63 to -0.26] for MCI and normal cognition, respectively, p interaction = 0.004). DISCUSSION Neuronal microstructural integrity in multiple brain regions, particularly the MTL (the regions known to be affected in early Alzheimer disease), is associated with odor identification ability. Differential associations in the MTL regions among cognitively normal individuals compared with those with MCI may reflect the earlier vs later effects of the dementia pathogenesis. It is likely that some of the associated regions may not have any functional relevance to olfaction.
Collapse
Affiliation(s)
- Srishti Shrestha
- From the The Memory Impairment and Neurodegenerative Dementia (MIND) Center (S.S., X.Z., K.J.S., C.B., J.H., B.G.W., M.E.G., T.H.M.), University of Mississippi Medical Center, Jackson; Department of Epidemiology (J.A.D., A.R.S.), Johns Hopkins University Bloomberg School of Public Health; Department of Psychiatry and Behavioral Sciences (V.K.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology (A.L.C.S.), and Department of Biostatistics, Epidemiology, and Informatics (A.L.C.S.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Department of Radiology (C.R.J., R.I.R.), Mayo Clinic, Rochester, MN; Department of Neurology (J.H.), University of Mississippi Medical Center, Jackson; Department of Neurology (P.P.), University of North Carolina at Chapel Hill; Department of Neurology (D.S.K.), Mayo Clinic, Rochester, MN; Stroke Branch (R.F.G.), National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, MD; and Department of Epidemiology and Biostatistics (H.C.), Michigan State University, East Lansing.
| | - Xiaoqian Zhu
- From the The Memory Impairment and Neurodegenerative Dementia (MIND) Center (S.S., X.Z., K.J.S., C.B., J.H., B.G.W., M.E.G., T.H.M.), University of Mississippi Medical Center, Jackson; Department of Epidemiology (J.A.D., A.R.S.), Johns Hopkins University Bloomberg School of Public Health; Department of Psychiatry and Behavioral Sciences (V.K.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology (A.L.C.S.), and Department of Biostatistics, Epidemiology, and Informatics (A.L.C.S.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Department of Radiology (C.R.J., R.I.R.), Mayo Clinic, Rochester, MN; Department of Neurology (J.H.), University of Mississippi Medical Center, Jackson; Department of Neurology (P.P.), University of North Carolina at Chapel Hill; Department of Neurology (D.S.K.), Mayo Clinic, Rochester, MN; Stroke Branch (R.F.G.), National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, MD; and Department of Epidemiology and Biostatistics (H.C.), Michigan State University, East Lansing
| | - Kevin J Sullivan
- From the The Memory Impairment and Neurodegenerative Dementia (MIND) Center (S.S., X.Z., K.J.S., C.B., J.H., B.G.W., M.E.G., T.H.M.), University of Mississippi Medical Center, Jackson; Department of Epidemiology (J.A.D., A.R.S.), Johns Hopkins University Bloomberg School of Public Health; Department of Psychiatry and Behavioral Sciences (V.K.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology (A.L.C.S.), and Department of Biostatistics, Epidemiology, and Informatics (A.L.C.S.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Department of Radiology (C.R.J., R.I.R.), Mayo Clinic, Rochester, MN; Department of Neurology (J.H.), University of Mississippi Medical Center, Jackson; Department of Neurology (P.P.), University of North Carolina at Chapel Hill; Department of Neurology (D.S.K.), Mayo Clinic, Rochester, MN; Stroke Branch (R.F.G.), National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, MD; and Department of Epidemiology and Biostatistics (H.C.), Michigan State University, East Lansing
| | - Chad Blackshear
- From the The Memory Impairment and Neurodegenerative Dementia (MIND) Center (S.S., X.Z., K.J.S., C.B., J.H., B.G.W., M.E.G., T.H.M.), University of Mississippi Medical Center, Jackson; Department of Epidemiology (J.A.D., A.R.S.), Johns Hopkins University Bloomberg School of Public Health; Department of Psychiatry and Behavioral Sciences (V.K.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology (A.L.C.S.), and Department of Biostatistics, Epidemiology, and Informatics (A.L.C.S.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Department of Radiology (C.R.J., R.I.R.), Mayo Clinic, Rochester, MN; Department of Neurology (J.H.), University of Mississippi Medical Center, Jackson; Department of Neurology (P.P.), University of North Carolina at Chapel Hill; Department of Neurology (D.S.K.), Mayo Clinic, Rochester, MN; Stroke Branch (R.F.G.), National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, MD; and Department of Epidemiology and Biostatistics (H.C.), Michigan State University, East Lansing
| | - Jennifer A Deal
- From the The Memory Impairment and Neurodegenerative Dementia (MIND) Center (S.S., X.Z., K.J.S., C.B., J.H., B.G.W., M.E.G., T.H.M.), University of Mississippi Medical Center, Jackson; Department of Epidemiology (J.A.D., A.R.S.), Johns Hopkins University Bloomberg School of Public Health; Department of Psychiatry and Behavioral Sciences (V.K.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology (A.L.C.S.), and Department of Biostatistics, Epidemiology, and Informatics (A.L.C.S.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Department of Radiology (C.R.J., R.I.R.), Mayo Clinic, Rochester, MN; Department of Neurology (J.H.), University of Mississippi Medical Center, Jackson; Department of Neurology (P.P.), University of North Carolina at Chapel Hill; Department of Neurology (D.S.K.), Mayo Clinic, Rochester, MN; Stroke Branch (R.F.G.), National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, MD; and Department of Epidemiology and Biostatistics (H.C.), Michigan State University, East Lansing
| | - A Richey Sharrett
- From the The Memory Impairment and Neurodegenerative Dementia (MIND) Center (S.S., X.Z., K.J.S., C.B., J.H., B.G.W., M.E.G., T.H.M.), University of Mississippi Medical Center, Jackson; Department of Epidemiology (J.A.D., A.R.S.), Johns Hopkins University Bloomberg School of Public Health; Department of Psychiatry and Behavioral Sciences (V.K.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology (A.L.C.S.), and Department of Biostatistics, Epidemiology, and Informatics (A.L.C.S.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Department of Radiology (C.R.J., R.I.R.), Mayo Clinic, Rochester, MN; Department of Neurology (J.H.), University of Mississippi Medical Center, Jackson; Department of Neurology (P.P.), University of North Carolina at Chapel Hill; Department of Neurology (D.S.K.), Mayo Clinic, Rochester, MN; Stroke Branch (R.F.G.), National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, MD; and Department of Epidemiology and Biostatistics (H.C.), Michigan State University, East Lansing
| | - Vidyulata Kamath
- From the The Memory Impairment and Neurodegenerative Dementia (MIND) Center (S.S., X.Z., K.J.S., C.B., J.H., B.G.W., M.E.G., T.H.M.), University of Mississippi Medical Center, Jackson; Department of Epidemiology (J.A.D., A.R.S.), Johns Hopkins University Bloomberg School of Public Health; Department of Psychiatry and Behavioral Sciences (V.K.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology (A.L.C.S.), and Department of Biostatistics, Epidemiology, and Informatics (A.L.C.S.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Department of Radiology (C.R.J., R.I.R.), Mayo Clinic, Rochester, MN; Department of Neurology (J.H.), University of Mississippi Medical Center, Jackson; Department of Neurology (P.P.), University of North Carolina at Chapel Hill; Department of Neurology (D.S.K.), Mayo Clinic, Rochester, MN; Stroke Branch (R.F.G.), National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, MD; and Department of Epidemiology and Biostatistics (H.C.), Michigan State University, East Lansing
| | - Andrea L C Schneider
- From the The Memory Impairment and Neurodegenerative Dementia (MIND) Center (S.S., X.Z., K.J.S., C.B., J.H., B.G.W., M.E.G., T.H.M.), University of Mississippi Medical Center, Jackson; Department of Epidemiology (J.A.D., A.R.S.), Johns Hopkins University Bloomberg School of Public Health; Department of Psychiatry and Behavioral Sciences (V.K.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology (A.L.C.S.), and Department of Biostatistics, Epidemiology, and Informatics (A.L.C.S.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Department of Radiology (C.R.J., R.I.R.), Mayo Clinic, Rochester, MN; Department of Neurology (J.H.), University of Mississippi Medical Center, Jackson; Department of Neurology (P.P.), University of North Carolina at Chapel Hill; Department of Neurology (D.S.K.), Mayo Clinic, Rochester, MN; Stroke Branch (R.F.G.), National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, MD; and Department of Epidemiology and Biostatistics (H.C.), Michigan State University, East Lansing
| | - Clifford R Jack
- From the The Memory Impairment and Neurodegenerative Dementia (MIND) Center (S.S., X.Z., K.J.S., C.B., J.H., B.G.W., M.E.G., T.H.M.), University of Mississippi Medical Center, Jackson; Department of Epidemiology (J.A.D., A.R.S.), Johns Hopkins University Bloomberg School of Public Health; Department of Psychiatry and Behavioral Sciences (V.K.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology (A.L.C.S.), and Department of Biostatistics, Epidemiology, and Informatics (A.L.C.S.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Department of Radiology (C.R.J., R.I.R.), Mayo Clinic, Rochester, MN; Department of Neurology (J.H.), University of Mississippi Medical Center, Jackson; Department of Neurology (P.P.), University of North Carolina at Chapel Hill; Department of Neurology (D.S.K.), Mayo Clinic, Rochester, MN; Stroke Branch (R.F.G.), National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, MD; and Department of Epidemiology and Biostatistics (H.C.), Michigan State University, East Lansing
| | - Juebin Huang
- From the The Memory Impairment and Neurodegenerative Dementia (MIND) Center (S.S., X.Z., K.J.S., C.B., J.H., B.G.W., M.E.G., T.H.M.), University of Mississippi Medical Center, Jackson; Department of Epidemiology (J.A.D., A.R.S.), Johns Hopkins University Bloomberg School of Public Health; Department of Psychiatry and Behavioral Sciences (V.K.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology (A.L.C.S.), and Department of Biostatistics, Epidemiology, and Informatics (A.L.C.S.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Department of Radiology (C.R.J., R.I.R.), Mayo Clinic, Rochester, MN; Department of Neurology (J.H.), University of Mississippi Medical Center, Jackson; Department of Neurology (P.P.), University of North Carolina at Chapel Hill; Department of Neurology (D.S.K.), Mayo Clinic, Rochester, MN; Stroke Branch (R.F.G.), National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, MD; and Department of Epidemiology and Biostatistics (H.C.), Michigan State University, East Lansing
| | - Priya Palta
- From the The Memory Impairment and Neurodegenerative Dementia (MIND) Center (S.S., X.Z., K.J.S., C.B., J.H., B.G.W., M.E.G., T.H.M.), University of Mississippi Medical Center, Jackson; Department of Epidemiology (J.A.D., A.R.S.), Johns Hopkins University Bloomberg School of Public Health; Department of Psychiatry and Behavioral Sciences (V.K.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology (A.L.C.S.), and Department of Biostatistics, Epidemiology, and Informatics (A.L.C.S.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Department of Radiology (C.R.J., R.I.R.), Mayo Clinic, Rochester, MN; Department of Neurology (J.H.), University of Mississippi Medical Center, Jackson; Department of Neurology (P.P.), University of North Carolina at Chapel Hill; Department of Neurology (D.S.K.), Mayo Clinic, Rochester, MN; Stroke Branch (R.F.G.), National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, MD; and Department of Epidemiology and Biostatistics (H.C.), Michigan State University, East Lansing
| | - Robert I Reid
- From the The Memory Impairment and Neurodegenerative Dementia (MIND) Center (S.S., X.Z., K.J.S., C.B., J.H., B.G.W., M.E.G., T.H.M.), University of Mississippi Medical Center, Jackson; Department of Epidemiology (J.A.D., A.R.S.), Johns Hopkins University Bloomberg School of Public Health; Department of Psychiatry and Behavioral Sciences (V.K.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology (A.L.C.S.), and Department of Biostatistics, Epidemiology, and Informatics (A.L.C.S.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Department of Radiology (C.R.J., R.I.R.), Mayo Clinic, Rochester, MN; Department of Neurology (J.H.), University of Mississippi Medical Center, Jackson; Department of Neurology (P.P.), University of North Carolina at Chapel Hill; Department of Neurology (D.S.K.), Mayo Clinic, Rochester, MN; Stroke Branch (R.F.G.), National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, MD; and Department of Epidemiology and Biostatistics (H.C.), Michigan State University, East Lansing
| | - David S Knopman
- From the The Memory Impairment and Neurodegenerative Dementia (MIND) Center (S.S., X.Z., K.J.S., C.B., J.H., B.G.W., M.E.G., T.H.M.), University of Mississippi Medical Center, Jackson; Department of Epidemiology (J.A.D., A.R.S.), Johns Hopkins University Bloomberg School of Public Health; Department of Psychiatry and Behavioral Sciences (V.K.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology (A.L.C.S.), and Department of Biostatistics, Epidemiology, and Informatics (A.L.C.S.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Department of Radiology (C.R.J., R.I.R.), Mayo Clinic, Rochester, MN; Department of Neurology (J.H.), University of Mississippi Medical Center, Jackson; Department of Neurology (P.P.), University of North Carolina at Chapel Hill; Department of Neurology (D.S.K.), Mayo Clinic, Rochester, MN; Stroke Branch (R.F.G.), National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, MD; and Department of Epidemiology and Biostatistics (H.C.), Michigan State University, East Lansing
| | - Rebecca F Gottesman
- From the The Memory Impairment and Neurodegenerative Dementia (MIND) Center (S.S., X.Z., K.J.S., C.B., J.H., B.G.W., M.E.G., T.H.M.), University of Mississippi Medical Center, Jackson; Department of Epidemiology (J.A.D., A.R.S.), Johns Hopkins University Bloomberg School of Public Health; Department of Psychiatry and Behavioral Sciences (V.K.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology (A.L.C.S.), and Department of Biostatistics, Epidemiology, and Informatics (A.L.C.S.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Department of Radiology (C.R.J., R.I.R.), Mayo Clinic, Rochester, MN; Department of Neurology (J.H.), University of Mississippi Medical Center, Jackson; Department of Neurology (P.P.), University of North Carolina at Chapel Hill; Department of Neurology (D.S.K.), Mayo Clinic, Rochester, MN; Stroke Branch (R.F.G.), National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, MD; and Department of Epidemiology and Biostatistics (H.C.), Michigan State University, East Lansing
| | - Honglei Chen
- From the The Memory Impairment and Neurodegenerative Dementia (MIND) Center (S.S., X.Z., K.J.S., C.B., J.H., B.G.W., M.E.G., T.H.M.), University of Mississippi Medical Center, Jackson; Department of Epidemiology (J.A.D., A.R.S.), Johns Hopkins University Bloomberg School of Public Health; Department of Psychiatry and Behavioral Sciences (V.K.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology (A.L.C.S.), and Department of Biostatistics, Epidemiology, and Informatics (A.L.C.S.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Department of Radiology (C.R.J., R.I.R.), Mayo Clinic, Rochester, MN; Department of Neurology (J.H.), University of Mississippi Medical Center, Jackson; Department of Neurology (P.P.), University of North Carolina at Chapel Hill; Department of Neurology (D.S.K.), Mayo Clinic, Rochester, MN; Stroke Branch (R.F.G.), National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, MD; and Department of Epidemiology and Biostatistics (H.C.), Michigan State University, East Lansing
| | - B Gwen Windham
- From the The Memory Impairment and Neurodegenerative Dementia (MIND) Center (S.S., X.Z., K.J.S., C.B., J.H., B.G.W., M.E.G., T.H.M.), University of Mississippi Medical Center, Jackson; Department of Epidemiology (J.A.D., A.R.S.), Johns Hopkins University Bloomberg School of Public Health; Department of Psychiatry and Behavioral Sciences (V.K.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology (A.L.C.S.), and Department of Biostatistics, Epidemiology, and Informatics (A.L.C.S.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Department of Radiology (C.R.J., R.I.R.), Mayo Clinic, Rochester, MN; Department of Neurology (J.H.), University of Mississippi Medical Center, Jackson; Department of Neurology (P.P.), University of North Carolina at Chapel Hill; Department of Neurology (D.S.K.), Mayo Clinic, Rochester, MN; Stroke Branch (R.F.G.), National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, MD; and Department of Epidemiology and Biostatistics (H.C.), Michigan State University, East Lansing
| | - Michael E Griswold
- From the The Memory Impairment and Neurodegenerative Dementia (MIND) Center (S.S., X.Z., K.J.S., C.B., J.H., B.G.W., M.E.G., T.H.M.), University of Mississippi Medical Center, Jackson; Department of Epidemiology (J.A.D., A.R.S.), Johns Hopkins University Bloomberg School of Public Health; Department of Psychiatry and Behavioral Sciences (V.K.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology (A.L.C.S.), and Department of Biostatistics, Epidemiology, and Informatics (A.L.C.S.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Department of Radiology (C.R.J., R.I.R.), Mayo Clinic, Rochester, MN; Department of Neurology (J.H.), University of Mississippi Medical Center, Jackson; Department of Neurology (P.P.), University of North Carolina at Chapel Hill; Department of Neurology (D.S.K.), Mayo Clinic, Rochester, MN; Stroke Branch (R.F.G.), National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, MD; and Department of Epidemiology and Biostatistics (H.C.), Michigan State University, East Lansing
| | - Thomas H Mosley
- From the The Memory Impairment and Neurodegenerative Dementia (MIND) Center (S.S., X.Z., K.J.S., C.B., J.H., B.G.W., M.E.G., T.H.M.), University of Mississippi Medical Center, Jackson; Department of Epidemiology (J.A.D., A.R.S.), Johns Hopkins University Bloomberg School of Public Health; Department of Psychiatry and Behavioral Sciences (V.K.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology (A.L.C.S.), and Department of Biostatistics, Epidemiology, and Informatics (A.L.C.S.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Department of Radiology (C.R.J., R.I.R.), Mayo Clinic, Rochester, MN; Department of Neurology (J.H.), University of Mississippi Medical Center, Jackson; Department of Neurology (P.P.), University of North Carolina at Chapel Hill; Department of Neurology (D.S.K.), Mayo Clinic, Rochester, MN; Stroke Branch (R.F.G.), National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, MD; and Department of Epidemiology and Biostatistics (H.C.), Michigan State University, East Lansing
| |
Collapse
|
17
|
Liu S, Jiang Z, Zhao J, Li Z, Li R, Qiu Y, Peng H. Disparity of smell tests in Alzheimer's disease and other neurodegenerative disorders: a systematic review and meta-analysis. Front Aging Neurosci 2023; 15:1249512. [PMID: 37744388 PMCID: PMC10512741 DOI: 10.3389/fnagi.2023.1249512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Background There are discrepancies of olfactory impairment between Alzheimer's disease (AD) and other neurodegenerative disorders. Olfactory deficits may be a potential marker for early and differential diagnosis of AD. We aimed to assess olfactory functions in patients with AD and other neurodegenerative disorders, to further evaluate the smell tests using subgroup analysis, and to explore moderating factors affecting olfactory performance. Methods Cross-sectional studies relating to olfactory assessment for both AD and other neurodegenerative disorders published before 27 July 2022 in English, were searched on PubMed, Embase and Cochrane. After literature screening and quality assessment, meta-analyses were conducted using stata14.0 software. Results Forty-two articles involving 12 smell tests that evaluated 2,569 AD patients were included. It was revealed that smell tests could distinguish AD from mild cognitive impairment (MCI), Lewy body disease (LBD), depression, and vascular dementia (VaD), but not from diseases such as frontotemporal dementia (FTD). Our finding indicated that in discriminating AD from MCI, the University of Pennsylvania Smell Identification Test (UPSIT) was most frequently used (95%CI: -1.12 to -0.89), while the Brief Smell Identification Test (B-SIT), was the most widely used method in AD vs. LBD group. Further subgroup analyses indicated that the methods of smell test used contributed to the heterogeneity in olfactory threshold and discrimination scores in group AD vs. MCI. While the moderating variables including age, MMSE scores, education years in AD vs. LBD, were account for heterogeneity across studies. Conclusion Our finding suggests smell tests have potential value in early differential diagnosis of AD. UPSIT and its simplified variant, B-SIT, are widely used methods in the analyses. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/display_record.php? RecordID = 357970 (PROSPERO, registration number CRD42022357970).
Collapse
Affiliation(s)
- Silin Liu
- Department of Otolaryngology Head and Neck Surgery, General Hospital of Southern Theater Command, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zhihui Jiang
- Department of Pharmacy, General Hospital of Southern Theater Command, Guangzhou, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jing Zhao
- Department of Otolaryngology Head and Neck Surgery, General Hospital of Southern Theater Command, Guangzhou, China
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhensheng Li
- Department of Neurology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Ruixin Li
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yunyi Qiu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Hua Peng
- Department of Otolaryngology Head and Neck Surgery, General Hospital of Southern Theater Command, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
18
|
Mi Y, Ma X, Du S, Du C, Li X, Tan H, Zhang J, Zhang Q, Shi W, Zhang G, Tian Y. Olfactory function changes and the predictive performance of the Chinese Smell Identification Test in patients with mild cognitive impairment and Alzheimer's disease. Front Aging Neurosci 2023; 15:1068708. [PMID: 36861124 PMCID: PMC9969891 DOI: 10.3389/fnagi.2023.1068708] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/16/2023] [Indexed: 02/16/2023] Open
Abstract
Objectives Olfactory disorder is one of the sensory features that reflects a decline in cognitive function. However, olfactory changes and the discernibility of smell testing in the aging population have yet to be fully elucidated. Therefore, this study aimed to examine the effectiveness of the Chinese Smell Identification Test (CSIT) in distinguishing individuals with cognitive decline from those with normal aging and to determine whether the patients with MCI and AD show changes in their olfactory identification abilities. Methods This cross-sectional study included eligible participants aged over 50 years between October 2019 and December 2021. The participants were divided into three groups: individuals with mild cognitive impairment (MCI), individuals with Alzheimer's disease (AD), and cognitively normal controls (NCs). All participants were assessed using neuropsychiatric scales, the Activity of Daily Living scale, and the 16-odor cognitive state test (CSIT) test. The test scores and the severity of olfactory impairment were also recorded for each participant. Results In total, 366 eligible participants were recruited, including 188 participants with MCI, 42 patients with AD, and 136 NCs. Patients with MCI achieved a mean CSIT score of 13.06 ± 2.05, while patients with AD achieved a mean score of 11.38 ± 3.25. These scores were significantly lower than those of the NC group (14.6 ± 1.57; P < 0.001). An analysis showed that 19.9% of NCs exhibited mild olfactory impairment, while 52.7% of patients with MCI and 69% of patients with AD exhibited mild to severe olfactory impairment. The CSIT score was positively correlated with the MoCA and MMSE scores. The CIST score and the severity of olfactory impairment were identified as robust indicators for MCI and AD, even after adjusting for age, gender, and level of education. Age and educational level were identified as two important confounding factors that influence cognitive function. However, no significant interactive effects were observed between these confounders and CIST scores in determining the risk of MCI. The area under the ROC curve (AUC) generated from the ROC analysis was 0.738 and 0.813 in distinguishing patients with MCI and patients with AD from NCs based on the CIST scores, respectively. The optimal cutoff for distinguishing MCI from NCs was 13, and for distinguishing AD from NCs was 11. The AUC for distinguishing AD from MCI was 0.62. Conclusions The olfactory identification function is frequently affected in patients with MCI and patients with AD. CSIT is a beneficial tool for the early screening of cognitive impairment among elderly patients with cognitive or memory issues.
Collapse
Affiliation(s)
- Yan Mi
- Department of Neurology, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China,Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| | - Xiaojuan Ma
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China,Clinical Medical Research Center, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| | - Shan Du
- Department of Neurology, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China,Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| | - Chengxue Du
- Department of Neurology, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China,Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| | - Xiaobo Li
- Department of Neurology, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China,Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| | - Huihui Tan
- Department of Neurology, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China,Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| | - Jie Zhang
- Department of Neurology, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China,Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| | - Qi Zhang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China,Clinical Medical Research Center, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China
| | - Wenzhen Shi
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China,Clinical Medical Research Center, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China,Wenzhen Shi ✉
| | - Gejuan Zhang
- Department of Neurology, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China,Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China,Gejuan Zhang ✉
| | - Ye Tian
- Department of Neurology, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China,Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, Shaanxi, China,*Correspondence: Ye Tian ✉
| |
Collapse
|
19
|
Leon M, Woo CC. Olfactory loss is a predisposing factor for depression, while olfactory enrichment is an effective treatment for depression. Front Neurosci 2022; 16:1013363. [PMID: 36248633 PMCID: PMC9558899 DOI: 10.3389/fnins.2022.1013363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
The loss of olfactory stimulation correlates well with at least 68 widely differing neurological disorders, including depression, and we raise the possibility that this relationship may be causal. That is, it seems possible that olfactory loss makes the brain vulnerable to expressing the symptoms of these neurological disorders, while daily olfactory enrichment may decrease the risk of expressing these symptoms. This situation resembles the cognitive reserve that is thought to protect people with Alzheimer’s neuropathology from expressing the functional deficit in memory through the cumulative effect of intellectual stimulation. These relationships also resemble the functional response of animal models of human neurological disorders to environmental enrichment, wherein the animals continue to have the induced neuropathology, but do not express the symptoms as they do in a standard environment with restricted sensorimotor stimulation.
Collapse
Affiliation(s)
- Michael Leon
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Center for the Neurobiology of Learning and Memory, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
- *Correspondence: Michael Leon,
| | - Cynthia C. Woo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
20
|
Onaolapo AY, Ojo FO, Olofinnade AT, Falade J, Lawal IA, Onaolapo OJ. Microbiome-Based Therapies in Parkinson's Disease: Can Tuning the Microbiota Become a Viable Therapeutic Strategy? CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 22:CNSNDDT-EPUB-126136. [PMID: 36056826 DOI: 10.2174/1871527321666220903114559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/20/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Progressive neurodegenerative disorders such as Parkinson's disease (PD) have continued to baffle medical science, despite strides in the understanding of their pathology. The inability of currently available therapies to halt disease progression is a testament to an incomplete understanding of pathways crucial to disease initiation, progression and management. Science has continued to link the activities and equilibrium of the gut microbiome to the health and proper functioning of brain neurons. They also continue to stir interest in the potential applications of technologies that may shift the balance of the gut microbiome towards achieving a favourable outcome in PD management. There have been suggestions that an improved understanding of the roles of the gut microbiota is likely to lead to the emergence of an era where their manipulation becomes a recognized strategy for PD management. This review examines the current state of our journey in the quest to understand how the gut microbiota can influence several aspects of PD. We highlight the relationship between the gut microbiome/microbiota and PD pathogenesis, as well as preclinical and clinical evidence evaluating the effect of postbiotics, probiotics and prebiotics in PD management. This is with a view to ascertaining if we are at the threshold of discovering the application of a usable tool in our quest for disease modifying therapies in PD.
Collapse
Affiliation(s)
- Adejoke Y Onaolapo
- Behavioural Neuroscience/Neurobiology Unit, Department of Anatomy, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Folusho O Ojo
- Department of Anatomy, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Anthony T Olofinnade
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Clinical Sciences, College of Medicine, Lagos State University, Lagos State
| | - Joshua Falade
- Department of Mental Health, Afe-Babalola University Ado-Ekiti Ekiti State Nigeria
| | - Ismail A Lawal
- Department of Anatomy, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Department of Anatomy, Faculty of Health Sciences. Alhikmah University Ilorin, Kwara State, Nigeria
| | - Olakunle J Onaolapo
- Behavioural Neuroscience/Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|
21
|
Tan Z, Wang Y, Lu H, Tian W, Xu K, Fan M, Zhao X, Jin L, Cui M, Jiang Y, Chen X. The Effects of Brain Magnetic Resonance Imaging Indices in the Association of Olfactory Identification and Cognition in Chinese Older Adults. Front Aging Neurosci 2022; 14:873032. [PMID: 35865748 PMCID: PMC9294318 DOI: 10.3389/fnagi.2022.873032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background Olfactory identification dysfunction frequently occurs in individuals with cognitive decline; however, a pathological mechanism linking the two has not been discovered. We aimed to study the association between olfactory identification and cognitive function, and determine the effects of brain regions atrophy therein. Methods A total of 645 individuals (57.5% were female) from the Taizhou Imaging Study, who underwent cognitive and olfactory identification measurements, were included. A subsample of participants underwent brain magnetic resonance imaging (n = 622). Cognition was assessed with a neuropsychological battery. Olfactory identification was measured using a 12-item Sniffin’ Sticks test. Beta and logistic regressions were used to elucidate the association between olfactory identification and cognition, and the effects of brain regions atrophy in this association. Results Dementia was diagnosed in 41 (6.4%) individuals (mean age = 64.8 years), and mild cognitive impairment (MCI) in 157 (24.3%) individuals (mean age = 64.4 years). Olfactory identification was associated with MMSE and MoCA (both P < 0.001) and specific cognitive domains (memory, executive function, visuospatial function, and language; all P < 0.05). Higher olfactory identification was associated with lower likelihood of MCI and dementia (P < 0.05). The amygdala volume was significantly related to olfactory identification, MMSE, MoCA, and language, and could attenuate the association between olfactory identification and cognitive function. Conclusion The association between olfactory identification and cognition can be partly attributable to differences in amygdala volume, suggesting that the amygdala could be a shared neural substrate that links olfactory identification and cognitive function. Limitations of this study include that all these results were based on a cross-sectional study.
Collapse
|
22
|
Alterations in taste and smell associated with SARS-CoV-2: An exploratory study investigating food consumption and subsequent behavioural changes for those suffering from Post-Acute Sequelae of COVID-19. J Nutr Sci 2022. [PMCID: PMC8886082 DOI: 10.1017/jns.2022.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Objective: To explore food consumption and subsequent behavioural changes amongst PASC suffers associated with alterations in taste and smell. Design: A qualitative study involving five focus groups. Setting: Birmingham and Leicester, England, United Kingdom. Participants: Forty-seven Post-Acute Sequelae of COVID-19 sufferers. Results: Shifts in taste and odour were very common with disgusting or unpleasant notes being perceived in many foods, including animal products rich in protein. Food consumption patterns varied affecting nutrition status, individuals weight, types of foods consumed, cooking habits, coping mechanisms, anxieties, family and social interactions. Individuals expressed the need to taste something or experience normal tastes and flavour. Low pH foods, highly processed foods which may contain large amounts of refined sugars as well as cold processed food were the preferred items for consumption. Conclusion: Olfactory dysfunction was related to the consumption of nutrients that require moderation and to the quality of life. Intervention at an early stage is necessary in order to help avoid such complications and thus, this work informs medical practitioners and health workers of the variety of food choices that are more acceptable for people suffering from altered tastes and odour perception.
Collapse
|
23
|
Morbelli S, Chiola S, Donegani MI, Arnaldi D, Pardini M, Mancini R, Lanfranchi F, D'amico F, Bauckneht M, Miceli A, Biassoni E, Orso B, Barisione E, Benedetti L, Gianmario S, Nobili F. Metabolic correlates of olfactory dysfunction in COVID-19 and Parkinson's disease (PD) do not overlap. Eur J Nucl Med Mol Imaging 2022; 49:1939-1950. [PMID: 34984501 PMCID: PMC8727173 DOI: 10.1007/s00259-021-05666-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/19/2021] [Indexed: 12/20/2022]
Abstract
Purpose Hyposmia is a common feature of COVID-19 and Parkinson’s disease (PD). As parkinsonism has been reported after COVID-19, a link has been hypothesized between SARS-CoV2 infection and PD. We aimed to evaluate brain metabolic correlates of isolated persistent hyposmia after mild-to-moderate COVID-19 and to compare them with metabolic signature of hyposmia in drug-naïve PD patients. Methods Forty-four patients who experienced hyposmia after SARS-COV2 infection underwent brain [18F]-FDG PET in the first 6 months after recovery. Olfaction was assessed by means of the 16-item “Sniffin’ Sticks” test and patients were classified as with or without persistent hyposmia (COVID-hyposmia and COVID-no-hyposmia respectively). Brain [18F]-FDG PET of post-COVID subgroups were compared in SPM12. COVID-hyposmia patients were also compared with eighty-two drug-naïve PD patients with hyposmia. Multiple regression analysis was used to identify correlations between olfactory test scores and brain metabolism in patients’ subgroups. Results COVID-hyposmia patients (n = 21) exhibited significant hypometabolism in the bilateral gyrus rectus and orbitofrontal cortex with respect to COVID-non-hyposmia (n = 23) (p < 0.002) and in middle and superior temporal gyri, medial/middle frontal gyri, and right insula with respect to PD-hyposmia (p < 0.012). With respect to COVID-hyposmia, PD-hyposmia patients showed hypometabolism in inferior/middle occipital gyri and cuneus bilaterally. Olfactory test scores were directly correlated with metabolism in bilateral rectus and medial frontal gyri and in the right middle temporal and anterior cingulate gyri in COVID-hyposmia patients (p < 0.006) and with bilateral cuneus/precuneus and left lateral occipital cortex in PD-hyposmia patients (p < 0.004). Conclusion Metabolic signature of persistent hyposmia after COVID-19 encompasses cortical regions involved in olfactory perception and does not overlap metabolic correlates of hyposmia in PD.
Collapse
Affiliation(s)
- Silvia Morbelli
- IRCCS Ospedale Policlinico San Martino, Genova, Italy. .,Nuclear Medicine Unit, Department of Health Sciences, University of Genoa, Genoa, Italy.
| | - Silvia Chiola
- Humanitas Clinical and Research Center-IRCCS, Via Manzoni 56, Rozzano, 20089, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, Italy
| | - Maria Isabella Donegani
- IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Nuclear Medicine Unit, Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Dario Arnaldi
- IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Department of Neuroscience (DINOGMI), University of Genoa, 516126, Genoa, Italy
| | - Matteo Pardini
- IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Department of Neuroscience (DINOGMI), University of Genoa, 516126, Genoa, Italy
| | - Raffaele Mancini
- IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Department of Neuroscience (DINOGMI), University of Genoa, 516126, Genoa, Italy
| | - Francesco Lanfranchi
- IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Nuclear Medicine Unit, Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Francesca D'amico
- IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Nuclear Medicine Unit, Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Matteo Bauckneht
- IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Nuclear Medicine Unit, Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Alberto Miceli
- IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Nuclear Medicine Unit, Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Erica Biassoni
- IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Department of Neuroscience (DINOGMI), University of Genoa, 516126, Genoa, Italy
| | - Beatrice Orso
- IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Department of Neuroscience (DINOGMI), University of Genoa, 516126, Genoa, Italy
| | - Emanuela Barisione
- Interventional Pulmonology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Luana Benedetti
- IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Department of Neuroscience (DINOGMI), University of Genoa, 516126, Genoa, Italy
| | - Sambuceti Gianmario
- IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Nuclear Medicine Unit, Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Flavio Nobili
- IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Department of Neuroscience (DINOGMI), University of Genoa, 516126, Genoa, Italy
| |
Collapse
|
24
|
Mao YM, Wang P, Wang XY, Ye DQ. Global Public Interest and Seasonal Variations in Alzheimer's Disease: Evidence From Google Trends. Front Med (Lausanne) 2021; 8:778930. [PMID: 34957153 PMCID: PMC8703029 DOI: 10.3389/fmed.2021.778930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/22/2021] [Indexed: 12/01/2022] Open
Abstract
Background: As the world's population ages, Alzheimer's disease (AD), a common neurodegenerative disease, is a major challenge to human health in the future. Understanding the information needs on AD of the global public can contribute to the prevention and control of AD. The purpose of this study was to explore global public interest and seasonal variations in AD using Google Trends (GT). Methods: GT was used to obtain relative search volume (RSV) of the keyword "Alzheimer's disease" in six English-speaking countries (Australia, New Zealand, the USA, the UK, Canada, and Ireland) and the world from January 2004 to December 2020. Cosinor analysis was applied to detect the seasonality of AD-related RSV. Time series plot was used to observe the trend of annual mean AD-related RSV. Globally, hot topics and top rising topics related to AD were also analyzed. In addition, we also explored the geographical distribution characteristics of AD-related RSV. Results: AD-related RSV declined steadily from January 2004 to December 2013 and rose steadily from January 2014 to December 2020. Search popularity of AD is low in the southern hemisphere, compared to the northern hemisphere. Cosinor analysis showed that there were significant seasonal variations in AD-related RSV in six English-speaking countries (all P < 0.05). Interestingly, regardless of the hemisphere, peaks were observed in the winter months and trough in the summer months. Topics related to the characteristics and etiology of AD, early onset AD, AD-related associations, care of AD patients, and diseases that can easily be confused with AD had received special attention. Conclusions: There is increasing global public interest for AD and a significant seasonal variation in AD. A better understanding of the seasonal variations and public interest of AD by governments, health workers and patients can contribute to the prevention, management, and treatment of AD.
Collapse
Affiliation(s)
- Yan-Mei Mao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Peng Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Xiao-Yu Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| |
Collapse
|
25
|
Caretta A, Mucignat-Caretta C. Are Multiple Chemosensory Systems Accountable for COVID-19 Outcome? J Clin Med 2021; 10:5601. [PMID: 34884303 PMCID: PMC8658083 DOI: 10.3390/jcm10235601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 01/03/2023] Open
Abstract
Chemosensory systems (olfaction, taste, trigeminus nerve, solitary chemoreceptor cells, neuroendocrine pulmonary cells, and carotid body, etc.) detect molecules outside or inside our body and may share common molecular markers. In addition to the impairment of taste and olfaction, the detection of the internal chemical environment may also be incapacitated by COVID-19. If this is the case, different consequences can be expected. (1) In some patients, hypoxia does not trigger distressing dyspnea ("silent" hypoxia): Long-term follow-up may determine whether silent hypoxia is related to malfunctioning of carotid body chemoreceptors. Moreover, taste/olfaction and oxygen chemoreceptors may be hit simultaneously: Testing olfaction, taste, and oxygen chemoreceptor functions in the early stages of COVID-19 allows one to unravel their connections and trace the recovery path. (2) Solitary chemosensory cells are also involved in the regulation of the innate mucosal immune response: If these cells are affected in some COVID-19 patients, the mucosal innate immune response would be dysregulated, opening one up to massive infection, thus explaining why COVID-19 has lethal consequences in some patients. Similar to taste and olfaction, oxygen chemosensory function can be easily tested with a non-invasive procedure in humans, while functional tests for solitary chemosensory or pulmonary neuroendocrine cells are not available, and autoptic investigation is required to ascertain their involvement.
Collapse
Affiliation(s)
- Antonio Caretta
- Department of Food and Drug Science, University of Parma, 43100 Parma, Italy;
- NIBB—National Institute for Biostructures and Biosystems, 00136 Rome, Italy
| | - Carla Mucignat-Caretta
- NIBB—National Institute for Biostructures and Biosystems, 00136 Rome, Italy
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| |
Collapse
|