1
|
Aghbelaghi DT, Jalali M, Tayim N, Kiyani R. A Network Analysis of Depression and Cognitive Impairments in Fibromyalgia: A Secondary Analysis Study. Psychiatr Q 2025; 96:39-57. [PMID: 39589661 DOI: 10.1007/s11126-024-10106-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
INTRODUCTION Fibromyalgia is a chronic condition often accompanied by cognitive impairments, such as difficulties with sustained attention, and emotional disturbances, particularly depression and anxiety. Understanding how these emotional and cognitive factors interact is crucial to improving treatment for fibromyalgia patients. This study aimed to investigate the network structure of these interactions, focusing on the relationship between depression, anxiety, and cognitive performance. METHOD A total of one hundred ten participants diagnosed with fibromyalgia completed self-reported assessments of depression and anxiety, alongside cognitive performance tests. Key measures included Continuous Performance Tasks (CPT) for impulsivity and sustained attention, the Stroop Interference Index (StI), Stroop Color Naming (StC), and Stroop Word Reading (StW). Network analysis was conducted to estimate the relationships between emotional and cognitive variables and assess their centrality within the network. RESULTS Errors in CPT emerged as the most significant indicators of the relationship between depression and cognitive performance, with high centrality values observed for the Stroop tasks (StI, StC, and StW). Additionally, Trait Anxiety (A_T) and Beck Depression Inventory (BDI) measures showed high centrality, underscoring the critical role of emotional states in the network of cognitive and emotional variables. The centrality values for cognitive flexibility, processing speed, and inhibitory control were found to be 0.85, 0.78, and 0.72, respectively. CONCLUSION This study highlights the strong association between depression symptoms and deficits in cognitive domains, emphasizing the need for integrated care approaches that address both cognitive and emotional health. Multidisciplinary treatment programs, including cognitive rehabilitation and psychological support, could improve patient outcomes by targeting the most influential variables in the cognitive-emotional network.
Collapse
Affiliation(s)
| | - Mahbobeh Jalali
- Department of Psychology, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Natalie Tayim
- Department of Psychology, School of Social Sciences and Humanities, Doha Institute for Graduate Studies, Doha, Qatar
| | - Roghayeh Kiyani
- Department of Psychology, Ahar Branch, Islamic Azad University, Ahar, Iran.
| |
Collapse
|
2
|
Bohsali AA, Gullett JM, FitzGerald DB, Mareci T, Crosson B, White K, Nadeau SE. Neural connectivity underlying core language functions. BRAIN AND LANGUAGE 2025; 262:105535. [PMID: 39855029 DOI: 10.1016/j.bandl.2025.105535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 11/24/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
INTRODUCTION Although many white matter tracts underlying language functions have been identified, even in aggregate they do not provide a sufficiently detailed and expansive picture to enable us to fully understand the computational processes that might underly language production and comprehension. We employed diffusion tensor tractography (DTT) with a tensor distribution model to more extensively explore the white matter tracts supporting core language functions. Our study was guided by hypotheses stemming largely from the aphasia literature. METHODS We employed high angular resolution diffusion imaging (HARDI) with a dual region of interest tractography approach. Our diffusion tensor distribution model uses a mixture of Wishart distributions to estimate the water molecule displacement probability functions on a voxel-by-voxel basis and to model crossing/branching fibers using a multicompartmental approach. RESULTS We replicated the results of previously published studies of tracts underlying language function. Our study also yielded a number of novel findings: 1) extensive connectivity between Broca's region and the entirety of the middle and superior frontal gyri; 2) extensive interconnectivity between the four subcomponents of Broca's region, pars orbitalis, pars triangularis, pars opercularis, and the inferior precentral gyrus; 3) connectivity between the mid-superior temporal gyrus and the transverse gyrus; 4) connectivity between the mid-superior temporal gyrus, the transverse gyrus, and the planum temporale and the inferior and middle temporal gyri; and 5) connectivity between mid- and anterior superior temporal gyrus and all components of Broca's region. DISCUSSION These results, which replicate the results of prior DTT studies, also considerably extend them and thereby provide a fuller picture of the structural basis of language function and the basis for a novel model of the neural network architecture of language function. This new model is entirely consistent with discoveries from the aphasia literature and with parallel distributed processing conceptualizations of language function.
Collapse
Affiliation(s)
- Anastasia A Bohsali
- Department of Veterans Affairs Rehabilitation Research and Development Brain Rehabilitation Research Center at the Malcom Randall VA Medical Center, Gainesville, FL 32608, USA; University of Florida Department of Neurology, Gainesville, FL 32610, USA
| | - Joseph M Gullett
- Department of Veterans Affairs Rehabilitation Research and Development Brain Rehabilitation Research Center at the Malcom Randall VA Medical Center, Gainesville, FL 32608, USA; University of Florida Department of Clinical and Health Psychology, Gainesville, FL 32610, USA
| | - David B FitzGerald
- University of Florida Department of Neurology, Gainesville, FL 32610, USA
| | - Thomas Mareci
- University of Florida Department of Biochemistry and Molecular Biology, Gainesville, FL 32610, USA; McKnight Brain Institute, Gainesville, FL 32611, USA
| | - Bruce Crosson
- Department of Veterans Affairs Rehabilitation Research and Development Center of Excellence at the Atlanta VA Medical Center, Atlanta, GA 30033, USA; Department of Neurology, Emory University, Atlanta, GA 30322, USA; Department of Psychology, Georgia State University, Atlanta, GA 30303, USA
| | - Keith White
- Department of Veterans Affairs Rehabilitation Research and Development Brain Rehabilitation Research Center at the Malcom Randall VA Medical Center, Gainesville, FL 32608, USA; University of Florida Department of Psychology, Gainesville, FL 32611, USA
| | - Stephen E Nadeau
- Department of Veterans Affairs Rehabilitation Research and Development Brain Rehabilitation Research Center at the Malcom Randall VA Medical Center, Gainesville, FL 32608, USA; University of Florida Department of Neurology, Gainesville, FL 32610, USA; Neurology Service, North Florida/South GeorgiaUSA Veterans Health System and Department of Neurology, University of Florida, Gainesville, FL 32608, USA.
| |
Collapse
|
3
|
Fan H, Li Q, Du Y, Yan Y, Ni R, Wei J, Zhao L, Yang X, Ma X. Relationship of prefrontal cortex activity with anhedonia and cognitive function in major depressive disorder: an fNIRS study. Front Psychiatry 2024; 15:1428425. [PMID: 39371911 PMCID: PMC11450226 DOI: 10.3389/fpsyt.2024.1428425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/29/2024] [Indexed: 10/08/2024] Open
Abstract
Background Major depressive disorder (MDD) is associated with deficits in cognitive function, thought to be related to underlying decreased hedonic experiences. Further research is needed to fully elucidate the role of functional brain activity in this relationship. In this study, we investigated the neurofunctional correlate of the interplay between cognitive function and hedonic experiences in medication-free MDD using functional near-infrared spectroscopy (fNIRS). Methods We examine differences of brain activation corresponding to the verbal fluency test (VFT) between MDD patients and healthy controls (HCs). Fifty-six MDD patients and 35 HCs underwent fMRI scanning while performing the VFT. In exploratory analyses, cognitive performance, as assessed by the Cambridge Neuropsychological Test Automated Battery (CANTAB), four dimensions of hedonic processing (desire, motivation, effort, and consummatory pleasure) measured by the Dimensional Anhedonia Rating Scale (DARS), and relative changes in oxygenated hemoglobin concentration during the VFT were compared across groups. Results Patients with MDD demonstrated impairments in sustained attention and working memory, accompanied by lower total and subscale scores on the DARS. Compared to healthy controls, MDD patients exhibited reduced activation in the prefrontal cortex (PFC) during the VFT task (t = 2.32 to 4.77, p < 0.001 to 0.02, FDR corrected). DARS motivation, desire, and total scores as well as sustained attention, were positively correlated with activation in the dorsolateral PFC and Broca's area (p < 0.05, FDR corrected). Conclusions These findings indicate that changes in prefrontal lobe oxygenated hemoglobin levels, a region implicated in hedonic motivation and cognitive function, may serve as potential biomarkers for interventions targeting individuals with MDD. Our results corroborate the clinical consensus that the prefrontal cortex is a primary target for non-invasive neuromodulatory treatments for depression.
Collapse
Affiliation(s)
- Huanhuan Fan
- Mental Health Center and Institute of Psychiatry, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Li
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yue Du
- Mental Health Center and Institute of Psychiatry, West China Hospital, Sichuan University, Chengdu, China
| | - Yushun Yan
- Mental Health Center and Institute of Psychiatry, West China Hospital, Sichuan University, Chengdu, China
| | - Rongjun Ni
- Mental Health Center and Institute of Psychiatry, West China Hospital, Sichuan University, Chengdu, China
| | - Jinxue Wei
- Mental Health Center and Institute of Psychiatry, West China Hospital, Sichuan University, Chengdu, China
| | - Liansheng Zhao
- Mental Health Center and Institute of Psychiatry, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao Yang
- Mental Health Center and Institute of Psychiatry, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohong Ma
- Mental Health Center and Institute of Psychiatry, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Rolls ET, Treves A. A theory of hippocampal function: New developments. Prog Neurobiol 2024; 238:102636. [PMID: 38834132 DOI: 10.1016/j.pneurobio.2024.102636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/15/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
We develop further here the only quantitative theory of the storage of information in the hippocampal episodic memory system and its recall back to the neocortex. The theory is upgraded to account for a revolution in understanding of spatial representations in the primate, including human, hippocampus, that go beyond the place where the individual is located, to the location being viewed in a scene. This is fundamental to much primate episodic memory and navigation: functions supported in humans by pathways that build 'where' spatial view representations by feature combinations in a ventromedial visual cortical stream, separate from those for 'what' object and face information to the inferior temporal visual cortex, and for reward information from the orbitofrontal cortex. Key new computational developments include the capacity of the CA3 attractor network for storing whole charts of space; how the correlations inherent in self-organizing continuous spatial representations impact the storage capacity; how the CA3 network can combine continuous spatial and discrete object and reward representations; the roles of the rewards that reach the hippocampus in the later consolidation into long-term memory in part via cholinergic pathways from the orbitofrontal cortex; and new ways of analysing neocortical information storage using Potts networks.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK; Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK.
| | | |
Collapse
|
5
|
Li Z, Xiong F, Gao F, Yu B, Tu Y. Cortical changes in the brain of patients with hemifacial spasm. Neurol Sci 2024; 45:3209-3215. [PMID: 38286918 DOI: 10.1007/s10072-024-07353-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
OBJECTIVE Hemifacial spasm (HFS) is a movement disorder characterized by involuntary muscle contractions on one side of the face. It is associated with disturbances in the brain's functional architecture. Despite this, the structural alterations in the brain related to HFS remain poorly understood. In this study, we investigated the cortical morphology changes in patients with HFS compared to healthy controls (HCs). METHODS We analyzed 3D T1-weighted MRI images from 33 patients with left-sided primary HFS and 33 age- and sex-matched HCs. Measurements of cortical thickness (CTh), sulcal depth, local gyrification index (lGI), and fractal dimension were taken using a computational anatomy toolbox. A general linear model, accounting for age, gender, and total brain volume, was applied for statistical analyses. Significant clusters were then assessed for correlations with clinical parameters. RESULTS The HFS patients displayed several cortical abnormalities when compared to HCs, including reduced CTh in the contralateral precentral gyrus and left orbitofrontal cortex, decreased sulcal depth in the left orbitofrontal cortex, and increased lGI in the right insula and superior temporal cortex. However, fractal dimension did not differ significantly between the groups. Additionally, in HFS patients, a notable negative correlation was found between the sulcal depth in the left orbitofrontal cortex and the Beck Depression Inventory-II scores. CONCLUSIONS Our findings reveal that HFS is associated with specific surface-based morphological changes in the brain. These alterations contribute to a deeper understanding of the neurophysiological mechanisms involved in HFS and may have implications for future research and treatment strategies.
Collapse
Affiliation(s)
- Zheng Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Xiong
- Department of Radiology, PLA Central Theater General Hospital, Wuhan, China
| | - Feng Gao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Buwei Yu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ye Tu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
6
|
Rolls ET. Two what, two where, visual cortical streams in humans. Neurosci Biobehav Rev 2024; 160:105650. [PMID: 38574782 DOI: 10.1016/j.neubiorev.2024.105650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/25/2024] [Accepted: 03/31/2024] [Indexed: 04/06/2024]
Abstract
ROLLS, E. T. Two What, Two Where, Visual Cortical Streams in Humans. NEUROSCI BIOBEHAV REV 2024. Recent cortical connectivity investigations lead to new concepts about 'What' and 'Where' visual cortical streams in humans, and how they connect to other cortical systems. A ventrolateral 'What' visual stream leads to the inferior temporal visual cortex for object and face identity, and provides 'What' information to the hippocampal episodic memory system, the anterior temporal lobe semantic system, and the orbitofrontal cortex emotion system. A superior temporal sulcus (STS) 'What' visual stream utilising connectivity from the temporal and parietal visual cortex responds to moving objects and faces, and face expression, and connects to the orbitofrontal cortex for emotion and social behaviour. A ventromedial 'Where' visual stream builds feature combinations for scenes, and provides 'Where' inputs via the parahippocampal scene area to the hippocampal episodic memory system that are also useful for landmark-based navigation. The dorsal 'Where' visual pathway to the parietal cortex provides for actions in space, but also provides coordinate transforms to provide inputs to the parahippocampal scene area for self-motion update of locations in scenes in the dark or when the view is obscured.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK; Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK; Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200403, China.
| |
Collapse
|
7
|
Zhang B, Rolls ET, Wang X, Xie C, Cheng W, Feng J. Roles of the medial and lateral orbitofrontal cortex in major depression and its treatment. Mol Psychiatry 2024; 29:914-928. [PMID: 38212376 DOI: 10.1038/s41380-023-02380-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 01/13/2024]
Abstract
We describe evidence for dissociable roles of the medial and lateral orbitofrontal cortex (OFC) in major depressive disorder (MDD) from structure, functional activation, functional connectivity, metabolism, and neurochemical systems. The reward-related medial orbitofrontal cortex has lower connectivity and less reward sensitivity in MDD associated with anhedonia symptoms; and the non-reward related lateral OFC has higher functional connectivity and more sensitivity to non-reward/aversive stimuli in MDD associated with negative bias symptoms. Importantly, we propose that conventional antidepressants act to normalize the hyperactive lateral (but not medial) OFC to reduce negative bias in MDD; while other treatments are needed to operate on the medial OFC to reduce anhedonia, with emerging evidence suggesting that ketamine may act in this way. The orbitofrontal cortex is the key cortical region in emotion and reward, and the current review presents much new evidence about the different ways that the medial and lateral OFC are involved in MDD.
Collapse
Affiliation(s)
- Bei Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, PR China
| | - Edmund T Rolls
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China.
- Oxford Centre for Computational Neuroscience, Oxford, UK.
- Department of Computer Science, University of Warwick, Coventry, UK.
| | - Xiang Wang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, PR China
- Medical Psychological Institute, Central South University, Changsha, PR China
- China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, PR China
| | - Chao Xie
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, PR China
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, PR China.
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, PR China.
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, PR China.
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, PR China.
- Department of Computer Science, University of Warwick, Coventry, UK.
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, PR China.
- Zhangjiang Fudan International Innovation Center, Shanghai, PR China.
| |
Collapse
|
8
|
Hou Y, Xia H, He T, Zhang B, Qiu G, Chen A. N2 Responses in Youths With Psychosis Risk Syndrome and Their Association With Clinical Outcomes: A Cohort Follow-Up Study Based on the Three-Stimulus Visual Oddball Paradigm. Am J Psychiatry 2024; 181:330-341. [PMID: 38419496 DOI: 10.1176/appi.ajp.20221013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
OBJECTIVE Schizophrenia often occurs during youth, and psychosis risk syndrome occurs before the onset of psychosis. The aim of this study was to determine whether the visual event-related potential responses in youths with psychosis risk syndrome were defective in the presence of interference stimuli and associated with their clinical outcomes. METHODS A total of 223 participants, including 122 patients with psychosis risk syndrome, 50 patients with emotional disorders, and 51 healthy control subjects, were assessed. Baseline EEG was recorded during the three-stimulus visual oddball task. The event-related potentials induced by square pictures with different colors were measured. Almost all patients with psychosis risk syndrome were followed up for 12 months and were reclassified into three subgroups: conversion, symptomatic, and remission. The differences in baseline event-related potential responses were compared among the clinical outcome subgroups. RESULTS The average N2 amplitude of the psychosis risk syndrome group was significantly less negative than that in the healthy control group (d=0.53). The baseline average N2 amplitude in the conversion subgroup was significantly less negative than that in the symptomatic (d=0.58) and remission (d=0.50) subgroups and in the healthy control group (d=0.97). The average N2 amplitude did not differ significantly between the symptomatic and remission subgroups (d=0.02). However, it was significantly less negative in the symptomatic and remission subgroups than in the healthy control group (d=0.46 and d=0.38). No statistically significant results were found in the P3 response. CONCLUSIONS Youths with psychosis risk syndrome had significant N2 amplitude defects in attention processing with interference stimuli. N2 amplitude shows potential as a prognostic biomarker of clinical outcome in the psychosis risk syndrome.
Collapse
Affiliation(s)
- Yongqing Hou
- Key Laboratory of Cognition and Personality of the Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China (Hou, Xia, Zhang); Clinical Laboratory of Psychiatry, Mental Health Center of Guangyuan, Sichuan, China (Hou, He); College of Education, Psychology, and Social Work, Flinders University, Adelaide, Australia (Zhang); College of Teacher Education, Ningxia University, Yinchuan, China (Qiu); School of Psychology, Shanghai University of Sport, Shanghai, China (Chen)
| | - Haishuo Xia
- Key Laboratory of Cognition and Personality of the Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China (Hou, Xia, Zhang); Clinical Laboratory of Psychiatry, Mental Health Center of Guangyuan, Sichuan, China (Hou, He); College of Education, Psychology, and Social Work, Flinders University, Adelaide, Australia (Zhang); College of Teacher Education, Ningxia University, Yinchuan, China (Qiu); School of Psychology, Shanghai University of Sport, Shanghai, China (Chen)
| | - Tianbao He
- Key Laboratory of Cognition and Personality of the Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China (Hou, Xia, Zhang); Clinical Laboratory of Psychiatry, Mental Health Center of Guangyuan, Sichuan, China (Hou, He); College of Education, Psychology, and Social Work, Flinders University, Adelaide, Australia (Zhang); College of Teacher Education, Ningxia University, Yinchuan, China (Qiu); School of Psychology, Shanghai University of Sport, Shanghai, China (Chen)
| | - Bohua Zhang
- Key Laboratory of Cognition and Personality of the Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China (Hou, Xia, Zhang); Clinical Laboratory of Psychiatry, Mental Health Center of Guangyuan, Sichuan, China (Hou, He); College of Education, Psychology, and Social Work, Flinders University, Adelaide, Australia (Zhang); College of Teacher Education, Ningxia University, Yinchuan, China (Qiu); School of Psychology, Shanghai University of Sport, Shanghai, China (Chen)
| | - Guiping Qiu
- Key Laboratory of Cognition and Personality of the Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China (Hou, Xia, Zhang); Clinical Laboratory of Psychiatry, Mental Health Center of Guangyuan, Sichuan, China (Hou, He); College of Education, Psychology, and Social Work, Flinders University, Adelaide, Australia (Zhang); College of Teacher Education, Ningxia University, Yinchuan, China (Qiu); School of Psychology, Shanghai University of Sport, Shanghai, China (Chen)
| | - Antao Chen
- Key Laboratory of Cognition and Personality of the Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China (Hou, Xia, Zhang); Clinical Laboratory of Psychiatry, Mental Health Center of Guangyuan, Sichuan, China (Hou, He); College of Education, Psychology, and Social Work, Flinders University, Adelaide, Australia (Zhang); College of Teacher Education, Ningxia University, Yinchuan, China (Qiu); School of Psychology, Shanghai University of Sport, Shanghai, China (Chen)
| |
Collapse
|
9
|
Pan G, Jiang Y, Zhang W, Zhang X, Wang L, Cheng W. Identification of Parkinson's disease subtypes with distinct brain atrophy progression and its association with clinical progression. PSYCHORADIOLOGY 2024; 4:kkae002. [PMID: 38666137 PMCID: PMC10953620 DOI: 10.1093/psyrad/kkae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/27/2024] [Accepted: 02/23/2024] [Indexed: 04/28/2024]
Abstract
Background Parkinson's disease (PD) patients suffer from progressive gray matter volume (GMV) loss, but whether distinct patterns of atrophy progression exist within PD are still unclear. Objective This study aims to identify PD subtypes with different rates of GMV loss and assess their association with clinical progression. Methods This study included 107 PD patients (mean age: 60.06 ± 9.98 years, 70.09% male) with baseline and ≥ 3-year follow-up structural MRI scans. A linear mixed-effects model was employed to assess the rates of regional GMV loss. Hierarchical cluster analysis was conducted to explore potential subtypes based on individual rates of GMV loss. Clinical score changes were then compared across these subtypes. Results Two PD subtypes were identified based on brain atrophy rates. Subtype 1 (n = 63) showed moderate atrophy, notably in the prefrontal and lateral temporal lobes, while Subtype 2 (n = 44) had faster atrophy across the brain, particularly in the lateral temporal region. Furthermore, subtype 2 exhibited faster deterioration in non-motor (MDS-UPDRS-Part Ⅰ, β = 1.26 ± 0.18, P = 0.016) and motor (MDS-UPDRS-Part Ⅱ, β = 1.34 ± 0.20, P = 0.017) symptoms, autonomic dysfunction (SCOPA-AUT, β = 1.15 ± 0.22, P = 0.043), memory (HVLT-Retention, β = -0.02 ± 0.01, P = 0.016) and depression (GDS, β = 0.26 ± 0.083, P = 0.019) compared to subtype 1. Conclusion The study has identified two PD subtypes with distinct patterns of atrophy progression and clinical progression, which may have implications for developing personalized treatment strategies.
Collapse
Affiliation(s)
- Guoqing Pan
- School of Mathematical Sciences, Zhejiang Normal University, Jinhua 321004, China
- Fudan ISTBI—ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua 321004, China
| | - Yuchao Jiang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai 200433, China
- Zhangjiang Fudan International Innovation Center, Shanghai 201210, China
| | - Wei Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai 200433, China
- Zhangjiang Fudan International Innovation Center, Shanghai 201210, China
| | - Xuejuan Zhang
- School of Mathematical Sciences, Zhejiang Normal University, Jinhua 321004, China
- Fudan ISTBI—ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua 321004, China
| | - Linbo Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai 200433, China
- Zhangjiang Fudan International Innovation Center, Shanghai 201210, China
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai 200433, China
- Zhangjiang Fudan International Innovation Center, Shanghai 201210, China
- Shanghai Medical College and Zhongshan Hospital Immunotherapy Technology Transfer Center, Shanghai 200032, China
| |
Collapse
|
10
|
Hou Y, Qiu G, Xia H, He T, Liu X, Chen A. The specificity of the auditory P300 responses and its association with clinical outcomes in youth with psychosis risk syndrome. Int J Clin Health Psychol 2024; 24:100437. [PMID: 38292829 PMCID: PMC10825643 DOI: 10.1016/j.ijchp.2024.100437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
Background Schizophrenia often occurs in youth, and psychosis risk syndrome (PRS) occurs before the onset of psychosis. Assessing the neuropsychological abnormalities of PRS individuals can help in early identification and active intervention of mental illness. Auditory P300 amplitude defect is an important manifestation of attention processing abnormality in PRS, but it is still unclear whether there are abnormalities in the attention processing of rhythmic compound tone stimuli in PRS individuals, and whether the P300 amplitude induced by these stimuli is specific to PRS individuals and related to their clinical outcomes. Methods In total, 226 participants, including 122 patients with PRS, 51 patients with emotional disorders (ED), and 53 healthy controls (HC) were assessed. Baseline electroencephalography was recorded during the compound tone oddball task. The event-related potentials (ERPs) induced by rhythmic compound tone stimuli of two frequencies (20-Hz, 40-Hz) were measured. Almost all patients with PRS were followed up for 12 months and reclassified into four groups: PRS-conversion, PRS-symptomatic, PRS-emotional disorder, and PRS-complete remission. The differences in baseline ERPs were compared among the clinical outcome groups. Results Regardless of the stimulation frequency, the average P300 amplitude were significantly higher in patients with PRS than in those with ED (p = 0.003, d = 0.48) and in HC (p = 0.002, d = 0.44) group. The average P300 amplitude of PRS-conversion group was significantly higher than that of the PRS-complete remission (p = 0.016, d = 0.72) and HC group (p = 0.001, d = 0.76), and the average P300 amplitude of PRS-symptomatic group was significantly higher than that of the HC group (p = 0.006, d = 0.48). Regardless of the groups (PRS, ED, HC) or the PRS clinical outcome groups, the average P300 amplitude induced by 20-Hz tone stimulation was significantly higher than that induced by 40-Hz stimulation (ps < 0.001, Ƞ2 = 0.074-0.082). The average reaction times of PRS was significantly faster than that of ED (p = 0.01, d = 0.38), and the average reaction times of the participants to 20-Hz target stimulation was significantly faster than that to 40-Hz target stimulation (p < 0.001, d = 0.21). Conclusion The auditory P300 amplitude induced by rhythmic compound tone stimuli is a specific electrophysiological manifestation of PRS, and the auditory P300 amplitude induced by compound tone stimuli shows promise as a putative prognostic biomarker for PRS clinical outcomes, including conversion to psychosis and clinical complete remission.
Collapse
Affiliation(s)
- Yongqing Hou
- Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
- Mental Health Center of Guangyuan, Sichuan, China
| | - Guiping Qiu
- College of Teacher Education, Ningxia University, Yinchuan, China
| | - Haishuo Xia
- Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Tianbao He
- Mental Health Center of Guangyuan, Sichuan, China
| | - Xiaoxian Liu
- Faculty of Education, Henan Normal University, Xinxiang, China
| | - Antao Chen
- School of Psychology, Research Center for Exercise and Brain Science, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
11
|
Polemiti E, Hese S, Schepanski K, Yuan J, Schumann G. How does the macroenvironment influence brain and behaviour - a review of current status and future perspectives. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.09.23296785. [PMID: 37873310 PMCID: PMC10593044 DOI: 10.1101/2023.10.09.23296785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The environment influences mental health, both detrimentally and beneficially. Current research has emphasized the individual psychosocial 'microenvironment'. Less attention has been paid to 'macro-environmental' challenges including climate change, pollution, urbanicity and socioeconomic disparity. With the advent of large-scale big-data cohorts and an increasingly dense mapping of macroenvironmental parameters, we are now in a position to characterise the relation between macroenvironment, brain, and behaviour across different geographic and cultural locations globally. This review synthesises findings from recent epidemiological and neuroimaging studies, aiming to provide a comprehensive overview of the existing evidence between the macroenvironment and the structure and functions of the brain, with a particular emphasis on its implications for mental illness. We discuss putative underlying mechanisms and address the most common exposures of the macroenvironment. Finally, we identify critical areas for future research to enhance our understanding of the aetiology of mental illness and to inform effective interventions for healthier environments and mental health promotion.
Collapse
Affiliation(s)
- Elli Polemiti
- Centre of Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Clinical Neuroscience, Charité, Universitätsmedizin Berlin, Germany
| | - Soeren Hese
- Institute of Geography, Friedrich Schiller University Jena, Germany
| | | | - Jiacan Yuan
- Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences & CMA-FDU Joint Laboratory of Marine Meteorology & IRDR-ICOE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Gunter Schumann
- Centre of Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Clinical Neuroscience, Charité, Universitätsmedizin Berlin, Germany
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | | |
Collapse
|
12
|
Rolls ET. Emotion, motivation, decision-making, the orbitofrontal cortex, anterior cingulate cortex, and the amygdala. Brain Struct Funct 2023; 228:1201-1257. [PMID: 37178232 PMCID: PMC10250292 DOI: 10.1007/s00429-023-02644-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Abstract
The orbitofrontal cortex and amygdala are involved in emotion and in motivation, but the relationship between these functions performed by these brain structures is not clear. To address this, a unified theory of emotion and motivation is described in which motivational states are states in which instrumental goal-directed actions are performed to obtain rewards or avoid punishers, and emotional states are states that are elicited when the reward or punisher is or is not received. This greatly simplifies our understanding of emotion and motivation, for the same set of genes and associated brain systems can define the primary or unlearned rewards and punishers such as sweet taste or pain. Recent evidence on the connectivity of human brain systems involved in emotion and motivation indicates that the orbitofrontal cortex is involved in reward value and experienced emotion with outputs to cortical regions including those involved in language, and is a key brain region involved in depression and the associated changes in motivation. The amygdala has weak effective connectivity back to the cortex in humans, and is implicated in brainstem-mediated responses to stimuli such as freezing and autonomic activity, rather than in declarative emotion. The anterior cingulate cortex is involved in learning actions to obtain rewards, and with the orbitofrontal cortex and ventromedial prefrontal cortex in providing the goals for navigation and in reward-related effects on memory consolidation mediated partly via the cholinergic system.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK.
- Department of Computer Science, University of Warwick, Coventry, UK.
| |
Collapse
|
13
|
Liu A, Cheng Y, Huang J. Neurons innervating both the central amygdala and the ventral tegmental area encode different emotional valences. Front Neurosci 2023; 17:1178693. [PMID: 37214399 PMCID: PMC10196062 DOI: 10.3389/fnins.2023.1178693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/13/2023] [Indexed: 05/24/2023] Open
Abstract
Mammals are frequently exposed to various environmental stimuli, and to determine whether to approach or avoid these stimuli, the brain must assign emotional valence to them. Therefore, it is crucial to investigate the neural circuitry mechanisms involved in the mammalian brain's processing of emotional valence. Although the central amygdala (CeA) and the ventral tegmental area (VTA) individually encode different or even opposing emotional valences, it is unclear whether there are common upstream input neurons that innervate and control both these regions, and it is interesting to know what emotional valences of these common upstream neurons. In this study, we identify three major brain regions containing neurons that project to both the CeA and the VTA, including the posterior bed nucleus of the stria terminalis (pBNST), the pedunculopontine tegmental nucleus (PPTg), and the anterior part of the basomedial amygdala (BMA). We discover that these neural populations encode distinct emotional valences. Activating neurons in the pBNST produces positive valence, enabling mice to overcome their innate avoidance behavior. Conversely, activating neurons in the PPTg produces negative valence and induces anxiety-like behaviors in mice. Neuronal activity in the BMA, on the other hand, does not influence valence processing. Thus, our study has discovered three neural populations that project to both the CeA and the VTA and has revealed the distinct emotional valences these populations encode. These results provide new insights into the neurological mechanisms involved in emotional regulation.
Collapse
Affiliation(s)
- Anqi Liu
- Center for Brain Science of Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuelin Cheng
- Jeffrey Trail Middle School, Irvine, CA, United States
| | - Ju Huang
- Center for Brain Science of Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Rosemann S, Rauschecker JP. Disruptions of default mode network and precuneus connectivity associated with cognitive dysfunctions in tinnitus. Sci Rep 2023; 13:5746. [PMID: 37029175 PMCID: PMC10082191 DOI: 10.1038/s41598-023-32599-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/29/2023] [Indexed: 04/09/2023] Open
Abstract
Tinnitus is the perception of a ringing, buzzing or hissing sound "in the ear" without external stimulation. Previous research has demonstrated changes in resting-state functional connectivity in tinnitus, but findings do not overlap and are even contradictory. Furthermore, how altered functional connectivity in tinnitus is related to cognitive abilities is currently unknown. Here we investigated resting-state functional connectivity differences between 20 patients with chronic tinnitus and 20 control participants matched in age, sex and hearing loss. All participants underwent functional magnetic resonance imaging, audiometric and cognitive assessments, and filled in questionnaires targeting anxiety and depression. Significant differences in functional connectivity between tinnitus patients and control participants were not obtained. However, we did find significant associations between cognitive scores and functional coupling of the default mode network and the precuneus with the superior parietal lobule, supramarginal gyrus, and orbitofrontal cortex. Further, tinnitus distress correlated with connectivity between the precuneus and the lateral occipital complex. This is the first study providing evidence for disruptions of default mode network and precuneus coupling that are related to cognitive dysfunctions in tinnitus. The constant attempt to decrease the tinnitus sensation might occupy certain brain resources otherwise available for concurrent cognitive operations.
Collapse
Affiliation(s)
- Stephanie Rosemann
- Laboratory of Integrative Neuroscience and Cognition, Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Rd NW, Washington, DC, 20057, USA.
| | - Josef P Rauschecker
- Laboratory of Integrative Neuroscience and Cognition, Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Rd NW, Washington, DC, 20057, USA
| |
Collapse
|
15
|
Yuan Z, Lin X, Li P, Gao YJ, Yuan K, Yan W, Zhang YX, Liu L, Zhu XM, Zhang YJ, Bao YP, Chang SH, Lu L, Shi L. The neural correlation of emotion recognition ability and depressive symptoms-evidence from the HCP database. Front Psychiatry 2023; 13:1090369. [PMID: 36762291 PMCID: PMC9905428 DOI: 10.3389/fpsyt.2022.1090369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/14/2022] [Indexed: 01/26/2023] Open
Abstract
INTRODUCTION Negative bias of emotional face is the core feature of depression, but its underlying neurobiological mechanism is still unclear. The neuroimaging findings of negative emotional recognition and depressive symptoms are inconsistent. METHODS The neural association between depressive symptoms and negative emotional bias were analyzed by measuring the associations between resting state functional connectivity (FC), brain structures, negative emotional bias, and depressive problems. Then, we performed a mediation analysis to assess the potential overlapping neuroimaging mechanisms. RESULTS We found a negative correlation between depressive symptoms and emotional recognition. Secondly, the structure and function of the inferior and lateral orbitofrontal gyrus are related to depressive symptoms and emotional recognition. Thirdly, the thickness of the inferior orbitofrontal cortex and the FC between the inferior orbitofrontal gyrus and fusiform gyrus, precuneate and cingulate gyrus mediated and even predicted the interaction between emotion recognition and depressive symptoms. Finally, in response to a negative stimulus, the activation of the frontal pole and precuneus lobe associated with the inferior orbitofrontal gyrus was higher in participants with depressive symptoms. CONCLUSION The core brain regions centered on the inferior orbitofrontal cortex such as middle temporal gyrus, precuneus lobe, frontal pole, insula and cingulate gyrus are the potential neuroimaging basis for the interaction between depressive symptoms and emotional recognition.
Collapse
Affiliation(s)
- Ze Yuan
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Peking University, Beijing, China
| | - Xiao Lin
- Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Peking University, Beijing, China
| | - Peng Li
- Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Peking University, Beijing, China
| | - Yu-Jun Gao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Kai Yuan
- Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Peking University, Beijing, China
| | - Wei Yan
- Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Peking University, Beijing, China
| | - Yu-Xin Zhang
- Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Peking University, Beijing, China
- Peking-Tsinghua Centre for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Lin Liu
- Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Peking University, Beijing, China
- Peking-Tsinghua Centre for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Xi-Mei Zhu
- Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Peking University, Beijing, China
| | - Yi-Jing Zhang
- Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Peking University, Beijing, China
| | - Yan-Ping Bao
- Beijing Key Laboratory of Drug Dependence, National Institute on Drug Dependence, Peking University, Beijing, China
- School of Public Health, Peking University, Beijing, China
| | - Su-Hua Chang
- Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Peking University, Beijing, China
| | - Lin Lu
- Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Peking University, Beijing, China
- Peking-Tsinghua Centre for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Beijing Key Laboratory of Drug Dependence, National Institute on Drug Dependence, Peking University, Beijing, China
| | - Le Shi
- Chinese Academy of Medical Sciences Research Unit (No. 2018RU006), NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Peking University, Beijing, China
| |
Collapse
|
16
|
Baggio T, Grecucci A, Meconi F, Messina I. Anxious Brains: A Combined Data Fusion Machine Learning Approach to Predict Trait Anxiety from Morphometric Features. SENSORS (BASEL, SWITZERLAND) 2023; 23:610. [PMID: 36679404 PMCID: PMC9863274 DOI: 10.3390/s23020610] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Trait anxiety relates to the steady propensity to experience and report negative emotions and thoughts such as fear and worries across different situations, along with a stable perception of the environment as characterized by threatening stimuli. Previous studies have tried to investigate neuroanatomical features related to anxiety mostly using univariate analyses and thus giving rise to contrasting results. The aim of this study is to build a predictive model of individual differences in trait anxiety from brain morphometric features, by taking advantage of a combined data fusion machine learning approach to allow generalization to new cases. Additionally, we aimed to perform a network analysis to test the hypothesis that anxiety-related networks have a central role in modulating other networks not strictly associated with anxiety. Finally, we wanted to test the hypothesis that trait anxiety was associated with specific cognitive emotion regulation strategies, and whether anxiety may decrease with ageing. Structural brain images of 158 participants were first decomposed into independent covarying gray and white matter networks with a data fusion unsupervised machine learning approach (Parallel ICA). Then, supervised machine learning (decision tree) and backward regression were used to extract and test the generalizability of a predictive model of trait anxiety. Two covarying gray and white matter independent networks successfully predicted trait anxiety. The first network included mainly parietal and temporal regions such as the postcentral gyrus, the precuneus, and the middle and superior temporal gyrus, while the second network included frontal and parietal regions such as the superior and middle temporal gyrus, the anterior cingulate, and the precuneus. We also found that trait anxiety was positively associated with catastrophizing, rumination, other- and self-blame, and negatively associated with positive refocusing and reappraisal. Moreover, trait anxiety was negatively associated with age. This paper provides new insights regarding the prediction of individual differences in trait anxiety from brain and psychological features and can pave the way for future diagnostic predictive models of anxiety.
Collapse
Affiliation(s)
- Teresa Baggio
- Clinical and Affective Neuroscience Lab (CLI.A.N. Lab), Department of Psychology and Cognitive Sciences (DiPSCo), University of Trento, 38068 Rovereto, Italy
| | - Alessandro Grecucci
- Clinical and Affective Neuroscience Lab (CLI.A.N. Lab), Department of Psychology and Cognitive Sciences (DiPSCo), University of Trento, 38068 Rovereto, Italy
- Centre for Medical Sciences, CISMed, University of Trento, 38122 Trento, Italy
| | - Federica Meconi
- Clinical and Affective Neuroscience Lab (CLI.A.N. Lab), Department of Psychology and Cognitive Sciences (DiPSCo), University of Trento, 38068 Rovereto, Italy
| | - Irene Messina
- Clinical and Affective Neuroscience Lab (CLI.A.N. Lab), Department of Psychology and Cognitive Sciences (DiPSCo), University of Trento, 38068 Rovereto, Italy
- Department of Economics, Universitas Mercatorum, 00186 Rome, Italy
| |
Collapse
|
17
|
Rolls ET, Deco G, Huang CC, Feng J. Human amygdala compared to orbitofrontal cortex connectivity, and emotion. Prog Neurobiol 2023; 220:102385. [PMID: 36442728 DOI: 10.1016/j.pneurobio.2022.102385] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/14/2022] [Accepted: 11/24/2022] [Indexed: 11/26/2022]
Abstract
The amygdala and orbitofrontal cortex have been implicated in emotion. To understand these regions better in humans, their effective connectivity with 360 cortical regions was measured in 171 humans from the Human Connectome Project, and complemented with functional connectivity and diffusion tractography. The human amygdala has effective connectivity from few cortical regions compared to the orbitofrontal cortex: primarily from auditory cortex A5 and the related superior temporal gyrus and temporal pole regions; the piriform (olfactory) cortex; the lateral orbitofrontal cortex 47m; somatosensory cortex; the hippocampus, entorhinal cortex, perirhinal cortex, and parahippocampal TF; and from the cholinergic nucleus basalis. The amygdala has effective connectivity to the hippocampus, entorhinal and perirhinal cortex; to the temporal pole; and to the lateral orbitofrontal cortex. The orbitofrontal cortex has effective connectivity from gustatory, olfactory, and temporal visual, auditory and pole cortex, and to the pregenual anterior and posterior cingulate cortex, hippocampal system, and prefrontal cortex, and provides for rewards and punishers to be used in reported emotions, and memory and navigation to goals. Given the paucity of amygdalo-neocortical connectivity in humans, it is proposed that the human amygdala is involved primarily in autonomic and conditioned responses via brainstem connectivity, rather than in reported (declarative) emotion.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK; Department of Computer Science, University of Warwick, Coventry, UK; Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China.
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, 08018, Spain Brain and Cognition, Pompeu Fabra University, Barcelona, Spain; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Universitat Pompeu Fabra, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - Chu-Chung Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Jianfeng Feng
- Department of Computer Science, University of Warwick, Coventry, UK; Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Brooks SJ, Tian L, Parks SM, Stamoulis C. Parental religiosity is associated with changes in youth functional network organization and cognitive performance in early adolescence. Sci Rep 2022; 12:17305. [PMID: 36243789 PMCID: PMC9569366 DOI: 10.1038/s41598-022-22299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 10/12/2022] [Indexed: 01/10/2023] Open
Abstract
Parental religious beliefs and practices (religiosity) may have profound effects on youth, especially in neurodevelopmentally complex periods such as adolescence. In n = 5566 children (median age = 120.0 months; 52.1% females; 71.2% with religious affiliation) from the Adolescent Brain Cognitive Development study, relationships between parental religiosity and non-religious beliefs on family values (data on youth beliefs were not available), topological properties of youth resting-state brain networks, and executive function, inhibitory control, and cognitive flexibility were investigated. Lower caregiver education and family income were associated with stronger parental beliefs (p < 0.01). Strength of both belief types was correlated with lower efficiency, community structure, and robustness of frontoparietal control, temporoparietal, and dorsal attention networks (p < 0.05), and lower Matrix Reasoning scores. Stronger religious beliefs were negatively associated (directly and indirectly) with multiscale properties of salience and default-mode networks, and lower Flanker and Dimensional Card Sort scores, but positively associated with properties of the precuneus. Overall, these effects were small (Cohen's d ~ 0.2 to ~ 0.4). Overlapping neuromodulatory and cognitive effects of parental beliefs suggest that early adolescents may perceive religious beliefs partly as context-independent rules on expected behavior. However, religious beliefs may also differentially affect cognitive flexibility, attention, and inhibitory control and their neural substrates.
Collapse
Affiliation(s)
- Skylar J. Brooks
- grid.2515.30000 0004 0378 8438Division of Adolescent Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA USA
| | - Luyao Tian
- grid.2515.30000 0004 0378 8438Division of Adolescent Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA USA ,Massachusetts Institution of Technology, Cambridge, MA USA
| | - Sean M. Parks
- grid.2515.30000 0004 0378 8438Division of Adolescent Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA USA ,Massachusetts Institution of Technology, Cambridge, MA USA
| | - Catherine Stamoulis
- Massachusetts Institution of Technology, Cambridge, MA USA ,grid.38142.3c000000041936754XHarvard Medical School, Boston, MA USA ,grid.2515.30000 0004 0378 8438Department of Pediatrics, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115 USA
| |
Collapse
|
19
|
Rolls ET. The hippocampus, ventromedial prefrontal cortex, and episodic and semantic memory. Prog Neurobiol 2022; 217:102334. [PMID: 35870682 DOI: 10.1016/j.pneurobio.2022.102334] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/07/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022]
Abstract
The human ventromedial prefrontal cortex (vmPFC)/anterior cingulate cortex is implicated in reward and emotion, but also in memory. It is shown how the human orbitofrontal cortex connecting with the vmPFC and anterior cingulate cortex provide a route to the hippocampus for reward and emotional value to be incorporated into episodic memory, enabling memory of where a reward was seen. It is proposed that this value component results in primarily episodic memories with some value component to be repeatedly recalled from the hippocampus so that they are more likely to become incorporated into neocortical semantic and autobiographical memories. The same orbitofrontal and anterior cingulate regions also connect in humans to the septal and basal forebrain cholinergic nuclei, thereby helping to consolidate memory, and helping to account for why damage to the vMPFC impairs memory. The human hippocampus and vmPFC thus contribute in complementary ways to forming episodic and semantic memories.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK; University of Warwick, Department of Computer Science, Coventry, UK.
| |
Collapse
|
20
|
Rolls ET, Deco G, Huang CC, Feng J. The human language effective connectome. Neuroimage 2022; 258:119352. [PMID: 35659999 DOI: 10.1016/j.neuroimage.2022.119352] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/31/2022] [Indexed: 01/07/2023] Open
Abstract
To advance understanding of brain networks involved in language, the effective connectivity between 26 cortical regions implicated in language by a community analysis and 360 cortical regions was measured in 171 humans from the Human Connectome Project, and complemented with functional connectivity and diffusion tractography, all using the HCP multimodal parcellation atlas. A (semantic) network (Group 1) involving inferior cortical regions of the superior temporal sulcus cortex (STS) with the adjacent inferior temporal visual cortex TE1a and temporal pole TG, and the connected parietal PGi region, has effective connectivity with inferior temporal visual cortex (TE) regions; with parietal PFm which also has visual connectivity; with posterior cingulate cortex memory-related regions; with the frontal pole, orbitofrontal cortex, and medial prefrontal cortex; with the dorsolateral prefrontal cortex; and with 44 and 45 for output regions. It is proposed that this system can build in its temporal lobe (STS and TG) and parietal parts (PGi and PGs) semantic representations of objects incorporating especially their visual and reward properties. Another (semantic) network (Group 3) involving superior regions of the superior temporal sulcus cortex and more superior temporal lobe regions including STGa, auditory A5, TPOJ1, the STV and the Peri-Sylvian Language area (PSL) has effective connectivity with auditory areas (A1, A4, A5, Pbelt); with relatively early visual areas involved in motion, e.g., MT and MST, and faces/words (FFC); with somatosensory regions (frontal opercular FOP, insula and parietal PF); with other TPOJ regions; and with the inferior frontal gyrus regions (IFJa and IFSp). It is proposed that this system builds semantic representations specialising in auditory and related facial motion information useful in theory of mind and somatosensory / body image information, with outputs directed not only to regions 44 and 45, but also to premotor 55b and midcingulate premotor cortex. Both semantic networks (Groups 1 and 3) have access to the hippocampal episodic memory system via parahippocampal TF. A third largely frontal network (Group 2) (44, 45, 47l; 55b; the Superior Frontal Language region SFL; and including temporal pole TGv) receives effective connectivity from the two semantic systems, and is implicated in syntax and speech output.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK; Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK; Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200403, China.
| | - Gustavo Deco
- Department of Information and Communication Technologies, Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona 08018, Spain; Brain and Cognition, Pompeu Fabra University, Barcelona 08018, Spain; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Universitat Pompeu Fabra, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - Chu-Chung Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200602, China
| | - Jianfeng Feng
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK; Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200403, China
| |
Collapse
|
21
|
Ginkgo Biloba Extract Reduces Cardiac and Brain Inflammation in Rats Fed a HFD and Exposed to Chronic Mental Stress through NF-κB Inhibition. Mediators Inflamm 2022; 2022:2408598. [PMID: 35677735 PMCID: PMC9168192 DOI: 10.1155/2022/2408598] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/04/2022] [Indexed: 12/26/2022] Open
Abstract
Background Cardiac and brain inflammation can lead to a host of deleterious health effects. Our formal experimental research showed that Ginkgo Biloba Extract (GBE) contributed to the reduction of inflammation in mice with myocardial infarction along with depression. This study is aimed at expanding on these findings via analysis of the cardiac and brain inflammation, which was prevented by GBE in rats suffering with a high-fat diet (HFD) combined with unpredictable chronic mild stress (UCMS). Methods Fifty male Wistar rats were randomly divided into 5 groups treated with normal diet, UCMS, HFD, HFD+UCMS, or HFD+UCMS+GBE respectively. Rats treated with HFD were fed a high-fat diet for 10 or 13 weeks. Rats treated with UCMS were exposed to 8 types of chronic physical and psychological stressors for 10 or 13 weeks. The HFD+UCMS+GBE group was given GBE via intragastric gavage for 8 consecutive weeks. Sucrose preference was established for the assessment of depressive behaviors. The heart function was evaluated by echocardiography. The rats were terminated at the end of the 10th or 13th week. The blood was used for detecting low-density lipoprotein cholesterol (LDL-c) and total cholesterol (TCHO) by the kit instructions; Helper T Lymphocytes (TH cells, CD3+CD4+) by flow cytometry; and Interleukin- (IL-) 1β, IL-37, IL-38, NT-proBNP, hs-cTNI, and Ischemia-modified albumin (IMA) by enzyme-linked immunosorbent assay (ELISA). The cardiac tissues were used for detecting IL-1β, nuclear factor kappa B (NF-κB), inhibitor molecule protein (IκB), and IL-1 receptor (IL-1R) by ELISA and P65, P-P65, IκB, and phosphorylated inhibitor molecule protein α (P-IκBα) for western blotting. Cortex tissues were used for detecting 8-iso-prostaglandinF2α (8-iso-PGF2α) by ELISA. Oil Red staining was carried out to evaluate the lipid deposits in the rats' aortic arteries. Sirius Red staining was performed to display collagen fibers in the arteries. Hematoxylin and Eosin (HE) staining was applied to reveal pathological changes to arteries and cardiac tissue. Immunohistochemical staining was employed to assess the distribution of inflammatory cytokine IL-1β in arteries and cardiac tissues. Transmission Electron Microscopy (TEM) was performed to observe the ultrastructure of hippocampal cornu ammonis (CA)1 (CA1) neurons. Results In the rats with HFD+UCMS+GBE, over 13 weeks, GBE exerted a protective role of both the heart and brain, by attenuating cardiac inflammation and brain oxidative stress. Levels of Helper T lymphocytes and serum anti-inflammatory cytokines involving IL-37 and IL-38 were all elevated, and the depressive behaviors of HFD+UCMS rats were attenuated by GBE. This protective role was accomplished via inhibition of the canonical NF-κB signaling pathway, through downregulation of the expressions of P-P65 and P-IκB-α in the heart, hippocampus, cortex, and hypothalamus. Conclusions This study suggests that GBE poses a protective role from the various pathologies associated with high-fat diets, unpredictable chronic mild stress, and depression, possibly via improving peripheral immunity and reducing cardiac and brain inflammation.
Collapse
|
22
|
Zha R, Li P, Liu Y, Alarefi A, Zhang X, Li J. The orbitofrontal cortex represents advantageous choice in the Iowa gambling task. Hum Brain Mapp 2022; 43:3840-3856. [PMID: 35476367 PMCID: PMC9294296 DOI: 10.1002/hbm.25887] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/19/2022] [Accepted: 03/18/2022] [Indexed: 01/26/2023] Open
Abstract
A good‐based model, the central neurobiological model of economic decision‐making, proposes that the orbitofrontal cortex (OFC) represents binary choice outcome, that is, the chosen good. A good is defined by a group of determinants characterizing the conditions in which the commodity is offered, including commodity type, cost, risk, time delay, and ambiguity. Previous studies have found that the OFC represents the binary choice outcome in decision‐making tasks involving commodity type, cost, risk, and delay. Real‐life decisions are often complex and involve uncertainty, rewards, and penalties; however, whether the OFC represents binary choice outcomes in a complex decision‐making situation, for example, Iowa gambling task (IGT), remains unclear. Here, we propose that the OFC represents binary choice outcome, that is, advantageous choice versus disadvantageous choice, in the IGT. We propose two hypotheses: first, the activity pattern in the human OFC represents an advantageous choice; and second, choice induces an OFC‐related functional network. Using functional magnetic resonance imaging and advanced machine‐learning tools, we found that the OFC represented an advantageous choice in the IGT. The OFC representation of advantageous choice was related to decision‐making performance. Choice modulated the functional connectivity between the OFC and the superior medial gyrus. In conclusion, the OFC represents an advantageous choice during the IGT. In the framework of a good‐based model, the results extend the role of the OFC to complex decision‐making situation when making a binary choice.
Collapse
Affiliation(s)
- Rujing Zha
- Department of Radiology, the First Affiliated Hospital of USTC, Department of Psychology, School of Humanities & Social Science, Division of Life Science and Medicine, University of Science & Technology of China, Hefei, Anhui, China
| | - Peng Li
- Department of Automation, School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Ying Liu
- Department of Radiology, the First Affiliated Hospital of USTC, Department of Psychology, School of Humanities & Social Science, Division of Life Science and Medicine, University of Science & Technology of China, Hefei, Anhui, China
| | - Abdulqawi Alarefi
- Department of Radiology, the First Affiliated Hospital of USTC, Department of Psychology, School of Humanities & Social Science, Division of Life Science and Medicine, University of Science & Technology of China, Hefei, Anhui, China
| | - Xiaochu Zhang
- Department of Radiology, the First Affiliated Hospital of USTC, Department of Psychology, School of Humanities & Social Science, Division of Life Science and Medicine, University of Science & Technology of China, Hefei, Anhui, China.,Application Technology Center of Physical Therapy to Brain Disorders, Institute of Advanced Technology, University of Science & Technology of China, Hefei, Anhui, China.,Hefei Medical Research Center on Alcohol Addiction, Affiliated Psychological Hospital of Anhui Medical University, Hefei Fourth People's Hospital, Anhui Mental Health Center, Hefei, Anhui, China.,Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei, Anhui, China
| | - Jun Li
- Department of Automation, University of Science and Technology of China, Hefei, China
| |
Collapse
|
23
|
Caretta A, Mucignat-Caretta C. Not Only COVID-19: Involvement of Multiple Chemosensory Systems in Human Diseases. Front Neural Circuits 2022; 16:862005. [PMID: 35547642 PMCID: PMC9081982 DOI: 10.3389/fncir.2022.862005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Chemosensory systems are deemed marginal in human pathology. In appraising their role, we aim at suggesting a paradigm shift based on the available clinical and experimental data that will be discussed. Taste and olfaction are polymodal sensory systems, providing inputs to many brain structures that regulate crucial visceral functions, including metabolism but also endocrine, cardiovascular, respiratory, and immune systems. Moreover, other visceral chemosensory systems monitor different essential chemical parameters of “milieu intérieur,” transmitting their data to the brain areas receiving taste and olfactory inputs; hence, they participate in regulating the same vital functions. These chemosensory cells share many molecular features with olfactory or taste receptor cells, thus they may be affected by the same pathological events. In most COVID-19 patients, taste and olfaction are disturbed. This may represent only a small portion of a broadly diffuse chemosensory incapacitation. Indeed, many COVID-19 peculiar symptoms may be explained by the impairment of visceral chemosensory systems, for example, silent hypoxia, diarrhea, and the “cytokine storm”. Dysregulation of chemosensory systems may underlie the much higher mortality rate of COVID-19 Acute Respiratory Distress Syndrome (ARDS) compared to ARDSs of different origins. In chronic non-infectious diseases like hypertension, diabetes, or cancer, the impairment of taste and/or olfaction has been consistently reported. This may signal diffuse chemosensory failure, possibly worsening the prognosis of these patients. Incapacitation of one or few chemosensory systems has negligible effects on survival under ordinary life conditions but, under stress, like metabolic imbalance or COVID-19 pneumonia, the impairment of multiple chemosensory systems may lead to dire consequences during the course of the disease.
Collapse
Affiliation(s)
- Antonio Caretta
- National Institute for Biostructures and Biosystems (NIBB), Rome, Italy
- Department of Food and Drug Science, University of Parma, Parma, Italy
| | - Carla Mucignat-Caretta
- National Institute for Biostructures and Biosystems (NIBB), Rome, Italy
- Department of Molecular Medicine, University of Padova, Padua, Italy
- *Correspondence: Carla Mucignat-Caretta,
| |
Collapse
|