1
|
Fu T, Fu X, Gao J, Zhao S, Hu C, Li J, Xing L. Asthma causally affects the brain cortical structure: a Mendelian randomization study. J Asthma 2025:1-13. [PMID: 40226995 DOI: 10.1080/02770903.2025.2493123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
OBJECTIVE The potential causal relationship between asthma and brain structures remains uncertain. We performed a two-sample Mendelian randomization to investigate the causal effects of various asthma phenotypes - unspecified asthma, moderate-to-severe asthma, childhood-onset asthma, and adult-onset asthma (AOA) - on cerebral cortex structure. METHODS We utilized phenotype data derived from genome-wide association studies (GWASs). The ENIGMA Consortium GWAS provided outcome variables for surface area (SA) and thickness across the whole brain and 34 region-specific areas of the cerebral cortex. Using the inverse variance-weighted method as our primary estimation approach, we employed several techniques, including Cochran's Q statistic, the MR-PRESSO global test, MR-Egger, and weighted median, to assess heterogeneity and pleiotropy, thereby ensuring the robustness of our findings. Additionally, we conducted enrichment analyses of gene sets with causal effects on cortical structure and applied bioinformatics techniques to construct interaction networks and identify hub nodes. RESULTS At the global level, AOA was associated with a significant reduction in full cortical SA (β = -58.49 mm2, p = 0.017). In regional analyses, moderate-to-severe asthma exhibited a more pronounced impact on the cerebral cortex compared to other phenotypes. Enrichment analysis revealed that pathways implicated in brain morphology among asthma patients were primarily linked to immune and inflammation-driven pathways. CONCLUSIONS Our findings provide new evidence supporting a causal relationship between asthma and alterations in cortical structure, offering potential explanations for cognitive and psychiatric impairments observed in individual post-asthma.
Collapse
Affiliation(s)
- Tingting Fu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao Fu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Gao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shilong Zhao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunling Hu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junlu Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lihua Xing
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Younger DS. Pediatric early-onset neuropsychiatric obsessive compulsive disorders. J Psychiatr Res 2025; 186:84-97. [PMID: 40222306 DOI: 10.1016/j.jpsychires.2025.03.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/06/2025] [Accepted: 03/25/2025] [Indexed: 04/15/2025]
Abstract
At the time of this writing, most pediatricians or child psychiatrists will probably have treated a child with early acute-onset obsessive compulsive disorder (OCD) behaviors due to the pediatric autoimmune neuropsychiatric disorder associated with Group A beta-hemolytic streptococcus, abbreviated PANDAS, described more than two decades ago; or Tourette syndrome, incorporating motor and vocal tics, described more than a century ago. One typically self-limited post-infectious OCD resulting from exposure to other putative microbial disease triggers defines PANS, abbreviating pediatric autoimmune neuropsychiatric syndrome. Tourette syndrome, PANDAS and PANS share overlapping neuroimaging features of hypometabolism of the medial temporal lobe and hippocampus on brain 18Fluorodeoxyglucose positron emission tomography fused to magnetic resonance imaging (PET/MRI) consistent with involvement of common central nervous system (CNS) pathways for the shared clinical expression of OCD. The field of pediatric neuropsychiatric disorders manifesting OCD behaviors is at a crossroads commensurate with recent advances in the neurobiology of the medial temporal area, with its wide-ranging connectivity and cortical cross-talk, and CNS immune responsiveness through resident microglia. This review advances the field of pediatric neuropsychiatric disorders and in particular PANS, by providing insights through clinical vignettes and descriptive clinical and neuroimaging correlations from the author's file. Neuroscience collaborations with child psychiatry and infectious disease practitioners are needed to design clinical trials with the necessary rigor to provide meaningful insights into the rational clinical management of PANS with the aim of developing evidence-based guidelines for the clinical management of early, abrupt-onset childhood OCD to avert potentially life-long neuropsychological struggles.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, And the Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, USA.
| |
Collapse
|
3
|
Willbrand EH, Kelly JP, Chen X, Zhen Z, Jiahui G, Duchaine B, Weiner KS. Gyral crowns contribute to the cortical infrastructure of human face processing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.20.644439. [PMID: 40166184 PMCID: PMC11957131 DOI: 10.1101/2025.03.20.644439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Neuroanatomical features across spatial scales contribute to functional specialization and individual differences in behavior across species. Among species with gyrencephalic brains, gyral crown height, which measures a key aspect of the morphology of cortical folding, may represent an anatomical characteristic that importantly shapes neural function. Nevertheless, little is known about the relationship between functional selectivity and gyral crowns-especially in clinical populations. Here, we investigated this relationship and found that the size and gyral crown height of the middle, but not posterior, face-selective region on the fusiform gyrus (FG) was smaller in individuals with developmental prosopagnosia (DPs; N = 22, 68% female, aged 25-62) compared to neurotypical controls (NTs; N = 25, 60% females, aged 21-55), and this difference was related to face perception. Additional analyses replicated the relationship between gyral crowns and face selectivity in 1,053 NTs (55% females, aged 22-36). These results inform theoretical models of face processing while also providing a novel neuroanatomical feature contributing to the cortical infrastructure supporting face processing.
Collapse
Affiliation(s)
- Ethan H. Willbrand
- Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI, USA
| | - Joseph P. Kelly
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Xiayu Chen
- Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Zonglei Zhen
- Faculty of Psychology, Beijing Normal University, Beijing, China
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Guo Jiahui
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Brad Duchaine
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Kevin S. Weiner
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
- Department of Psychology, University of California Berkeley, Berkeley, CA, USA
- Department of Neuroscience, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
4
|
Giampiccolo D, Herbet G, Duffau H. The inferior fronto-occipital fasciculus: bridging phylogeny, ontogeny and functional anatomy. Brain 2025:awaf055. [PMID: 39932875 DOI: 10.1093/brain/awaf055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 12/27/2024] [Accepted: 01/24/2025] [Indexed: 02/13/2025] Open
Abstract
The inferior-fronto-occipital fasciculus is a long-range white matter tract that connects the prefrontal cortex with parietal, posterior temporal and occipital cortices. First identified in the nineteenth century through the pioneering studies of Mayo and Meynert using blunt dissection, its anatomy and function remain contentious topics. Structurally, its projections are well-documented in human blunt dissection and tractography literature, yet its existence has been questioned by tract-tracing studies in macaques. Functionally, while traditional results from direct white matter stimulation during awake surgery suggested a contribution to language, recent evidence from stimulation and lesion data may indicate a broader role in executive control, extending to attention, motor cognition, memory, reading, emotion recognition, and theory of mind. This review begins by examining anatomical evidence suggesting that the inferior fronto-occipital fasciculus evolved in non-human primates to connect temporal and occipital cortices to prefrontal regions involved in context-dependent selection of visual features for action. We then integrate developmental, electrophysiological, functional and anatomical evidence for the human inferior fronto-occipital fasciculus to propose it has a similar role in manipulation of visual features in our species-particularly when inhibition of overriding but task-irrelevant stimuli is required to prioritize a second, task-relevant stimulus. Next, we introduce a graded model in which dorsal (orbitofrontal, superior and middle frontal to precuneal, angular and supero-occipital projections) and ventral (inferior frontal to posterotemporal, basal temporal and infero-occipital) projections of the inferior fronto-occipital fasciculus support perceptual or conceptual control of visual representations for action, respectively. Leveraging this model, we address controversies in the current literature regarding language, motor cognition, attention and emotion under the unifying view of cognitive control. Finally, we discuss surgical implications for this model and its impact on predicting and preventing neurological deficits in neurosurgery.
Collapse
Affiliation(s)
- Davide Giampiccolo
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG UK
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG UK
- Department of Neurosurgery, Institute of Neuroscience, Cleveland Clinic London, Grosvenor Place, London, SW1X 7HY, UK
| | - Guillaume Herbet
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, 34295, France
- Institut Universitaire de France, Paris, 75005 France
- University of Montpellier, Department of Medicine, Campus ADV, Montpellier, 34090 France
- Praxiling Laboratory, UMR 5267, CNRS, Paul Valéry University, Montpellier, 34090, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, 34295, France
- Institute of Functional Genomics, University of Montpellier, INSERM, CNRS, Montpellier, 34000, France
| |
Collapse
|
5
|
Wang J, Li H, Cecil KM, Altaye M, Parikh NA, He L. DFC-Igloo: A dynamic functional connectome learning framework for identifying neurodevelopmental biomarkers in very preterm infants. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 257:108479. [PMID: 39489076 PMCID: PMC11563839 DOI: 10.1016/j.cmpb.2024.108479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 10/04/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND AND OBJECTIVE Very preterm infants are susceptible to neurodevelopmental impairments, necessitating early detection of prognostic biomarkers for timely intervention. The study aims to explore possible functional biomarkers for very preterm infants at born that relate to their future cognitive and motor development using resting-state fMRI. Prior studies are limited by the sample size and suffer from efficient functional connectome (FC) construction algorithms that can handle the noisy data contained in neonatal time series, leading to equivocal findings. Therefore, we first propose an enhanced functional connectome construction algorithm as a prerequisite step. We then apply the new FC construction algorithm to our large prospective very preterm cohort to explore multi-level neurodevelopmental biomarkers. METHODS There exists an intrinsic relationship between the structural connectome (SC) and FC, with a notable coupling between the two. This observation implies a putative property of graph signal smoothness on the SC as well. Yet, this property has not been fully exploited for constructing intrinsic dFC. In this study, we proposed an advanced dynamic FC (dFC) learning model, dFC-Igloo, which leveraged SC information to iteratively refine dFC estimations by applying graph signal smoothness to both FC and SC. The model was evaluated on artificial small-world graphs and simulated graph signals. RESULTS The proposed model achieved the best and most robust recovery of the ground truth graph across different noise levels and simulated SC pairs from the simulation. The model was further applied to a cohort of very preterm infants from five Neonatal Intensive Care Units, where an enhanced dFC was obtained for each infant. Based on the improved dFC, we identified neurodevelopmental biomarkers for neonates across connectome-wide, regional, and subnetwork scales. CONCLUSION The identified markers correlate with cognitive and motor developmental outcomes, offering insights into early brain development and potential neurodevelopmental challenges.
Collapse
Affiliation(s)
- Junqi Wang
- Imaging research center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hailong Li
- Imaging research center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Artificial Intelligence Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kim M Cecil
- Imaging research center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mekibib Altaye
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nehal A Parikh
- Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lili He
- Imaging research center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Artificial Intelligence Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Computer Science, Biomedical Engineering, Biomedical Informatics, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
6
|
Maldonado IL, Descoteaux M, Rheault F, Zemmoura I, Benn A, Margulies D, Boré A, Duffau H, Mandonnet E. Multimodal study of multilevel pulvino-temporal connections: a new piece in the puzzle of lexical retrieval networks. Brain 2024; 147:2245-2257. [PMID: 38243610 PMCID: PMC11146422 DOI: 10.1093/brain/awae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/18/2023] [Accepted: 12/30/2023] [Indexed: 01/21/2024] Open
Abstract
Advanced methods of imaging and mapping the healthy and lesioned brain have allowed for the identification of the cortical nodes and white matter tracts supporting the dual neurofunctional organization of language networks in a dorsal phonological and a ventral semantic stream. Much less understood are the anatomical correlates of the interaction between the two streams; one hypothesis being that of a subcortically mediated interaction, through crossed cortico-striato-thalamo-cortical and cortico-thalamo-cortical loops. In this regard, the pulvinar is the thalamic subdivision that has most regularly appeared as implicated in the processing of lexical retrieval. However, descriptions of its connections with temporal (language) areas remain scarce. Here we assess this pulvino-temporal connectivity using a combination of state-of-the-art techniques: white matter stimulation in awake surgery and postoperative diffusion MRI (n = 4), virtual dissection from the Human Connectome Project 3 and 7 T datasets (n = 172) and operative microscope-assisted post-mortem fibre dissection (n = 12). We demonstrate the presence of four fundamental fibre contingents: (i) the anterior component (Arnold's bundle proper) initially described by Arnold in the 19th century and destined to the anterior temporal lobe; (ii) the optic radiations-like component, which leaves the pulvinar accompanying the optical radiations and reaches the posterior basal temporal cortices; (iii) the lateral component, which crosses the temporal stem orthogonally and reaches the middle temporal gyrus; and (iv) the auditory radiations-like component, which leaves the pulvinar accompanying the auditory radiations to the superomedial aspect of the temporal operculum, just posteriorly to Heschl's gyrus. Each of those components might correspond to a different level of information processing involved in the lexical retrieval process of picture naming.
Collapse
Affiliation(s)
- Igor Lima Maldonado
- UMR 1253, iBrain, Université de Tours, Inserm, 37000 Tours, France
- Department of Neurosurgery, CHRU de Tours, 37000 Tours, France
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Laboratory, Department of Computer Science, Faculty of Sciences, Université de Sherbrooke, J1K 2X9 Sherbrooke, Quebec, Canada
- Imeka Solutions, J1H 4A7 Sherbrooke, Quebec, Canada
| | | | - Ilyess Zemmoura
- UMR 1253, iBrain, Université de Tours, Inserm, 37000 Tours, France
- Department of Neurosurgery, CHRU de Tours, 37000 Tours, France
| | - Austin Benn
- CNRS, Integrative Neuroscience and Cognition Center (UMR 8002), Université de Paris Cité, 75006 Paris, France
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, OX1 3QD Oxford, UK
| | - Daniel Margulies
- CNRS, Integrative Neuroscience and Cognition Center (UMR 8002), Université de Paris Cité, 75006 Paris, France
| | - Arnaud Boré
- Sherbrooke Connectivity Imaging Laboratory, Department of Computer Science, Faculty of Sciences, Université de Sherbrooke, J1K 2X9 Sherbrooke, Quebec, Canada
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 34090 Montpellier, France
- Team ‘Plasticity of Central Nervous System, Stem Cells and Glial Tumors’, U1191 Laboratory, Institute of Functional Genomics, National Institute for Health and Medical Research (INSERM), University of Montpellier, 34000, Montpellier, France
| | - Emmanuel Mandonnet
- Department of Neurosurgery, Lariboisière Hospital, AP-HP, 75010 Paris, France
- Frontlab, CNRS UMR 7225, INSERM U1127, Paris Brain Institute (ICM), 75013 Paris, France
- UFR Médecine, Université de Paris Cité, 75006 Paris, France
| |
Collapse
|
7
|
Li H, Wang J, Li Z, Cecil KM, Altaye M, Dillman JR, Parikh NA, He L. Supervised contrastive learning enhances graph convolutional networks for predicting neurodevelopmental deficits in very preterm infants using brain structural connectome. Neuroimage 2024; 291:120579. [PMID: 38537766 PMCID: PMC11059107 DOI: 10.1016/j.neuroimage.2024.120579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/15/2024] [Accepted: 03/15/2024] [Indexed: 04/13/2024] Open
Abstract
Very preterm (VPT) infants (born at less than 32 weeks gestational age) are at high risk for various adverse neurodevelopmental deficits. Unfortunately, most of these deficits cannot be accurately diagnosed until the age of 2-5 years old. Given the benefits of early interventions, accurate diagnosis and prediction soon after birth are urgently needed for VPT infants. Previous studies have applied deep learning models to learn the brain structural connectome (SC) to predict neurodevelopmental deficits in the preterm population. However, none of these models are specifically designed for graph-structured data, and thus may potentially miss certain topological information conveyed in the brain SC. In this study, we aim to develop deep learning models to learn the SC acquired at term-equivalent age for early prediction of neurodevelopmental deficits at 2 years corrected age in VPT infants. We directly treated the brain SC as a graph, and applied graph convolutional network (GCN) models to capture complex topological information of the SC. In addition, we applied the supervised contrastive learning (SCL) technique to mitigate the effects of the data scarcity problem, and enable robust training of GCN models. We hypothesize that SCL will enhance GCN models for early prediction of neurodevelopmental deficits in VPT infants using the SC. We used a regional prospective cohort of ∼280 VPT infants who underwent MRI examinations at term-equivalent age from the Cincinnati Infant Neurodevelopment Early Prediction Study (CINEPS). These VPT infants completed neurodevelopmental assessment at 2 years corrected age to evaluate cognition, language, and motor skills. Using the SCL technique, the GCN model achieved mean areas under the receiver operating characteristic curve (AUCs) in the range of 0.72∼0.75 for predicting three neurodevelopmental deficits, outperforming several competing models. Our results support our hypothesis that the SCL technique is able to enhance the GCN model in our prediction tasks.
Collapse
Affiliation(s)
- Hailong Li
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Artificial Intelligence Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Junqi Wang
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Zhiyuan Li
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Computer Science, University of Cincinnati, Cincinnati, OH, USA
| | - Kim M Cecil
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mekibib Altaye
- Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jonathan R Dillman
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Artificial Intelligence Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Nehal A Parikh
- Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lili He
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Artificial Intelligence Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Computer Science, University of Cincinnati, Cincinnati, OH, USA; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA; Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
8
|
Zhou X, Yang Y, Zhu F, Chen X, Zhu Y, Gui T, Li Y, Xue Q. Neurometabolic and Brain Functional Alterations Associated with Cognitive Impairment in Patients with Myasthenia Gravis: A Combined 1H-MRS and fMRI Study. Neuroscience 2024; 544:12-27. [PMID: 38423165 DOI: 10.1016/j.neuroscience.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/04/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Whether patients with myasthenia gravis (MG) exhibit cognitive impairment is controversial. Also the underlying mechanisms are unknown. We aimed to investigate alterations in cognitive function, neurometabolite levels, and brain function in patients with MG and to explore the associations between abnormal regional brain functional activity, neurometabolite concentrations in the MPFC and left thalamus, and cognitive activity in patients with MG. Neuropsychological tests, proton magnetic resonance spectroscopy, and resting-state functional magnetic resonance imaging were performed on 41 patients with MG and 45 race-, sex-, age-, and education-matched healthy controls (HCs). The results suggest that MG is accompanied by cognitive decline, as indicated by global cognitive function, visual-spatial function, language, memory, abnormalities in regional brain functional activity, and neurometabolite alterations (including GABA, NAA, and Cho) in the medial prefrontal cortex (MPFC) and left thalamus. Cognitive impairment in patients with MG may be related to abnormal regional brain functional activity and changes in neurometabolites, and regional brain functional activity may be modulated by specific neurometabolites.
Collapse
Affiliation(s)
- Xiaoling Zhou
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China; Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215000, China
| | - Yang Yang
- Department of Radiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, China
| | - Feng Zhu
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Xiang Chen
- Department of Radiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Yunfei Zhu
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Tiantian Gui
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Yonggang Li
- Department of Radiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China.
| | - Qun Xue
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China.
| |
Collapse
|
9
|
Bonosi L, Torrente A, Brighina F, Tito Petralia CC, Merlino P, Avallone C, Gulino V, Costanzo R, Brunasso L, Iacopino DG, Maugeri R. Corticocortical Evoked Potentials in Eloquent Brain Tumor Surgery. A Systematic Review. World Neurosurg 2024; 181:38-51. [PMID: 37832637 DOI: 10.1016/j.wneu.2023.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
Eloquent brain tumor surgery involves the delicate task of resecting tumors located in regions of the brain responsible for critical functions, such as language, motor control, and sensory perception. Preserving these functions is of paramount importance to maintain the patient's quality of life. Corticocortical evoked potentials (CCEPs) have emerged as a valuable intraoperative monitoring technique that aids in identifying and preserving eloquent cortical areas during surgery. This systematic review aimed to assess the utility of CCEPs in eloquent brain tumor surgery and determine their effectiveness in improving patient outcomes. A comprehensive literature search was conducted using electronic databases, including PubMed/Medline and Scopus. The search strategy identified 11 relevant articles for detailed analysis. The findings of the included studies consistently demonstrated the potential of CCEPs in guiding surgical decision making, minimizing the risk of postoperative neurological deficits, and mapping functional connectivity during surgery. However, further research and standardization are needed to fully establish the clinical benefits and refine the implementation of CCEPs in routine neurosurgical practice.
Collapse
Affiliation(s)
- Lapo Bonosi
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, School of Medicine, University of Palermo, Palermo, Italy.
| | - Angelo Torrente
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Filippo Brighina
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Cateno Concetto Tito Petralia
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, School of Medicine, University of Palermo, Palermo, Italy
| | - Pietro Merlino
- Department of Neuroscience, Psychology, Pharmacology and Child Health, Neurosurgery Clinic, Careggi University Hospital and University of Florence, Florence, Italy
| | - Chiara Avallone
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, School of Medicine, University of Palermo, Palermo, Italy
| | - Vincenzo Gulino
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, School of Medicine, University of Palermo, Palermo, Italy
| | - Roberta Costanzo
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, School of Medicine, University of Palermo, Palermo, Italy
| | - Lara Brunasso
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, School of Medicine, University of Palermo, Palermo, Italy
| | - Domenico Gerardo Iacopino
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, School of Medicine, University of Palermo, Palermo, Italy
| | - Rosario Maugeri
- Department of Biomedicine Neurosciences and Advanced Diagnostics, Neurosurgical Clinic, AOUP "Paolo Giaccone", Post Graduate Residency Program in NeurologiSurgery, School of Medicine, University of Palermo, Palermo, Italy
| |
Collapse
|
10
|
Lawton W, Araujo O, Kufaishi Y. Language Environment and Infants' Brain Structure. J Neurosci 2023; 43:5129-5131. [PMID: 37438100 PMCID: PMC10342219 DOI: 10.1523/jneurosci.0787-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 07/14/2023] Open
Affiliation(s)
- Will Lawton
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Ozzy Araujo
- Undergraduate Life Sciences Program, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Yousif Kufaishi
- Undergraduate Life Sciences Program, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
11
|
Cossette-Roberge H, Li J, Citherlet D, Nguyen DK. Localizing and lateralizing value of auditory phenomena in seizures. Epilepsy Behav 2023; 145:109327. [PMID: 37422934 DOI: 10.1016/j.yebeh.2023.109327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/11/2023] [Accepted: 06/15/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Auditory seizures (AS) are a rare type of focal seizures. AS are classically thought to involve a seizure onset zone (SOZ) in the temporal lobe, but there remain uncertainties about their localizing and lateralizing value. We conducted a narrative literature review with the aim of providing an up-to-date description of the lateralizing and localizing value of AS. METHODS The databases PubMed, Scopus, and Google Scholar were searched for literature on AS in December 2022. All cortical stimulation studies, case reports, and case series were analyzed to assess for auditory phenomena that were suggestive of AS and to evaluate if the lateralization and/or localization of the SOZ could be determined. We classified AS according to their semiology (e.g., simple hallucination versus complex hallucination) and the level of evidence with which the SOZ could be predicted. RESULTS A total of 174 cases comprising 200 AS were analyzed from 70 articles. Across all studies, the SOZ of AS were more often in the left (62%) than in the right (38%) hemisphere. AS heard bilaterally followed this trend. Unilaterally heard AS were more often due to a SOZ in the contralateral hemisphere (74%), although they could also be ipsilateral (26%). The SOZ for AS was not limited to the auditory cortex, nor to the temporal lobe. The areas more frequently involved in the temporal lobe were the superior temporal gyrus (STG) and mesiotemporal structures. Extratemporal locations included parietal, frontal, insular, and rarely occipital structures. CONCLUSION Our review highlighted the complexity of AS and their importance in the identification of the SOZ. Due to the limited data and heterogeneous presentation of AS in the literature, the patterns associated with different AS semiologies warrant further research.
Collapse
Affiliation(s)
- Hélène Cossette-Roberge
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Neurology Division, Centre Hospitalier de l'Université de Sherbrooke (CHUS), Sherbrooke, QC, Canada.
| | - Jimmy Li
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Neurology Division, Centre Hospitalier de l'Université de Sherbrooke (CHUS), Sherbrooke, QC, Canada
| | - Daphné Citherlet
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Dang Khoa Nguyen
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Department of Neurosciences, Université de Montréal, Montreal, QC, Canada; Neurology Division, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| |
Collapse
|
12
|
Younger DS. Pediatric neuropsychiatric disorders with motor and nonmotor phenomena. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:367-387. [PMID: 37620079 DOI: 10.1016/b978-0-323-98817-9.00028-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The concept of pediatric autoimmune neuropsychiatric disorders associated with group A beta-hemolytic streptococcus (PANDAS) has become seminal since first introduced more than two decades ago. At the time of this writing, most neurologists, pediatricians, psychiatrists, and general pediatricians will probably have heard of this association or treated an affected child with PANDAS. The concept of an acute-onset, and typically self-limited, postinfectious autoimmune neuropsychiatric disorder resembling PANDAS manifesting vocal and motor tics and obsessive-compulsive disorder has broadened to other putative microbes and related endogenous and exogenous disease triggers. These disorders with common features of hypometabolism in the medial temporal lobe and hippocampus in brain 18fluorodeoxyglucose positron emission tomography fused to magnetic resonance imaging (FDG PET-MRI), form a spectrum: with the neuropsychiatric disorder Tourette syndrome and PANDAS with its well-defined etiopathogenesis at one end, and pediatric abrupt-onset neuropsychiatric syndrome (PANS), alone or associated with specific bacterial and viral pathogens, at the other end. The designation of PANS in the absence of a specific trigger, as an exclusionary diagnosis, reflects the current problem in nosology.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| |
Collapse
|