1
|
Bonet-Ponce L, Kluss JH, Cookson MR. Mechanisms of lysosomal tubulation and sorting driven by LRRK2. Biochem Soc Trans 2024; 52:1909-1919. [PMID: 39083004 PMCID: PMC11668303 DOI: 10.1042/bst20240087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/29/2024]
Abstract
Lysosomes are dynamic cellular structures that adaptively remodel their membrane in response to stimuli, including membrane damage. Lysosomal dysfunction plays a central role in the pathobiology of Parkinson's disease (PD). Gain-of-function mutations in Leucine-rich repeat kinase 2 (LRRK2) cause familial PD and genetic variations in its locus increase the risk of developing the sporadic form of the disease. We previously uncovered a process we term LYTL (LYsosomal Tubulation/sorting driven by LRRK2), wherein membrane-damaged lysosomes generate tubules sorted into mobile vesicles. Subsequently, these vesicles interact with healthy lysosomes. LYTL is orchestrated by LRRK2 kinase activity, via the recruitment and phosphorylation of a subset of RAB GTPases. Here, we summarize the current understanding of LYTL and its regulation, as well as the unknown aspects of this process.
Collapse
Affiliation(s)
- Luis Bonet-Ponce
- Department of Neurology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, U.S.A
| | | | - Mark R. Cookson
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, U.S.A
| |
Collapse
|
2
|
Begley D, Gabathuler R, Pastores G, Garcia-Cazorla A, Ardigò D, Scarpa M, Tomanin R, Tosi G. Challenges and opportunities in neurometabolic disease treatment with enzyme delivery. Expert Opin Drug Deliv 2024; 21:817-828. [PMID: 38963225 DOI: 10.1080/17425247.2024.2375388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
INTRODUCTION Neurometabolic disorders remain challenging to treat, largely due to the limited availability of drugs that can cross the blood-brain barrier (BBB) and effectively target brain impairment. Key reasons for inadequate treatment include a lack of coordinated knowledge, few studies on BBB status in these diseases, and poorly designed therapies. AREAS COVERED This paper provides an overview of current research on neurometabolic disorders and therapeutic options, focusing on the treatment of neurological involvement. It highlights the limitations of existing therapies, describes innovative protocols recently developed, and explores new opportunities for therapy design and testing, some of which are already under investigation. The goal is to guide researchers toward innovative and potentially more effective treatments. EXPERT OPINION Advancing research on neurometabolic diseases is crucial for designing effective treatment strategies. The field suffers from a lack of collaboration, and a strong collective effort is needed to enhance synergy, increase knowledge, and develop a new therapeutic paradigm for neurometabolic disorders.
Collapse
Affiliation(s)
- David Begley
- Blood-Brain Barrier Group, King's College London, Strand, London, UK
| | | | | | - Angeles Garcia-Cazorla
- Neurometabolic Unit. Department of Neurology, Hospital Sant Joan de Déu, CIBERER and MetabERN, Barcelona, Spain
| | | | - Maurizio Scarpa
- Regional Coordinating Center for Rare Diseases, Udine University Hospital, Udine, Italy
| | - Rosella Tomanin
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Dept. of Women's and Children's Health, University of Padova, Padova, Italy
- Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Giovanni Tosi
- Nanotech Lab, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
3
|
Mamais A, Sanyal A, Fajfer A, Zykoski CG, Guldin M, Riley-DiPaolo A, Subrahmanian N, Gibbs W, Lin S, LaVoie MJ. The LRRK2 kinase substrates RAB8a and RAB10 contribute complementary but distinct disease-relevant phenotypes in human neurons. Stem Cell Reports 2024; 19:163-173. [PMID: 38307024 PMCID: PMC10874859 DOI: 10.1016/j.stemcr.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 02/04/2024] Open
Abstract
Mutations in the LRRK2 gene cause familial Parkinson's disease presenting with pleomorphic neuropathology that can involve α-synuclein or tau accumulation. LRRK2 mutations are thought to converge upon a pathogenic increase in LRRK2 kinase activity. A subset of small RAB GTPases has been identified as LRRK2 substrates, with LRRK2-dependent phosphorylation resulting in RAB inactivation. We used CRISPR-Cas9 genome editing to generate a novel series of isogenic iPSC lines deficient in the two most well-validated LRRK2 substrates, RAB8a and RAB10, from deeply phenotyped healthy control lines. Thorough characterization of NGN2-induced neurons revealed opposing effects of RAB8a and RAB10 deficiency on lysosomal pH and Golgi organization, with isolated effects of RAB8a and RAB10 ablation on α-synuclein and tau, respectively. Our data demonstrate largely antagonistic effects of genetic RAB8a or RAB10 inactivation, which provide discrete insight into the pathologic features of their biochemical inactivation by pathogenic LRRK2 mutation in human disease.
Collapse
Affiliation(s)
- Adamantios Mamais
- Center for Translational Research in Neurodegenerative Disease and Fixel Institute for Neurologic Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Anwesha Sanyal
- Department of Cell Biology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Austin Fajfer
- Center for Translational Research in Neurodegenerative Disease and Fixel Institute for Neurologic Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Catherine G Zykoski
- Center for Translational Research in Neurodegenerative Disease and Fixel Institute for Neurologic Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Michael Guldin
- Center for Translational Research in Neurodegenerative Disease and Fixel Institute for Neurologic Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | | | - Nitya Subrahmanian
- Center for Translational Research in Neurodegenerative Disease and Fixel Institute for Neurologic Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Whitney Gibbs
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Steven Lin
- Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthew J LaVoie
- Center for Translational Research in Neurodegenerative Disease and Fixel Institute for Neurologic Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA; Department of Cell Biology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|