1
|
Braz BA, Hospinal-Santiani M, Martins G, Gogola JL, Valenga MGP, Beirão BCB, Bergamini MF, Marcolino-Junior LH, Thomaz-Soccol V, Soccol CR. Gold-binding peptide as a selective layer for electrochemical detection of SARS-CoV-2 antibodies. Talanta 2023; 257:124348. [PMID: 36801564 PMCID: PMC9918321 DOI: 10.1016/j.talanta.2023.124348] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/12/2023]
Abstract
Electrochemical immunosensors are excellent alternatives to prepare portable platforms used for rapid and inexpensive diagnostic of infectious diseases such as the recently emerged COVID-19. Incorporating synthetic peptides as selective recognition layers combined with nanomaterials such as gold nanoparticles (AuNPs) can significantly enhance the analytical performance of immunosensors. In the present study, an electrochemical immunosensor based on solid-binding peptide was built and evaluated towards SARS-CoV-2 Anti-S antibodies detection. The peptide used as recognition site has two important portions: one based on the viral receptor binding domain (RBD), capable of recognizing antibodies of the spike protein (Anti-S), and another suitable for interacting with gold nanoparticles. Gold-binding peptide (Pept/AuNP) dispersion was used directly to modify a screen-printed carbon electrode (SPE). The voltammetric behavior of the [Fe(CN)6]3-/4- probe after every construction and detection step was recorded using cyclic voltammetry by assessing the stability of the Pept/AuNP as a recognition layer onto the electrode surface. Differential pulse voltammetry was used as a detection technique, and a linear working range from 75 ng mL-1 to 15 μg mL-1 was established, with 1.059 μA dec-1 of sensitivity and R2 = 0.984. The response selectivity against SARS-CoV-2 Anti-S antibodies was investigated in presence of concomitant species. The immunosensor was used to detect SARS-CoV-2 Anti-spike protein (Anti-S) antibodies in human serum samples, successfully differentiating between negative and positive responses of samples at a 95% confidence level. Therefore, the gold-binding peptide is a promising tool to be applied as a selective layer for antibody detection.
Collapse
Affiliation(s)
- Beatriz A Braz
- Laboratory of Electrochemical Sensors (LabSensE), Department of Chemistry, Federal University of Paraná (UFPR), CEP 19032, CEP, 81531-980, Curitiba, PR, Brazil; Molecular Biology Laboratory, Graduate Program in Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), CEP, 81531-980, Curitiba, PR, Brazil
| | - Manuel Hospinal-Santiani
- Molecular Biology Laboratory, Graduate Program in Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), CEP, 81531-980, Curitiba, PR, Brazil
| | - Gustavo Martins
- Laboratory of Electrochemical Sensors (LabSensE), Department of Chemistry, Federal University of Paraná (UFPR), CEP 19032, CEP, 81531-980, Curitiba, PR, Brazil
| | - Jeferson L Gogola
- Laboratory of Electrochemical Sensors (LabSensE), Department of Chemistry, Federal University of Paraná (UFPR), CEP 19032, CEP, 81531-980, Curitiba, PR, Brazil
| | - Marcia G P Valenga
- Laboratory of Electrochemical Sensors (LabSensE), Department of Chemistry, Federal University of Paraná (UFPR), CEP 19032, CEP, 81531-980, Curitiba, PR, Brazil
| | - Breno C B Beirão
- Graduate Program in Microbiology, Parasitology, and Pathology, Federal University of Paraná (UFPR), CEP, 81531-980, Curitiba, PR, Brazil
| | - Márcio F Bergamini
- Laboratory of Electrochemical Sensors (LabSensE), Department of Chemistry, Federal University of Paraná (UFPR), CEP 19032, CEP, 81531-980, Curitiba, PR, Brazil.
| | - Luiz H Marcolino-Junior
- Laboratory of Electrochemical Sensors (LabSensE), Department of Chemistry, Federal University of Paraná (UFPR), CEP 19032, CEP, 81531-980, Curitiba, PR, Brazil.
| | - Vanete Thomaz-Soccol
- Molecular Biology Laboratory, Graduate Program in Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), CEP, 81531-980, Curitiba, PR, Brazil
| | - Carlos R Soccol
- Molecular Biology Laboratory, Graduate Program in Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), CEP, 81531-980, Curitiba, PR, Brazil
| |
Collapse
|
2
|
Bacon A, Wang W, Lee H, Umrao S, Sinawang PD, Akin D, Khemtonglang K, Tan A, Hirshfield S, Demirci U, Wang X, Cunningham BT. Review of HIV Self Testing Technologies and Promising Approaches for the Next Generation. BIOSENSORS 2023; 13:298. [PMID: 36832064 PMCID: PMC9954708 DOI: 10.3390/bios13020298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 05/28/2023]
Abstract
The ability to self-test for HIV is vital to preventing transmission, particularly when used in concert with HIV biomedical prevention modalities, such as pre-exposure prophylaxis (PrEP). In this paper, we review recent developments in HIV self-testing and self-sampling methods, and the potential future impact of novel materials and methods that emerged through efforts to develop more effective point-of-care (POC) SARS-CoV-2 diagnostics. We address the gaps in existing HIV self-testing technologies, where improvements in test sensitivity, sample-to-answer time, simplicity, and cost are needed to enhance diagnostic accuracy and widespread accessibility. We discuss potential paths toward the next generation of HIV self-testing through sample collection materials, biosensing assay techniques, and miniaturized instrumentation. We discuss the implications for other applications, such as self-monitoring of HIV viral load and other infectious diseases.
Collapse
Affiliation(s)
- Amanda Bacon
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Weijing Wang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hankeun Lee
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Saurabh Umrao
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Center for Genomic Diagnostics, Woese Institute for Genomic Biology, Urbana, IL 61801, USA
| | - Prima Dewi Sinawang
- Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Demir Akin
- Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
- Center for Cancer Nanotechnology Excellence for Translational Diagnostics (CCNE-TD), School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Kodchakorn Khemtonglang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Anqi Tan
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sabina Hirshfield
- Special Treatment and Research (STAR) Program, Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, New York, NY 11203, USA
| | - Utkan Demirci
- Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Xing Wang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Center for Genomic Diagnostics, Woese Institute for Genomic Biology, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Brian T. Cunningham
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Center for Genomic Diagnostics, Woese Institute for Genomic Biology, Urbana, IL 61801, USA
| |
Collapse
|
3
|
Alsalameh S, Alnajjar K, Makhzoum T, Al Eman N, Shakir I, Mir TA, Alkattan K, Chinnappan R, Yaqinuddin A. Advances in Biosensing Technologies for Diagnosis of COVID-19. BIOSENSORS 2022; 12:898. [PMID: 36291035 PMCID: PMC9599206 DOI: 10.3390/bios12100898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
The COVID-19 pandemic has severely impacted normal human life worldwide. Due to its rapid community spread and high mortality statistics, the development of prompt diagnostic tests for a massive number of samples is essential. Currently used traditional methods are often expensive, time-consuming, laboratory-based, and unable to handle a large number of specimens in resource-limited settings. Because of its high contagiousness, efficient identification of SARS-CoV-2 carriers is crucial. As the advantages of adopting biosensors for efficient diagnosis of COVID-19 increase, this narrative review summarizes the recent advances and the respective reasons to consider applying biosensors. Biosensors are the most sensitive, specific, rapid, user-friendly tools having the potential to deliver point-of-care diagnostics beyond traditional standards. This review provides a brief introduction to conventional methods used for COVID-19 diagnosis and summarizes their advantages and disadvantages. It also discusses the pathogenesis of COVID-19, potential diagnostic biomarkers, and rapid diagnosis using biosensor technology. The current advancements in biosensing technologies, from academic research to commercial achievements, have been emphasized in recent publications. We covered a wide range of topics, including biomarker detection, viral genomes, viral proteins, immune responses to infection, and other potential proinflammatory biomolecules. Major challenges and prospects for future application in point-of-care settings are also highlighted.
Collapse
Affiliation(s)
| | - Khalid Alnajjar
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Tariq Makhzoum
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Noor Al Eman
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Ismail Shakir
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Tanveer Ahmad Mir
- Laboratory of Tissue/Organ Bioengineering and BioMEMS, Organ Transplant Centre of Excellence, Transplant Research and Innovation Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Raja Chinnappan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
4
|
Braz BA, Hospinal-Santiani M, Martins G, Pinto CS, Zarbin AJG, Beirão BCB, Thomaz-Soccol V, Bergamini MF, Marcolino-Junior LH, Soccol CR. Graphene-Binding Peptide in Fusion with SARS-CoV-2 Antigen for Electrochemical Immunosensor Construction. BIOSENSORS 2022; 12:bios12100885. [PMID: 36291021 PMCID: PMC9599560 DOI: 10.3390/bios12100885] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 06/02/2023]
Abstract
The development of immunosensors to detect antibodies or antigens has stood out in the face of traditional methods for diagnosing emerging diseases such as the one caused by the SARS-CoV-2 virus. The present study reports the construction of a simplified electrochemical immunosensor using a graphene-binding peptide applied as a recognition site to detect SARS-CoV-2 antibodies. A screen-printed electrode was used for sensor preparation by adding a solution of peptide and reduced graphene oxide (rGO). The peptide-rGO suspension was characterized by scanning electron microscopy (SEM), Raman spectroscopy, and Fourier transform infrared spectroscopy (FT-IR). The electrochemical characterization (electrochemical impedance spectroscopy-EIS, cyclic voltammetry-CV and differential pulse voltammetry-DPV) was performed on the modified electrode. The immunosensor response is based on the decrease in the faradaic signal of an electrochemical probe resulting from immunocomplex formation. Using the best set of experimental conditions, the analytic curve obtained showed a good linear regression (r2 = 0.913) and a limit of detection (LOD) of 0.77 μg mL-1 for antibody detection. The CV and EIS results proved the efficiency of device assembly. The high selectivity of the platform, which can be attributed to the peptide, was demonstrated by the decrease in the current percentage for samples with antibody against the SARS-CoV-2 S protein and the increase in the other antibodies tested. Additionally, the DPV measurements showed a clearly distinguishable response in assays against human serum samples, with sera with a response above 95% being considered negative, whereas responses below this value were considered positive. The diagnostic platform developed with specific peptides is promising and has the potential for application in the diagnosis of other infections that lead to high antibody titers.
Collapse
Affiliation(s)
- Beatriz A. Braz
- Molecular Biology Laboratory, Graduate Program in Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba 81531-980, PR, Brazil
- Laboratory of Electrochemical Sensors (LabSensE), Department of Chemistry, Federal University of Paraná (UFPR), Curitiba 81531-980, PR, Brazil
| | - Manuel Hospinal-Santiani
- Molecular Biology Laboratory, Graduate Program in Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba 81531-980, PR, Brazil
| | - Gustavo Martins
- Laboratory of Electrochemical Sensors (LabSensE), Department of Chemistry, Federal University of Paraná (UFPR), Curitiba 81531-980, PR, Brazil
| | - Cristian S. Pinto
- Materials Chemistry Group (GQM), Department of Chemistry, Federal University of Paraná (UFPR), Curitiba 81531-980, PR, Brazil
| | - Aldo J. G. Zarbin
- Materials Chemistry Group (GQM), Department of Chemistry, Federal University of Paraná (UFPR), Curitiba 81531-980, PR, Brazil
| | - Breno C. B. Beirão
- Graduate Program in Microbiology, Parasitology, and Pathology, Federal University of Paraná (UFPR), Curitiba 81531-980, PR, Brazil
| | - Vanete Thomaz-Soccol
- Molecular Biology Laboratory, Graduate Program in Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba 81531-980, PR, Brazil
| | - Márcio F. Bergamini
- Laboratory of Electrochemical Sensors (LabSensE), Department of Chemistry, Federal University of Paraná (UFPR), Curitiba 81531-980, PR, Brazil
| | - Luiz H. Marcolino-Junior
- Laboratory of Electrochemical Sensors (LabSensE), Department of Chemistry, Federal University of Paraná (UFPR), Curitiba 81531-980, PR, Brazil
| | - Carlos R. Soccol
- Molecular Biology Laboratory, Graduate Program in Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba 81531-980, PR, Brazil
| |
Collapse
|