1
|
Xu R, Kang Q, Yang X, Yi P, Zhang R. Unraveling Molecular Targets for Neurodegenerative Diseases Through Caenorhabditis elegans Models. Int J Mol Sci 2025; 26:3030. [PMID: 40243699 PMCID: PMC11988803 DOI: 10.3390/ijms26073030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/17/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Neurodegenerative diseases (NDDs), including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and prion disease, represent a group of age-related disorders that pose a growing and formidable challenge to global health. Despite decades of extensive research that has uncovered key genetic factors and biochemical pathways, the precise molecular mechanisms underlying these diseases and effective therapeutic strategies remain elusive. Caenorhabditis elegans (C. elegans) has emerged as a powerful model organism for studying NDDs due to its unique biological features such as genetic tractability, conserved molecular pathways, and ease of high-throughput screening. This model provides an exceptional platform for identifying molecular targets associated with NDDs and developing novel therapeutic interventions. This review highlights the critical role of C. elegans in elucidating the complex molecular mechanisms of human NDDs, with a particular focus on recent advancements and its indispensable contributions to the discovery of molecular targets and therapeutic strategies for these NDDs.
Collapse
Affiliation(s)
- Rongmei Xu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230002, China; (R.X.); (X.Y.)
| | - Qiaoju Kang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Q.K.); (P.Y.)
| | - Xuefei Yang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230002, China; (R.X.); (X.Y.)
| | - Ping Yi
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Q.K.); (P.Y.)
| | - Rongying Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Q.K.); (P.Y.)
| |
Collapse
|
2
|
Lim SY, Toh TS, Hor JW, Lim JL, Lit LC, Ahmad-Annuar A, Tay YW, Foo JN, Ng EY, Muthusamy KA, Mohamed Ibrahim N, Ibrahim KA, Tan LCS, Zulkefli J, Khairul Anuar AN, Black K, Lis P, Xie F, Cen Z, Lim KS, Lohmann K, Padmanabhan S, Alessi DR, Luo W, Tan EK, Sammler E, Tan AH. Clinical and functional evidence for the pathogenicity of the LRRK2 p.Arg1067Gln variant. NPJ Parkinsons Dis 2025; 11:34. [PMID: 39988587 PMCID: PMC11847920 DOI: 10.1038/s41531-025-00884-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 02/01/2025] [Indexed: 02/25/2025] Open
Abstract
LRRK2-related Parkinson's disease (LRRK2-PD) is the most frequent form of monogenic PD worldwide, with important therapeutic opportunities, exemplified by the advancement in LRRK2 kinase inhibition studies/trials. However, many LRRK2 variants, especially those found in underrepresented populations, remain classified as variants of uncertain significance (VUS). Leveraging on Malaysian, Singaporean, and mainland Chinese PD datasets (n = 4901), we describe 12 Chinese-ancestry patients harboring the LRRK2 p.Arg1067Gln variant, more than doubling the number of previously reported cases (total n = 23, 87% East Asian, mean age of onset: 53.9 years). We determine that this variant is enriched in East Asian PD patients compared to population controls (OR = 8.0, 95% CI: 3.0-20.9), and provide supportive data for its co-segregation with PD, albeit with incomplete penetrance. Utilizing established experimental workflows, this variant showed increased LRRK2 kinase activity, by ~2-fold compared to wildtype and higher than the p.Gly2019Ser variant. Taken together, p.Arg1067Gln should be reclassified from a VUS to pathogenic for causing LRRK2-PD.
Collapse
Affiliation(s)
- Shen-Yang Lim
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Tzi Shin Toh
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jia Wei Hor
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jia Lun Lim
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Lei Cheng Lit
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Azlina Ahmad-Annuar
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yi Wen Tay
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
- Laboratory of Neurogenetics, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Ebonne Yulin Ng
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Kalai Arasu Muthusamy
- Division of Neurosurgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Norlinah Mohamed Ibrahim
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Khairul Azmi Ibrahim
- Department of Medicine, Hospital Sultanah Nur Zahirah, Kuala Terengganu, Terengganu, Malaysia
| | - Louis Chew Seng Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Jannah Zulkefli
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Immunogenetic Unit, Allergy and Immunology Research Centre, Institute for Medical Research, National Institutes of Health Complex, Ministry of Health Malaysia, Setia Alam, Malaysia
| | | | - Kirsten Black
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Pawel Lis
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Fei Xie
- Department of Neurology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Zhidong Cen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Kai Shi Lim
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Katja Lohmann
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
| | | | - Dario R Alessi
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Wei Luo
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Eng King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Esther Sammler
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK.
- Division of Neuroscience, School of Medicine, University of Dundee, Dundee, UK.
| | - Ai Huey Tan
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
3
|
Krüger C, Lim SY, Buhrmann A, Fahrig FL, Gabbert C, Bahr N, Madoev H, Marras C, Klein C, Lohmann K. Updated MDSGene review on the clinical and genetic spectrum of LRRK2 variants in Parkinson´s disease. NPJ Parkinsons Dis 2025; 11:30. [PMID: 39962078 PMCID: PMC11832785 DOI: 10.1038/s41531-025-00881-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/09/2025] [Indexed: 02/20/2025] Open
Abstract
Pathogenic variants in the LRRK2 gene are one of the most commonly identifiable monogenic causes of Parkinson´s disease (PD, PARK-LRRK2). This systematic MDSGene literature review comprehensively summarizes published demographic, clinical, and genetic findings related to LRRK2 variants ( https://www.mdsgene.org/ ). Data on 4660 individuals with 283 different variants were curated. The median age at onset in the PD patients with available information was 56 years, notably, with approximately one-third having PD onset <50 years. Tremor was the most frequently reported initial symptom and more common than reported in other dominantly inherited forms of PD. Of the 211 potentially PD-causing variants, 25 were classified as pathogenic or likely pathogenic, and the remaining 186 (88.2%) were variants of uncertain significance. p.G2019S was the most frequently reported pathogenic variant, followed by p.R1441G and p.R1441C. This systematic review represents the most extensive database on PARK-LRRK2 to date and provides a vital resource to improve precision medicine.
Collapse
Affiliation(s)
- Clara Krüger
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Shen-Yang Lim
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, University of Malaya, Kuala Lumpur, Malaysia
| | - Alissa Buhrmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Fenja L Fahrig
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Carolin Gabbert
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Natascha Bahr
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Harutyun Madoev
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Connie Marras
- Edmond J Safra Program in Parkinson's Disease, University Health Network, University of Toronto, Toronto, Canada
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
4
|
Lim SY, Tan AH, Ahmad-Annuar A, Okubadejo NU, Lohmann K, Morris HR, Toh TS, Tay YW, Lange LM, Bandres-Ciga S, Mata I, Foo JN, Sammler E, Ooi JCE, Noyce AJ, Bahr N, Luo W, Ojha R, Singleton AB, Blauwendraat C, Klein C. Uncovering the genetic basis of Parkinson's disease globally: from discoveries to the clinic. Lancet Neurol 2024; 23:1267-1280. [PMID: 39447588 DOI: 10.1016/s1474-4422(24)00378-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 10/26/2024]
Abstract
Knowledge on the genetic basis of Parkinson's disease has grown tremendously since the discovery of the first monogenic form, caused by a mutation in α-synuclein, and with the subsequent identification of multiple other causative genes and associated loci. Genetic studies provide insights into the phenotypic heterogeneity and global distribution of Parkinson's disease. By shedding light on the underlying biological mechanisms, genetics facilitates the identification of new biomarkers and therapeutic targets. Several clinical trials of genetics-informed therapies are ongoing or imminent. International programmes in populations who have been under-represented in Parkinson's disease genetics research are fostering collaboration and capacity-building, and have already generated novel findings. Many challenges remain for genetics research in these populations, but addressing them provides opportunities to obtain a more complete and equitable understanding of Parkinson's disease globally. These advances facilitate the integration of genetics into the clinic, to improve patient management and personalised medicine.
Collapse
Affiliation(s)
- Shen-Yang Lim
- Division of Neurology, Department of Medicine, and The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Ai Huey Tan
- Division of Neurology, Department of Medicine, and The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Azlina Ahmad-Annuar
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Njideka Ulunma Okubadejo
- College of Medicine, University of Lagos and Lagos University Teaching Hospital, Idi Araba, Lagos State, Nigeria
| | - Katja Lohmann
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
| | - Huw R Morris
- Department of Clinical and Movement Neurosciences, University College London, Institute of Neurology, London, UK
| | - Tzi Shin Toh
- Division of Neurology, Department of Medicine, and The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yi Wen Tay
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Lara M Lange
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany; Department of Neurology, University of Luebeck and University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Sara Bandres-Ciga
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Ignacio Mata
- Lerner Research Institute, Genomic Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore; Laboratory of Neurogenetics, Genome Institute of Singapore, A*STAR, Singapore
| | - Esther Sammler
- Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK; Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Joshua Chin Ern Ooi
- Department of Neurology, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia
| | - Alastair J Noyce
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Natascha Bahr
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany; Department of Neurology, University of Luebeck and University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Wei Luo
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, People's Republic of China
| | - Rajeev Ojha
- Department of Neurology, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
| | - Andrew B Singleton
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA; Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
| | - Cornelis Blauwendraat
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA; Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
| | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany; Department of Neurology, University of Luebeck and University Hospital Schleswig-Holstein, Luebeck, Germany
| |
Collapse
|
5
|
Iacono D, Murphy EK, Stimpson CD, Perl DP, Day RM. Low-dose radiation decreases Lrrk2 levels in the striatum of large mammalian brains: New venues to treat Parkinson's disease? Parkinsonism Relat Disord 2024; 124:107024. [PMID: 38843617 DOI: 10.1016/j.parkreldis.2024.107024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 07/05/2024]
Abstract
INTRODUCTION Among gene mutations and variants linked to an increased risk of PD, mutations of leucine-rich repeat kinase 2 gene (LRRK2) are among the most frequently associated with early- and late-onset PD. Clinical and neuropathological characteristics of idiopathic-PD (iPD) and LRRK2-PD are similar, and these similarities suggest that the pathomechanisms between these two conditions are shared. LRRK2 mutations determine a gain-of-function and yield higher levels of lrrk2 across body tissues, including brain. On another side, recent animal studies supported the potential use of low dose radiation (LDR) to modify the pathomechanisms of diseases such as Alzheimer's disease (AD). METHODS We assessed if a single total-body LDR (sLDR) exposure in normal swine could alter expression levels of the following PD-associated molecules: alpha-synuclein (α-syn), phosphorylated-α-synuclein (pα-syn), parkin, tyrosine hydroxylase (th), lrrk2, phosphorylated-lrrk2 (pS935-lrrk2), and some LRRK2 substrates (Rab8a, Rab12) across different brain regions. These proteins were measured in frontal cortex, hippocampus, striatum, thalamus/hypothalamus, and cerebellum of 9 radiated (RAD) vs. 6 sham (SH) swine after 28 days from a sLDR of 1.79Gy exposure. RESULTS Western Blot analyses showed lowered lrrk2 levels in the striatum of RAD vs. SH swine (p < 0.05), with no differences across the remaining brain regions. None of the other protein levels differed between RAD and SH swine in any examined brain regions. No lrrk2 and p-lrrk2 (S935) levels differed in the lungs of RAD vs. SH swine. CONCLUSIONS These findings show a specific striatal lrrk2 lowering effect due to LDR and support the potential use of LDR to interfere with the pathomechanisms of PD.
Collapse
Affiliation(s)
- Diego Iacono
- DoD/USU Brain Tissue Repository & Neuropathology Program, Uniformed Services University (USU), Bethesda, MD, USA; Department of Neurology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA; Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA; Neuroscience Program, Department of Anatomy, Physiology & Genetics, Uniformed Services University (USU), Bethesda, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF) Inc., Bethesda, MD, USA.
| | - Erin K Murphy
- DoD/USU Brain Tissue Repository & Neuropathology Program, Uniformed Services University (USU), Bethesda, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF) Inc., Bethesda, MD, USA
| | - Cheryl D Stimpson
- DoD/USU Brain Tissue Repository & Neuropathology Program, Uniformed Services University (USU), Bethesda, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF) Inc., Bethesda, MD, USA
| | - Daniel P Perl
- DoD/USU Brain Tissue Repository & Neuropathology Program, Uniformed Services University (USU), Bethesda, MD, USA; Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA
| | - Regina M Day
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA
| |
Collapse
|
6
|
Manoutcharian K, Gevorkian G. Recombinant Antibody Fragments for Immunotherapy of Parkinson's Disease. BioDrugs 2024; 38:249-257. [PMID: 38280078 PMCID: PMC10912140 DOI: 10.1007/s40259-024-00646-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2024] [Indexed: 01/29/2024]
Abstract
Parkinson's disease (PD) is the second most common age-related neurodegenerative disorder. Multiple genetic and environmental factors leading to progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SN) and consequent depletion of dopamine were described. Current clinical approaches, such as dopamine replacement or deep brain stimulation using surgically implanted probes, provide symptomatic relief but cannot modify disease progression. Therefore, disease-modifying therapeutic tools are urgently needed. Immunotherapy approaches, including passive transfer of protective antibodies and their fragments, have shown therapeutic efficacy in several animal models of neurodegenerative diseases, including PD. Recombinant antibody fragments are promising alternatives to conventional full-length antibodies. Modern computational approaches and molecular biology tools, directed evolution methodology, and the design of tissue-penetrating fusion peptides allowed for the development of recombinant antibody fragments with superior specificity and affinity, reduced immunogenicity, the capacity to target hidden epitopes and cross the blood-brain barrier (BBB), higher solubility and stability, the ability to refold after heat denaturation, and inexpensive large-scale production. In addition, antibody fragments do not induce microglia Fcγ receptor (FcγR)-mediated proinflammatory response and tissue damage in the central nervous system (CNS), because they lack the Fc portion of the immunoglobulin molecule. In the present review, we summarized data on recombinant antibody fragments evaluated as immunotherapeutics in preclinical models of PD and discussed their potential for developing therapeutic and preventive protocols for patients with PD.
Collapse
Affiliation(s)
- Karen Manoutcharian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Apartado Postal 70228, Cuidad Universitaria, CP 04510, Mexico, DF, Mexico
| | - Goar Gevorkian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Apartado Postal 70228, Cuidad Universitaria, CP 04510, Mexico, DF, Mexico.
| |
Collapse
|
7
|
Sturchio A, Rocha EM, Kauffman MA, Marsili L, Mahajan A, Saraf AA, Vizcarra JA, Guo Z, Espay AJ. Recalibrating the Why and Whom of Animal Models in Parkinson Disease: A Clinician's Perspective. Brain Sci 2024; 14:151. [PMID: 38391726 PMCID: PMC10887152 DOI: 10.3390/brainsci14020151] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 02/24/2024] Open
Abstract
Animal models have been used to gain pathophysiologic insights into Parkinson's disease (PD) and aid in the translational efforts of interventions with therapeutic potential in human clinical trials. However, no disease-modifying therapy for PD has successfully emerged from model predictions. These translational disappointments warrant a reappraisal of the types of preclinical questions asked of animal models. Besides the limitations of experimental designs, the one-size convergence and oversimplification yielded by a model cannot recapitulate the molecular diversity within and between PD patients. Here, we compare the strengths and pitfalls of different models, review the discrepancies between animal and human data on similar pathologic and molecular mechanisms, assess the potential of organoids as novel modeling tools, and evaluate the types of questions for which models can guide and misguide. We propose that animal models may be of greatest utility in the evaluation of molecular mechanisms, neural pathways, drug toxicity, and safety but can be unreliable or misleading when used to generate pathophysiologic hypotheses or predict therapeutic efficacy for compounds with potential neuroprotective effects in humans. To enhance the translational disease-modification potential, the modeling must reflect the biology not of a diseased population but of subtypes of diseased humans to distinguish What data are relevant and to Whom.
Collapse
Affiliation(s)
- Andrea Sturchio
- James J. and Joan A. Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH 45219, USA; (A.S.); (L.M.); (A.A.S.)
| | - Emily M. Rocha
- Pittsburgh Institute for Neurodegenerative Diseases, Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Marcelo A. Kauffman
- Consultorio y Laboratorio de Neurogenética, Centro Universitario de Neurología José María Ramos Mejía, Buenos Aires C1221ADC, Argentina;
| | - Luca Marsili
- James J. and Joan A. Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH 45219, USA; (A.S.); (L.M.); (A.A.S.)
| | - Abhimanyu Mahajan
- James J. and Joan A. Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH 45219, USA; (A.S.); (L.M.); (A.A.S.)
| | - Ameya A. Saraf
- James J. and Joan A. Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH 45219, USA; (A.S.); (L.M.); (A.A.S.)
| | - Joaquin A. Vizcarra
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 15213, USA;
| | - Ziyuan Guo
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children’s Hospital, Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA;
| | - Alberto J. Espay
- James J. and Joan A. Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH 45219, USA; (A.S.); (L.M.); (A.A.S.)
| |
Collapse
|