1
|
Gingerich K, Burke KC, Maunsell FP, Miller-Cushon EK. Individual and group level health factors influence social networks of dairy calves. Sci Rep 2025; 15:7720. [PMID: 40044732 PMCID: PMC11882799 DOI: 10.1038/s41598-025-91513-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 02/19/2025] [Indexed: 03/09/2025] Open
Abstract
Evidence across species supports a relationship between health and social relationships, which may have important welfare implications for intensively housed animals. We evaluated how individual and group-level health factors are related to social behavior of group-housed dairy calves, using social network analysis. Holstein dairy calves (heifer: n = 55; bull: n = 32) were grouped (9 groups; 10 calves/group) at 2 weeks of age until after weaning from milk at 8 weeks of age. To generate social networks, calf positions were recorded continuously using an ultra-wideband positioning system generating undirected pairwise proximity estimates. Individual status and group-level prevalence of clinical respiratory disease, gastrointestinal illness, and lung consolidation were characterized weekly using standard approaches. Mixed-model analysis, following an information theoretic-approach to select predictor values, revealed reduced strength and higher closeness in calves in groups with a higher prevalence of respiratory disease or lung consolidation, whereas individual health status was not a significant predictor. However, eigenvector centrality was lower in calves with lung consolidation during weaning, which was predicted by pre-weaning co-occurrence of respiratory disease and lung consolidation. These results suggest nuance in how multiple health factors, at the individual and group level, influence social network structure in dairy calves.
Collapse
Affiliation(s)
- Katie Gingerich
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Katharine C Burke
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Fiona P Maunsell
- Department of Large Animal Clinical Sciences, School of Veterinary Medicine, University of Florida, Gainesville, 32611, USA
| | | |
Collapse
|
2
|
Charitos IA, Scacco S, Cotoia A, Castellaneta F, Castellana G, Pasqualotto F, Venneri M, Ferrulli A, Aliani M, Santacroce L, Carone M. Intestinal Microbiota Dysbiosis Role and Bacterial Translocation as a Factor for Septic Risk. Int J Mol Sci 2025; 26:2028. [PMID: 40076650 PMCID: PMC11900423 DOI: 10.3390/ijms26052028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/18/2025] [Accepted: 02/22/2025] [Indexed: 03/14/2025] Open
Abstract
The human immune system is closely linked to microbiota such as a complex symbiotic relationship during the coevolution of vertebrates and microorganisms. The transfer of microorganisms from the mother's microbiota to the newborn begins before birth during gestation and is considered the initial phase of the intestinal microbiota (IM). The gut is an important site where microorganisms can establish colonies. The IM contains polymicrobial communities, which show complex interactions with diet and host immunity. The tendency towards dysbiosis of the intestinal microbiota is influenced by local but also extra-intestinal factors such as inflammatory processes, infections, or a septic state that can aggravate it. Pathogens could trigger an immune response, such as proinflammatory responses. In addition, changes in the host immune system also influence the intestinal community and structure with additional translocation of pathogenic and non-pathogenic bacteria. Finally, local intestinal inflammation has been found to be an important factor in the growth of pathogenic microorganisms, particularly in its role in sepsis. The aim of this article is to be able to detect the current knowledge of the mechanisms that can lead to dysbiosis of the intestinal microbiota and that can cause bacterial translocation with a risk of infection or septic state and vice versa.
Collapse
Affiliation(s)
- Ioannis Alexandros Charitos
- Pneumology and Respiratory Rehabilitation Unit, Istituti Clinici Scientifici Maugeri IRCCS, “Istitute” of Bari, 70124 Bari, Italy; (I.A.C.); (G.C.); (F.P.); (M.A.); (M.C.)
- Doctoral School, Applied Neurosciences, University of Bari (UNIBA), 70124 Bari, Italy
| | - Salvatore Scacco
- Dipartimento di Biomedicina Traslazionale e Neuroscienze (DiBraiN), Scuola di Medicina, Università Degli Studi di Bari, Aldo Moro, 70124 Bari, Italy;
- U.O. Medicina, Ospedale Mater Dei-CBH, 70125 Bari, Italy
| | - Antonella Cotoia
- Department of Intensive Care, University Hospital of Foggia, 71121 Foggia, Italy
| | - Francesca Castellaneta
- U.O.C. Servizio di Immunoematologia e Medicina Trasfusionale—S.I.M.T. Ospedale Di Venere, 70131 Bari, Italy;
| | - Giorgio Castellana
- Pneumology and Respiratory Rehabilitation Unit, Istituti Clinici Scientifici Maugeri IRCCS, “Istitute” of Bari, 70124 Bari, Italy; (I.A.C.); (G.C.); (F.P.); (M.A.); (M.C.)
| | - Federico Pasqualotto
- Pneumology and Respiratory Rehabilitation Unit, Istituti Clinici Scientifici Maugeri IRCCS, “Istitute” of Bari, 70124 Bari, Italy; (I.A.C.); (G.C.); (F.P.); (M.A.); (M.C.)
- Department of Public Health and Infectious Diseases, Pulmonary Division, Sapienza University of Rome, Policlinico Umberto I Hospital, Rome, Via del Policlinico 155, 00155 Rome, Italy
| | - Maria Venneri
- Genomics and Proteomics Laboratory, Istituti Clinici Scientifici Maugeri IRCCS, “Istitute” of Bari, 70124 Bari, Italy; (M.V.); (A.F.)
| | - Angela Ferrulli
- Genomics and Proteomics Laboratory, Istituti Clinici Scientifici Maugeri IRCCS, “Istitute” of Bari, 70124 Bari, Italy; (M.V.); (A.F.)
| | - Maria Aliani
- Pneumology and Respiratory Rehabilitation Unit, Istituti Clinici Scientifici Maugeri IRCCS, “Istitute” of Bari, 70124 Bari, Italy; (I.A.C.); (G.C.); (F.P.); (M.A.); (M.C.)
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, The University of Bari, 70124 Bari, Italy;
| | - Mauro Carone
- Pneumology and Respiratory Rehabilitation Unit, Istituti Clinici Scientifici Maugeri IRCCS, “Istitute” of Bari, 70124 Bari, Italy; (I.A.C.); (G.C.); (F.P.); (M.A.); (M.C.)
| |
Collapse
|
3
|
Medina JE, Castañeda S, Camargo M, Garcia-Corredor DJ, Muñoz M, Ramírez JD. Exploring viral diversity and metagenomics in livestock: insights into disease emergence and spillover risks in cattle. Vet Res Commun 2024; 48:2029-2049. [PMID: 38865041 DOI: 10.1007/s11259-024-10403-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/01/2024] [Indexed: 06/13/2024]
Abstract
Cattle have a significant impact on human societies in terms of both economics and health. Viral infections pose a relevant problem as they directly or indirectly disrupt the balance within cattle populations. This has negative consequences at the economic level for producers and territories, and also jeopardizes human health through the transmission of zoonotic diseases that can escalate into outbreaks or pandemics. To establish prevention strategies and control measures at various levels (animal, farm, region, or global), it is crucial to identify the viral agents present in animals. Various techniques, including virus isolation, serological tests, and molecular techniques like PCR, are typically employed for this purpose. However, these techniques have two major drawbacks: they are ineffective for non-culturable viruses, and they only detect a small fraction of the viruses present. In contrast, metagenomics offers a promising approach by providing a comprehensive and unbiased analysis for detecting all viruses in a given sample. It has the potential to identify rare or novel infectious agents promptly and establish a baseline of healthy animals. Nevertheless, the routine application of viral metagenomics for epidemiological surveillance and diagnostics faces challenges related to socioeconomic variables, such as resource availability and space dedicated to metagenomics, as well as the lack of standardized protocols and resulting heterogeneity in presenting results. This review aims to provide an overview of the current knowledge and prospects for using viral metagenomics to detect and identify viruses in cattle raised for livestock, while discussing the epidemiological and clinical implications.
Collapse
Affiliation(s)
- Julián Esteban Medina
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Sergio Castañeda
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Milena Camargo
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Centro de Tecnología en Salud (CETESA), Innovaseq SAS, Mosquera, Cundinamarca, Colombia
| | - Diego J Garcia-Corredor
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Grupo de Investigación en Medicina Veterinaria y Zootecnia, Facultad de Ciencias Agropecuarias, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
4
|
García-Díez J, Moura D, Grispoldi L, Cenci-Goga B, Saraiva S, Silva F, Saraiva C, Ausina J. Salmonella spp. in Domestic Ruminants, Evaluation of Antimicrobial Resistance Based on the One Health Approach-A Systematic Review and Meta-Analysis. Vet Sci 2024; 11:315. [PMID: 39057999 PMCID: PMC11281391 DOI: 10.3390/vetsci11070315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Salmonella spp. pose a global threat as a leading cause of foodborne illnesses, particularly prevalent in the European Union (EU), where it remains the second cause of foodborne outbreaks. The emergence of antimicrobial resistance (AMR) in Salmonella spp. has become a critical concern, complicating treatment strategies and escalating the risk of severe infections. The study focuses on large and small ruminants, identifying a prevalence of Salmonella spp. in slaughterhouses and revealing varied AMR rates across antimicrobial families throughout a meta-analysis. Also, comparison with AMR in human medicine was carried out by a systematic review. The results of the present meta-analysis displayed a prevalence of Salmonella spp. in large and small ruminants at slaughterhouses of 8.01% (8.31%, cattle; 7.04%, goats; 6.12%, sheep). According to the AMR of Salmonella spp., 20, 14, and 13 out of 62 antimicrobials studied were classified as low (<5%), high (>5% but <10%), and very high (>10%), respectively. Salmonella spp. did not display AMR against aztreonam, mezlocillin, ertapenem, meropenem, cefoxitin, ceftazidime, levofloxacin, tilmicosin, linezolid, fosfomycin, furazolidone, quinupristin, trimethoprim and spectinomycin. In contrast, a prevalence of 100% of AMR has been described against ofloxacin, lincomycin, and cloxacillin. In the context of the main antibiotics used in the treatment of human salmonellosis, azithromycin was shown to have the highest resistance among Salmonella spp. isolates from humans. Regarding cephalosporins, which are also used for the treatment of salmonellosis in humans, the prevalence of Salmonella spp. resistance to this class of antibiotics was similar in both human and animal samples. Concerning quinolones, despite a heightened resistance profile in Salmonella spp. isolates from ruminant samples, there appears to be no discernible compromise to the efficacy of salmonellosis treatment in humans since lower prevalences of AMR in Salmonella spp. isolated from human specimens were observed. Although the resistance of Salmonella spp. indicates some degree of concern, most antibiotics are not used in veterinary medicine. Thus, the contribution of cattle, sheep and goats to the rise of antibiotic resistance of Salmonella spp. and its potential impact on public health appears to be relatively insignificant, due to their low prevalence in carcasses and organs. Nevertheless, the observed low prevalence of Salmonella spp. in ruminants at slaughterhouse and the correspondingly low AMR rates of Salmonella spp. to key antibiotics employed in human medicine do not indicate that ruminant livestock poses a substantial public health risk concerning the transmission of AMR. Thus, the results observed in both the meta-analysis and systematic review suggests that AMR is not solely attributed to veterinary antibiotic use but is also influenced by factors such as animal health management (i.e., biosecurity measures, prophylactic schemes) and human medicine.
Collapse
Affiliation(s)
- Juan García-Díez
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (S.S.); (F.S.); (C.S.)
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Dina Moura
- Divisão de Intervenção de Alimentação e Veterinária de Vila Real e Douro Sul, Direção de Serviços de Alimentação e Veterinária da Região Norte, Direção Geral de Alimentação e Veterinária, Lugar de Codessais, 5000 Vila Real, Portugal;
| | - Luca Grispoldi
- Dipartamento di Medicina Veterinaria, Universitá degli Studi di Perugia, 06126 Perugia, Italy; (L.G.); (B.C.-G.)
| | - Beniamino Cenci-Goga
- Dipartamento di Medicina Veterinaria, Universitá degli Studi di Perugia, 06126 Perugia, Italy; (L.G.); (B.C.-G.)
- Faculty of Veterinary Science, Department of Paraclinical Sciences, University of Pretoria, Onderstepoort 0110, South Africa
| | - Sónia Saraiva
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (S.S.); (F.S.); (C.S.)
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Filipe Silva
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (S.S.); (F.S.); (C.S.)
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Cristina Saraiva
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (S.S.); (F.S.); (C.S.)
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Juan Ausina
- Social Psychology and Methodology Department, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain;
| |
Collapse
|
5
|
Griss S, Knific T, Buzzell A, Carmo LP, Schüpbach-Regula G, Meylan M, Ocepek M, Thomann B. A scoping review on associations between paratuberculosis and productivity in cattle. Front Vet Sci 2024; 11:1352623. [PMID: 38756521 PMCID: PMC11097669 DOI: 10.3389/fvets.2024.1352623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
Paratuberculosis (PTB), or Johne's disease, is a disease with worldwide distribution caused by Mycobacterium avium subsp. paratuberculosis (MAP) that leads to chronic enteritis, primarily in ruminants. Even subclinical infection significantly reduces the animals' performance, and consequences of the disease lead to high economic losses for the cattle industry. To estimate the economic burden of bovine PTB and to evaluate the benefits of a potential control program, accurate estimates of the production effects associated with the disease are required. Therefore, the aim of this scoping review was to provide a comprehensive overview of associations between MAP infection and production parameters in cattle. The studies were collected from three electronic databases. Of the total 1,605 identified studies, 1,432 did not meet the set criteria in the title and abstract screening and a further 106 were excluded during full-text review. Finally, data on 34 different production parameters were extracted from 67 publications. Results show that the magnitude of reported performance losses varies depending on several factors, such as the type of diagnostic test applied, disease status or number of lactations. Studies reported a reduction in milk yield, changes in milk quality (e.g., higher somatic cell count, lower amount of produced milk fat and protein), reduced fertility (e.g., prolonged calving interval and service period, higher abortion rate and calving difficulties), reduced weaning weight, slaughter weight and slaughter value, or a higher risk for mastitis. Results from the studies included in our review show a median decrease of milk yield per infected cow of -452 kg/lactation for raw and -405 kg/lactation for modeled data. Similarly, the amount of produced milk protein fell by a median of -14.41 kg/lactation for modeled data and the amount of produced milk fat by a median of -13.13 kg/lactation. The reviewed studies revealed a prolonged calving interval by around 30 days and a 1.5 to 3 times higher likeliness of culling per lactation in PTB positive animals. Results from this scoping review provide evidence-based inputs for the development of economic models aiming at the estimation of the costs and benefits associated with different disease control scenarios for PTB.
Collapse
Affiliation(s)
- Silja Griss
- Vetsuisse Faculty, Veterinary Public Health Institute, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Tanja Knific
- Veterinary Faculty, Institute of Food Safety, Feed and Environment, University of Ljubljana, Ljubljana, Slovenia
| | - Anne Buzzell
- Vetsuisse Faculty, Veterinary Public Health Institute, University of Bern, Bern, Switzerland
| | | | | | - Mireille Meylan
- Clinic for Ruminants, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Matjaž Ocepek
- Veterinary Faculty, Institute of Microbiology and Parasitology, University of Ljubljana, Ljubljana, Slovenia
| | - Beat Thomann
- Vetsuisse Faculty, Veterinary Public Health Institute, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Robi DT, Mossie T, Temteme S. A Comprehensive Review of the Common Bacterial Infections in Dairy Calves and Advanced Strategies for Health Management. VETERINARY MEDICINE (AUCKLAND, N.Z.) 2024; 15:1-14. [PMID: 38288284 PMCID: PMC10822132 DOI: 10.2147/vmrr.s452925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/16/2024] [Indexed: 01/31/2024]
Abstract
Dairy farming faces a significant challenge of bacterial infections in dairy calves, which can have detrimental effects on their health and productivity. This review offers a comprehensive overview of the most prevalent bacterial infections in dairy calves, including Escherichia coli, Salmonella typhimurium, Salmonella dublin, Salmonella enterica, Clostridium perfringens, Pasteurella multocida, Listeria monocytogenes, Mycoplasma bovis, and Haemophilus somnus. These pathogens can cause various clinical signs and symptoms, leading to diarrhea, respiratory distress, septicemia, and even mortality. Factors such as management practices, environmental conditions, and herd health influence the incidence and severity of the infections. Efficient management and prevention strategies include good colostrum and nutrient feeding, early detection, appropriate treatment, hygiene practices, and supportive care. Regular health monitoring and diagnostic tests facilitate early detection and intervention. The use of antibiotics should be judicious to prevent antimicrobial resistance and supportive care such as fluid therapy and nutritional support promotes recovery. Diagnostic methods, including immunological tests, culture, polymerase chain reaction (PCR), and serology, aid in the identification of specific pathogens. This review also explores recent advancements in the diagnosis, treatment, and prevention of bacterial infections in dairy calves, providing valuable insights for dairy farmers, veterinarians, and researchers. By synthesizing pertinent scientific literature, this review contributes to the development of effective strategies aimed at mitigating the impact of bacterial infections on the health, welfare, and productivity of young calves. Moreover, more research is required to enhance the understanding of the epidemiology and characterization of bacterial infections in dairy calves.
Collapse
Affiliation(s)
- Dereje Tulu Robi
- Ethiopian Institute of Agricultural Research, Tepi Agricultural Research Center, Tepi, Ethiopia
| | - Tesfa Mossie
- Ethiopian Institute of Agriculture Research, Jimma Agriculture Research Center, Jimma, Ethiopia
| | - Shiferaw Temteme
- Ethiopian Institute of Agricultural Research, Tepi Agricultural Research Center, Tepi, Ethiopia
| |
Collapse
|
7
|
Robi DT, Mossie T, Temteme S. Eukaryotic Infections in Dairy Calves: Impacts, Diagnosis, and Strategies for Prevention and Control. VETERINARY MEDICINE (AUCKLAND, N.Z.) 2023; 14:195-208. [PMID: 38058381 PMCID: PMC10697087 DOI: 10.2147/vmrr.s442374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Eukaryotic infections are common among dairy calves and can have significant impacts on their health and growth rates. Fungal infections caused by Aspergillus fumigatus, Trichophyton verrucosum, and Candida albicans can cause respiratory diseases, dermatophytosis, and diarrhea, respectively. Protozoan parasites, including Cryptosporidium parvum, Giardia duodenalis, and Eimeria spp., are also common in dairy calves. C. parvum is highly contagious and can cause severe diarrhea and dehydration, while Giardia duodenalis can lead to poor growth and is transmissible to humans through contaminated food or water. Eimeria spp. can cause coccidiosis and lead to reduced growth rates, poor feed conversion, and death. The common helminthic infections in dairy calves include Ostertagia ostertagi, Cooperia spp., Fasciola hepatica, and Strongyloides papillosus. These parasitic infections significantly impact calf health, growth, and dairy industry productivity. Diagnosis of these infections can be made through fecal samples using microscopy or molecular methods. However, diagnosis of the infections can be challenging and requires a combination of clinical signs and laboratory tests such as culture and PCR. Preventing and controlling eukaryotic infections in dairy calves requires several measures. Good hygiene and sanitation practices, proper management strategies, and timely treatment of affected animals are important. It is also necessary to avoid overcrowding and consider vaccination against ringworm. Further research is needed to better understand the epidemiology and characterization of eukaryotic infections in dairy calves, which will help in the development of more effective prevention and control strategies. In general, good hygiene practices, appropriate management strategies, and timely treatment of affected animals are crucial in preventing and controlling the infections, ensuring the health and well-being of dairy calves.
Collapse
Affiliation(s)
- Dereje Tulu Robi
- Ethiopian Institute of Agricultural Research, Tepi Agricultural Research Center, Tepi, Ethiopia
| | - Tesfa Mossie
- Ethiopian Institute of Agriculture Research, Jimma Agriculture Research Center, Jimma, Ethiopia
| | - Shiferaw Temteme
- Ethiopian Institute of Agricultural Research, Tepi Agricultural Research Center, Tepi, Ethiopia
| |
Collapse
|
8
|
Ha S, Kang S, Jung M, Jeon E, Hwang S, Lee J, Kim J, Bae YC, Park J, Kim UH. Retrospective study using biosensor data of a milking Holstein cow with jejunal haemorrhage syndrome. VET MED-CZECH 2023; 68:375-383. [PMID: 37981941 PMCID: PMC10646544 DOI: 10.17221/73/2023-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/21/2023] [Indexed: 11/21/2023] Open
Abstract
Jejunal haemorrhage syndrome (JHS) is a sporadic and fatal enterotoxaemic disease in dairy cows associated with acute development and poor prognosis despite treatment. A 5-year-old Holstein cow with no reported pregnancy, three calving numbers, and 303 days in milk presented with hypothermia, discomfort, and inappetence. Anaemia, dehydration, faeces with blood clots, and absence of rumen and bowel movements were observed. We identified the presence of neutrophilia, hyperglycaemia, hypoproteinaemia, azotaemia, hyperlactatemia, hypocalcaemia, hypermagnesemia, hypokalaemia, and hypochloraemia through blood analyses. Necropsy and histopathologic examination revealed a dilated bluish-purple jejunum, blood clots within the jejunum, neutrophil infiltration into the submucosa of the jejunum, and vascular necrosis. Retrospective examination revealed extraordinary patterns of rumination time, activity, rumen mobility, and rumen temperature using biosensors and decreased milk yield. The abnormalities in the affected cow were detected before recognition by farm workers. To the best of our knowledge, this is the first report to examine data from biosensors in a cow with JHS. Our findings suggest that using biometric data may help understand the development of JHS.
Collapse
Affiliation(s)
- Seungmin Ha
- National Institute of Animal Science, Rural Development Administration, Cheonan-si, Chungcheongnam-do, Republic of Korea
| | - Seogjin Kang
- National Institute of Animal Science, Rural Development Administration, Cheonan-si, Chungcheongnam-do, Republic of Korea
| | - Mooyoung Jung
- National Institute of Animal Science, Rural Development Administration, Cheonan-si, Chungcheongnam-do, Republic of Korea
| | - Eunjeong Jeon
- National Institute of Animal Science, Rural Development Administration, Cheonan-si, Chungcheongnam-do, Republic of Korea
| | - Seongsoo Hwang
- National Institute of Animal Science, Rural Development Administration, Cheonan-si, Chungcheongnam-do, Republic of Korea
| | - Jihwan Lee
- National Institute of Animal Science, Rural Development Administration, Cheonan-si, Chungcheongnam-do, Republic of Korea
| | - Jongho Kim
- Pathologic Diagnostic Laboratory, Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, Republic of Korea
| | - You-Chan Bae
- Pathologic Diagnostic Laboratory, Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, Republic of Korea
| | - Jinho Park
- College of Veterinary Medicine, Jeonbuk National University, Iksan-si, Jeollabuk-do, Republic of Korea
| | - Ui-Hyung Kim
- National Institute of Animal Science, Rural Development Administration, Cheonan-si, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
9
|
Cheng TY, Almeida BG, Pempek JA, Masterson MA, Habing GG. The use of common antimicrobial agents in US veal calves. Zoonoses Public Health 2022; 69:359-369. [PMID: 35188339 DOI: 10.1111/zph.12928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 12/18/2021] [Accepted: 02/08/2022] [Indexed: 02/03/2023]
Abstract
The use of antimicrobials in food animals and the selection of antimicrobial-resistant pathogens continue to be prominent concerns for human food safety and public health. To provide optimal stewardship programs, antimicrobial use in animal production operations must be quantified and standardized for benchmarking and creating goals, monitoring temporal trends, and identifying causes of emerging resistance. In the United States, quantified estimates of antimicrobial use are available in dairy and beef cattle, but these data have not been generated for veal calf herds. Therefore, the objective of this study was to estimate the treatment incidence (TI) of antimicrobials for eight US veal calf farms in one rearing cycle. Treatment incidences were compared between calculated doses defined by the labeled daily dose (LDD), animal-defined daily dose (ADD) from the European Medicines Agency (EMA) guideline, and the used daily dose (UDD) from the farm treatment protocols. Among eight farms, veal calves received a mean of 34.40 LDD, 34.88 ADD, and 28.68 UDD of an antimicrobial per 100 days. The lower TI based on the UDD administration was a result of higher farm protocol dosing relative to the labeled and EMA daily doses. Higher quantities of antimicrobial administration were observed in the first three weeks (day 1-21) of rearing (Tukey-adjusted p < .05). This study is the first to quantitatively estimate the TI of antimicrobials on the US veal calf operations and serves as an important step toward the development of antimicrobial stewardship programs.
Collapse
Affiliation(s)
- Ting-Yu Cheng
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Breanna G Almeida
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Jessica A Pempek
- Department of Animal Sciences, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Margaret A Masterson
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Gregory G Habing
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
10
|
Wani AK, Akhtar N, Sher F, Navarrete AA, Américo-Pinheiro JHP. Microbial adaptation to different environmental conditions: molecular perspective of evolved genetic and cellular systems. Arch Microbiol 2022; 204:144. [PMID: 35044532 DOI: 10.1007/s00203-022-02757-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 01/01/2023]
Abstract
Microorganisms are ubiquitous on Earth and can inhabit almost every environment. In a complex heterogeneous environment or in face of ecological disturbance, the microbes adjust to fluctuating environmental conditions through a cascade of cellular and molecular systems. Their habitats differ from cold microcosms of Antarctica to the geothermal volcanic areas, terrestrial to marine, highly alkaline zones to the extremely acidic areas and freshwater to brackish water sources. The diverse ecological microbial niches are attributed to the versatile, adaptable nature under fluctuating temperature, nutrient availability and pH of the microorganisms. These organisms have developed a series of mechanisms to face the environmental changes and thereby keep their role in mediate important ecosystem functions. The underlying mechanisms of adaptable microbial nature are thoroughly investigated at the cellular, genetic and molecular levels. The adaptation is mediated by a spectrum of processes like natural selection, genetic recombination, horizontal gene transfer, DNA damage repair and pleiotropy-like events. This review paper provides the fundamentals insight into the microbial adaptability besides highlighting the molecular network of microbial adaptation under different environmental conditions.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Nahid Akhtar
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | | | | |
Collapse
|
11
|
Antimicrobials use and their indications in dairy farm and individual farmer production conditions in southern India. Trop Anim Health Prod 2021; 54:29. [PMID: 34962598 DOI: 10.1007/s11250-021-03025-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 12/16/2021] [Indexed: 10/19/2022]
Abstract
Antimicrobials use (AMU) is the key driver for development of antimicrobials resistant (AMR) pathogen in human and veterinary medicines. Therefore, understanding AMU pattern is prerequisite for focused intervention on AMR. The aim of this study was to understand the AMU pattern and their indications in dairy farm and individual farmer production conditions in southern India. Treatment registers of 6 years (2012 to 2017) containing 3178 cases from dairy farm and 12,057 cases during 2017-2019 under individual farmer production conditions were collected and analyzed by log-linear model. Seasons were classified as rainy (Jul-Oct), winter (Nov-Feb), and summer (Mar-June) as per climatic conditions in the study area. It is observed that mastitis, lameness, and reproductive problems were major health disorders among treated animals in farm and individual farmer production conditions. Season had significant influence on proportional rates of various health disorders in crossbred cows under both the production conditions. AMU pattern was different between the breeds and production conditions. Antibiotics were the most commonly used group of drugs (23-28%) than non-steroidal anti-inflammatory drugs (20%), antihistamine (17%), and nutrient supplements (14-16%). Antibiotics were mostly used for mastitis (47-67%) than other conditions like fever (18%), reproductive problems (15%), and lameness (16%). For treating mastitis, cephalosporins and gentamicin were most commonly used under individual farmer production condition, while penicillin group was frequently used in farm. It is concluded that mastitis is the most common indication for AMU in dairy animals and thus developing appropriate guidelines for mastitis treatment and control is necessary to reduce overall AMU.
Collapse
|
12
|
Carter HSM, Renaud DL, Steele MA, Fischer-Tlustos AJ, Costa JHC. A Narrative Review on the Unexplored Potential of Colostrum as a Preventative Treatment and Therapy for Diarrhea in Neonatal Dairy Calves. Animals (Basel) 2021; 11:2221. [PMID: 34438679 PMCID: PMC8388388 DOI: 10.3390/ani11082221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
Diarrhea is the leading cause of morbidity and mortality in pre-weaned dairy calves and, as such, represents a significant animal health and welfare concern. Furthermore, digestive disease early in life is associated with several long-term consequences such as reduced growth rate and decreased milk yield during the first lactation, thus generating severe economic losses. The majority of diarrheic cases in young calves are treated with antimicrobials; however, it is necessary to develop alternative treatments, as excessive antimicrobial usage can lead to antimicrobial resistance and can negatively impact the gut microflora of a calf. Bovine colostrum is abundant in immune and bioactive factors that improve immune function and development. This rich and natural combination of immunoglobulins, natural antimicrobial factors, growth factors, anti-inflammatories and nutrients may be an attractive alternative to antimicrobials in the treatment of diarrhea in young dairy calves. There is evidence that supports the use of colostrum as an early treatment for diarrhea in young calves. Future research should investigate its therapeutic and economic effectiveness.
Collapse
Affiliation(s)
- Havelah S. M. Carter
- Department of Population Medicine, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - David L. Renaud
- Department of Population Medicine, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Michael A. Steele
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.A.S.); (A.J.F.-T.)
| | - Amanda J. Fischer-Tlustos
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.A.S.); (A.J.F.-T.)
| | - Joao H. C. Costa
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40506, USA;
| |
Collapse
|