1
|
Chen TS, Sheri N, Ehmann DS, Benson MD. Novel heterozygous PRPH2 variant identified in a patient with spinocerebellar ataxia type 14 and macular dystrophy. Ophthalmic Genet 2024; 45:409-412. [PMID: 38419591 DOI: 10.1080/13816810.2024.2321883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 02/03/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
PURPOSE To report on a patient with spinocerebellar ataxia type 14 (SCA14) and macular dystrophy with identification of a novel PRPH2 variant. METHODS Case report. RESULTS A 63-year-old female with molecularly confirmed SCA14 presented with symmetric pigmentary disturbances in a perifoveal distribution resembling a pattern macular dystrophy. She had no history of using medications with recognized toxic macular effects. Subsequent genetic testing confirmed a novel heterozygous missense variant of unknown significance in PRPH2 (PRPH2: c.694 G>A, p.(Ala232Thr)). CONCLUSIONS To our knowledge, this is the first case of macular dystrophy identified in a patient with SCA14. While it is possible that the macular dystrophy observed in this patient might be an under-reported phenotype associated with SCA14, the pattern of macular changes is consistent with PRPH2-related disorders. The identified missense variant is predicted to be damaging by most in silico models, and the residue is highly conserved, adding support to a dual genetic diagnosis in this case.
Collapse
Affiliation(s)
- Tugche S Chen
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, Canada
| | - Narin Sheri
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, Canada
| | - David S Ehmann
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, Canada
| | - Matthew D Benson
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
2
|
Biswas DD, Shi Y, El Haddad L, Sethi R, Huston M, Kehoe S, Scarrow ER, Strickland LM, Pucci LA, Dhindsa JS, Hunanyan A, La Spada AR, ElMallah MK. Respiratory neuropathology in spinocerebellar ataxia type 7. JCI Insight 2024; 9:e170444. [PMID: 39053472 PMCID: PMC11457860 DOI: 10.1172/jci.insight.170444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
Spinocerebellar ataxia type 7 (SCA7) is an autosomal dominant neurological disorder caused by deleterious CAG repeat expansion in the coding region of the ataxin 7 gene (polyQ-ataxin-7). Infantile-onset SCA7 leads to severe clinical manifestation of respiratory distress, but the exact cause of respiratory impairment remains unclear. Using the infantile-SCA7 mouse model, the SCA7266Q/5Q mouse, we examined the impact of pathological polyQ-ataxin-7 on hypoglossal (XII) and phrenic motor units. We identified the transcript profile of the medulla and cervical spinal cord and investigated the XII and phrenic nerves and the neuromuscular junctions in the diaphragm and tongue. SCA7266Q/5Q astrocytes showed significant intranuclear inclusions of ataxin-7 in the XII and putative phrenic motor nuclei. Transcriptomic analysis revealed dysregulation of genes involved in amino acid and neurotransmitter transport and myelination. Additionally, SCA7266Q/5Q mice demonstrated blunted efferent output of the XII nerve and demyelination in both XII and phrenic nerves. Finally, there was an increased number of neuromuscular junction clusters with higher expression of synaptic markers in SCA7266Q/5Q mice compared with WT controls. These preclinical findings elucidate the underlying pathophysiology responsible for impaired glial cell function and death leading to dysphagia, aspiration, and respiratory failure in infantile SCA7.
Collapse
Affiliation(s)
- Debolina D Biswas
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Yihan Shi
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Léa El Haddad
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Ronit Sethi
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Meredith Huston
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Sean Kehoe
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Evelyn R Scarrow
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Laura M Strickland
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Logan A Pucci
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Justin S Dhindsa
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Ani Hunanyan
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Albert R La Spada
- Departments of Pathology and Laboratory Medicine, Neurology, Biological Chemistry, and Neurobiology and Behavior, and
- UCI Center for Neurotherapeutics, University of California Irvine, Irvine, California, USA
| | - Mai K ElMallah
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
3
|
Salari M, Etemadifar M, Rashedi R, Mardani S. A Review of Ocular Movement Abnormalities in Hereditary Cerebellar Ataxias. CEREBELLUM (LONDON, ENGLAND) 2024; 23:702-721. [PMID: 37000369 DOI: 10.1007/s12311-023-01554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/21/2023] [Indexed: 04/01/2023]
Abstract
Cerebellar ataxias are a wide heterogeneous group of disorders that may present with fine motor deficits as well as gait and balance disturbances that have a significant influence on everyday activities. To review the ocular movements in cerebellar ataxias in order to improve the clinical knowledge of cerebellar ataxias and related subtypes. English papers published from January 1990 to May 2022 were selected by searching PubMed services. The main search keywords were ocular motor, oculomotor, eye movement, eye motility, and ocular motility, along with each ataxia subtype. The eligible papers were analyzed for clinical presentation, involved mutations, the underlying pathology, and ocular movement alterations. Forty-three subtypes of spinocerebellar ataxias and a number of autosomal dominant and autosomal recessive ataxias were discussed in terms of pathology, clinical manifestations, involved mutations, and with a focus on the ocular abnormalities. A flowchart has been made using ocular movement manifestations to differentiate different ataxia subtypes. And underlying pathology of each subtype is reviewed in form of illustrated models to reach a better understanding of each disorder.
Collapse
Affiliation(s)
- Mehri Salari
- Neurology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Etemadifar
- Department of Functional Neurosurgery, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ronak Rashedi
- Neurology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sayna Mardani
- Neurology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Pérot JB, Niewiadomska-Cimicka A, Brouillet E, Trottier Y, Flament J. Longitudinal MRI and 1H-MRS study of SCA7 mouse forebrain reveals progressive multiregional atrophy and early brain metabolite changes indicating early neuronal and glial dysfunction. PLoS One 2024; 19:e0296790. [PMID: 38227598 PMCID: PMC10790999 DOI: 10.1371/journal.pone.0296790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/19/2023] [Indexed: 01/18/2024] Open
Abstract
SpinoCerebellar Ataxia type 7 (SCA7) is an inherited disorder caused by CAG triplet repeats encoding polyglutamine expansion in the ATXN7 protein, which is part of the transcriptional coactivator complex SAGA. The mutation primarily causes neurodegeneration in the cerebellum and retina, as well as several forebrain structures. The SCA7140Q/5Q knock-in mouse model recapitulates key disease features, including loss of vision and motor performance. To characterize the temporal progression of brain degeneration of this model, we performed a longitudinal study spanning from early to late symptomatic stages using high-resolution magnetic resonance imaging (MRI) and in vivo 1H-magnetic resonance spectroscopy (1H-MRS). Compared to wild-type mouse littermates, MRI analysis of SCA7 mice shows progressive atrophy of defined brain structures, with the striatum, thalamus and cortex being the first and most severely affected. The volume loss of these structures coincided with increased motor impairments in SCA7 mice, suggesting an alteration of the sensory-motor network, as observed in SCA7 patients. MRI also reveals atrophy of the hippocampus and anterior commissure at mid-symptomatic stage and the midbrain and brain stem at late stage. 1H-MRS of hippocampus, a brain region previously shown to be dysfunctional in patients, reveals early and progressive metabolic alterations in SCA7 mice. Interestingly, abnormal glutamine accumulation precedes the hippocampal atrophy and the reduction in myo-inositol and total N-acetyl-aspartate concentrations, two markers of glial and neuronal damage, respectively. Together, our results indicate that non-cerebellar alterations and glial and neuronal metabolic impairments may play a crucial role in the development of SCA7 mouse pathology, particularly at early stages of the disease. Degenerative features of forebrain structures in SCA7 mice correspond to current observations made in patients. Our study thus provides potential biomarkers that could be used for the evaluation of future therapeutic trials using the SCA7140Q/5Q model.
Collapse
Affiliation(s)
- Jean-Baptiste Pérot
- Laboratoire des Maladies Neurodégénératives, Université Paris-Saclay, Commissariat à l’Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Molecular Imaging Research Center, Fontenay-aux-Roses, 92260, France
- Institut du Cerveau–Paris Brain Institute–ICM, Sorbonne Université, Paris, 75013, France
| | - Anna Niewiadomska-Cimicka
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch, 67404, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, 67404, France
- Université de Strasbourg, Illkirch, 67404, France
| | - Emmanuel Brouillet
- Laboratoire des Maladies Neurodégénératives, Université Paris-Saclay, Commissariat à l’Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Molecular Imaging Research Center, Fontenay-aux-Roses, 92260, France
| | - Yvon Trottier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch, 67404, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, 67404, France
- Université de Strasbourg, Illkirch, 67404, France
| | - Julien Flament
- Laboratoire des Maladies Neurodégénératives, Université Paris-Saclay, Commissariat à l’Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Molecular Imaging Research Center, Fontenay-aux-Roses, 92260, France
| |
Collapse
|
5
|
Suárez-Sánchez R, Ávila-Avilés RD, Hernández-Hernández JM, Sánchez-Celis D, Azotla-Vilchis CN, Gómez-Macías ER, Leyva-García N, Ortega A, Magaña JJ, Cisneros B, Hernández-Hernández O. RNA Foci Formation in a Retinal Glial Model for Spinocerebellar Ataxia Type 7. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010023. [PMID: 36675972 PMCID: PMC9861853 DOI: 10.3390/life13010023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Spinocerebellar ataxia type 7 (SCA7) is a neurodegenerative disorder characterized by cerebellar ataxia and retinopathy. SCA7 is caused by a CAG expansion in the ATXN7 gene, which results in an extended polyglutamine (polyQ) tract in the encoded protein, the ataxin-7. PolyQ expanded ataxin-7 elicits neurodegeneration in cerebellar Purkinje cells, however, its impact on the SCA7-associated retinopathy remains to be addressed. Since Müller glial cells play an essential role in retinal homeostasis, we generate an inducible model for SCA7, based on the glial Müller MIO-M1 cell line. The SCA7 pathogenesis has been explained by a protein gain-of-function mechanism, however, the contribution of the mutant RNA to the disease cannot be excluded. In this direction, we found nuclear and cytoplasmic foci containing mutant RNA accompanied by subtle alternative splicing defects in MIO-M1 cells. RNA foci were also observed in cells from different lineages, including peripheral mononuclear leukocytes derived from SCA7 patient, suggesting that this molecular mark could be used as a blood biomarker for SCA7. Collectively, our data showed that our glial cell model exhibits the molecular features of SCA7, which makes it a suitable model to study the RNA toxicity mechanisms, as well as to explore therapeutic strategies aiming to alleviate glial dysfunction.
Collapse
Affiliation(s)
- Rocío Suárez-Sánchez
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación-Luis, Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico
| | - Rodolfo Daniel Ávila-Avilés
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - J. Manuel Hernández-Hernández
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - Daniel Sánchez-Celis
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - Cuauhtli N. Azotla-Vilchis
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - Enue R. Gómez-Macías
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - Norberto Leyva-García
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación-Luis, Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico
| | - Arturo Ortega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del, Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - Jonathan J. Magaña
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación-Luis, Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico
- Escuela de Ingeniería y Ciencias, Departamento de Bioingeniería, Tecnológico de Monterrey-Campus Ciudad de México, Ciudad de México 14380, Mexico
| | - Bulmaro Cisneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - Oscar Hernández-Hernández
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación-Luis, Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico
- Correspondence: or ; Tel.: +52-(55)-5999-1000 (ext. 14710)
| |
Collapse
|
6
|
Pawar N, Manayath GJ, Verghese S, Chandrakanth P, Shah V, Raut A, Gaikwad S, Patil PA, Daswani M, Meenakshi R, Narendran K, Narendran V. Potpourri of retinopathies in rare eye disease - A case series. Indian J Ophthalmol 2022; 70:2605-2609. [PMID: 35791168 PMCID: PMC9426132 DOI: 10.4103/ijo.ijo_3002_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
This case series describes the ocular and retinal manifestations of rare eye diseases in systemic syndromes. This observational case series consists of five patients with varied ophthalmic manifestations and documentation of imaging in rare pediatric and adult retinopathies. Two patients had Kearns Sayre syndrome (KSS) based on the classical triad of external ophthalmoplegia, pigmentary retinopathy, and onset before 20 years of age. In one patient of KSS, the mitochondrial retinopathy was seen in an asymmetric pattern, and the second patient presented with KSS after being mis-diagnosed as myasthenia gravis elsewhere. A case of Senior Loken syndrome in pediatric age is described in this series with varied ophthalmic manifestations ranging from retinitis pigmentosa to orbital abscess. This series also enlightens features of Hallervorden Spatz syndrome presenting with bull's eye maculopathy and a case of spino-cerebellar ataxia type 7 presenting with pigmentary retinopathy.
Collapse
Affiliation(s)
- Neelam Pawar
- Pediatric Ophthalmology and Squint Services, Aravind Eye Hospital and Post Graduate Institute of Ophthalmology, Tirunelveli, India
| | - George J Manayath
- Department of Retina & Vitreous Aravind Eye Hospital & Postgraduate institute of Ophthalmology, Coimbatore, India
| | - Shishir Verghese
- Department of Retina & Vitreous Aravind Eye Hospital & Postgraduate institute of Ophthalmology, Coimbatore, India,Correspondence to: Dr. Shishir Verghese, Retina Services, Aravind Eye Hospital and Post Graduate Institute of Ophthalmology, Coimbatore, India. E-mail:
| | - Prithvi Chandrakanth
- Department of Retina & Vitreous Aravind Eye Hospital & Postgraduate institute of Ophthalmology, Coimbatore, India
| | - Virna Shah
- Department of Neuro-ophthalmology, Aravind Eye Hospital & Postgraduate institute of Ophthalmology, Coimbatore, India
| | - Ashwini Raut
- Department of Neuro-ophthalmology, Aravind Eye Hospital & Postgraduate institute of Ophthalmology, Coimbatore, India
| | | | - Parth A Patil
- Department of Pediatric Ophthalmology & Strabismus Aravind Eye Hospital & Postgraduate Institute of Ophthalmology, Coimbatore, India
| | - Mansha Daswani
- Department of Neuro-ophthalmology, Aravind Eye Hospital & Postgraduate institute of Ophthalmology, Coimbatore, India
| | - R Meenakshi
- Pediatric Ophthalmology and Squint Services, Aravind Eye Hospital and Post Graduate Institute of Ophthalmology, Tirunelveli, India
| | - Kalpana Narendran
- Department of Pediatric Ophthalmology & Strabismus Aravind Eye Hospital & Postgraduate Institute of Ophthalmology, Coimbatore, India
| | - Venkatapathy Narendran
- Department of Retina & Vitreous Aravind Eye Hospital & Postgraduate institute of Ophthalmology, Coimbatore, India
| |
Collapse
|
7
|
Identification of the Largest SCA36 Pedigree in Asia: with Multimodel Neuroimaging Evaluation for the First Time. THE CEREBELLUM 2021; 21:358-367. [PMID: 34264505 DOI: 10.1007/s12311-021-01304-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
Spinocerebellar ataxias (SCAs) are a large group of hereditary neurodegenerative diseases characterized by ataxia and dysarthria. Due to high clinical and genetic heterogeneity, many SCA families are undiagnosed. Herein, using linkage analysis, WES, and RP-PCR, we identified the largest SCA36 pedigree in Asia. This pedigree showed some distinct clinical characteristics. Cognitive impairment and gaze palsy are common and severe in SCA36 patients, especially long-course patients. Although no patients complained of hearing loss, most of them presented with hearing impairment in objective auxiliary examination. Voxel-based morphometry (VBM) demonstrated a reduction of volumes in cerebellum, brainstem, and thalamus (corrected P < 0.05). Reduced volumes in cerebellum were also found in presymptomatic carriers. Resting-state functional MRI (R-fMRI) found reduced ReHo values in left cerebellar posterior lobule (corrected P < 0.05). Diffusion tensor imaging (DTI) demonstrated a reduction of FA values in cerebellum, midbrain, superior and inferior cerebellar peduncle (corrected P < 0.05). MRS found reduced NAA/Cr values in cerebellar vermis and hemisphere (corrected P < 0.05). Our findings could provide new insights into management of SCA36 patients. Detailed auxiliary examination are recommended to assess hearing or peripheral nerve impairment, and we should pay more attention to eye movement and cognitive changes in patients. Furthermore, for the first time, our multimodel neuroimaging evaluation generate a full perspective of brain function and structure in SCA36 patients.
Collapse
|
8
|
Ramos-Languren LE, Rodríguez-Labrada R, Magaña JJ, Canales-Ochoa N, González-Zaldivar Y, Velázquez-Pérez L, González-Piña R. Involvement of the Auditory Pathway in Spinocerebellar Ataxia Type 7. NEURODEGENER DIS 2021; 20:185-192. [PMID: 34247167 DOI: 10.1159/000517213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/13/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Spinocerebellar ataxia type 7 (SCA7) is an autosomal dominant disorder caused by a mutation in the ATXN7 gene. The involvement of the brainstem auditory pathway in pathogenesis of this disease has not been systematically assessed. AIM To determine involvement of the brainstem auditory pathway in SCA7 patients and its relationship to clinical features of the disease. METHODS In this case-control study, brainstem auditory-evoked potentials (BAEPs) were assessed in 12 SCA7 patients with clinical and molecular diagnosis, compared to 2 control groups of 16 SCA2 patients and 16 healthy controls. RESULTS SCA7 patients exhibited significant prolongation of I-wave and III-wave latencies, whereas SCA2 patients showed increased latencies for III and V waves and I-III interpeak interval. SCA7 patients with larger I-wave latencies exhibited larger CAG repeats, earlier onset age, and higher SARA scores, but in SCA2 cases, these were not observed. CONCLUSIONS BAEP tests revealed functional involvement of the auditory pathway in SCA7 (mainly at) peripheral portions, which gave new insights into the disease physiopathology different from SCA2 and may unravel distinct pathoanatomical effects of polyQ expansions in the central nervous system. SIGNIFICANCE These findings offer important insights into the distinctive disease mechanisms in SCA7 and SCA2, which could be useful for differential diagnosis and designing specific precision medicine approaches for both conditions.
Collapse
Affiliation(s)
- Laura E Ramos-Languren
- Psychobiology and Neurosciences Department, Psychology's Faculty, UNAM, Mexico City, Mexico
| | - Roberto Rodríguez-Labrada
- Center for Research and Rehabilitation of Hereditary Ataxias, Holguin, Cuba.,Cuban Centre for Neurosciences, Havana, Cuba
| | - Jonathan J Magaña
- Genetics Department, Genomic Medicine Laboratory, National Rehabilitation Institute LGII, Mexico City, Mexico
| | | | | | - Luis Velázquez-Pérez
- Center for Research and Rehabilitation of Hereditary Ataxias, Holguin, Cuba.,Cuban Academy of Sciences, Havana, Cuba
| | - Rigoberto González-Piña
- National Geriatrics Institute, Aging Biology Laboratory, Mexico City, Mexico.,America's University, Puebla 223 Col, Mexico City, Mexico
| |
Collapse
|
9
|
Hernandez-Castillo CR, Diaz R, Rezende TJR, Adanyeguh I, Harding IH, Mochel F, Fernandez-Ruiz J. Cervical Spinal Cord Degeneration in Spinocerebellar Ataxia Type 7. AJNR Am J Neuroradiol 2021; 42:1735-1739. [PMID: 34210665 DOI: 10.3174/ajnr.a7202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/12/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Spinocerebellar ataxia type 7 is an autosomal dominant neurodegenerative disease caused by a cytosine-adenine-guanine (CAG) repeat expansion. Clinically, spinocerebellar ataxia type 7 is characterized by progressive cerebellar ataxia, pyramidal signs, and macular degeneration. In vivo MR imaging studies have shown extensive gray matter degeneration in the cerebellum and, to a lesser extent, in a range of cortical cerebral areas. The purpose of this study was to evaluate the impact of the disease in the spinal cord and its relationship with the patient's impairment. MATERIALS AND METHODS Using a semiautomated procedure applied to MR imaging data, we analyzed spinal cord area and eccentricity in a cohort of 48 patients with spinocerebellar ataxia type 7 and compared them with matched healthy controls. The motor impairment in the patient group was evaluated using the Scale for Assessment and Rating of Ataxia. RESULTS Our analysis showed a significantly smaller cord area (t = 9.04, P < .001, d = 1.31) and greater eccentricity (t = -2.25, P =. 02, d = 0.32) in the patient group. Similarly, smaller cord area was significantly correlated with a greater Scale for Assessment and Rating of Ataxia score (r = -0.44, P = .001). A multiple regression model showed that the spinal cord area was strongly associated with longer CAG repetition expansions (P = .002) and greater disease duration (P = .020). CONCLUSIONS Our findings indicate that cervical spinal cord changes are progressive and clinically relevant features of spinocerebellar ataxia type 7, and future investigation of these measures as candidate biomarkers is warranted.
Collapse
Affiliation(s)
- C R Hernandez-Castillo
- From the Faculty of Computer Science (C.R.H.-C.), Dalhousie University, Halifax, Nova Scotia, Canada
| | - R Diaz
- Physiology Department, Faculty of Medicine (R.D., J.F.-R.), Universidad Nacional Autónoma de México, Cuidad de Mexico, Mexico
| | - T J R Rezende
- Department of Neurology and Neuroimaging Laboratory (T.J.R.R.), School of Medical Sciences, University of Campinas, São Paulo, Brazil; Institut national de la santé et de la recherche médicale, Centre national de la recherche scientifique, Sorbonne Universités, Paris Brain Institute, Paris, France
| | | | - I H Harding
- Department of Neuroscience (I.H.), Central Clinical School, Monash University, Melbourne, Australia
| | - F Mochel
- Department of Genetics (F.M.), Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière University Hospital, Paris, France
| | - J Fernandez-Ruiz
- Physiology Department, Faculty of Medicine (R.D., J.F.-R.), Universidad Nacional Autónoma de México, Cuidad de Mexico, Mexico
| |
Collapse
|
10
|
Dohlman JC, Chwalisz BK, Stephen CD. Clinical Reasoning: A 28-Year-Old Woman With Vision Loss and an Unusual Gait. Neurology 2021; 97:e1860-e1865. [PMID: 34187863 DOI: 10.1212/wnl.0000000000012446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Jenny C Dohlman
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Harvard Medical School, Boston, MA
| | - Bart K Chwalisz
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Harvard Medical School, Boston, MA.,Department of Neurology, Massachusetts General Hospital, Boston, MA
| | | |
Collapse
|
11
|
Niewiadomska-Cimicka A, Doussau F, Perot JB, Roux MJ, Keime C, Hache A, Piguet F, Novati A, Weber C, Yalcin B, Meziane H, Champy MF, Grandgirard E, Karam A, Messaddeq N, Eisenmann A, Brouillet E, Nguyen HHP, Flament J, Isope P, Trottier Y. SCA7 Mouse Cerebellar Pathology Reveals Preferential Downregulation of Key Purkinje Cell-Identity Genes and Shared Disease Signature with SCA1 and SCA2. J Neurosci 2021; 41:4910-4936. [PMID: 33888607 PMCID: PMC8260160 DOI: 10.1523/jneurosci.1882-20.2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Spinocerebellar ataxia type 7 (SCA7) is an inherited neurodegenerative disease mainly characterized by motor incoordination because of progressive cerebellar degeneration. SCA7 is caused by polyglutamine expansion in ATXN7, a subunit of the transcriptional coactivator SAGA, which harbors histone modification activities. Polyglutamine expansions in specific proteins are also responsible for SCA1-SCA3, SCA6, and SCA17; however, the converging and diverging pathomechanisms remain poorly understood. Using a new SCA7 knock-in mouse, SCA7140Q/5Q, we analyzed gene expression in the cerebellum and assigned gene deregulation to specific cell types using published datasets. Gene deregulation affects all cerebellar cell types, although at variable degree, and correlates with alterations of SAGA-dependent epigenetic marks. Purkinje cells (PCs) are by far the most affected neurons and show reduced expression of 83 cell-type identity genes, including these critical for their spontaneous firing activity and synaptic functions. PC gene downregulation precedes morphologic alterations, pacemaker dysfunction, and motor incoordination. Strikingly, most PC genes downregulated in SCA7 have also decreased expression in SCA1 and SCA2 mice, revealing converging pathomechanisms and a common disease signature involving cGMP-PKG and phosphatidylinositol signaling pathways and LTD. Our study thus points out molecular targets for therapeutic development, which may prove beneficial for several SCAs. Furthermore, we show that SCA7140Q/5Q males and females exhibit the major disease features observed in patients, including cerebellar damage, cerebral atrophy, peripheral nerves pathology, and photoreceptor dystrophy, which account for progressive impairment of behavior, motor, and visual functions. SCA7140Q/5Q mice represent an accurate model for the investigation of different aspects of SCA7 pathogenesis.SIGNIFICANCE STATEMENT Spinocerebellar ataxia 7 (SCA7) is one of the several forms of inherited SCAs characterized by cerebellar degeneration because of polyglutamine expansion in specific proteins. The ATXN7 involved in SCA7 is a subunit of SAGA transcriptional coactivator complex. To understand the pathomechanisms of SCA7, we determined the cell type-specific gene deregulation in SCA7 mouse cerebellum. We found that the Purkinje cells are the most affected cerebellar cell type and show downregulation of a large subset of neuronal identity genes, critical for their spontaneous firing and synaptic functions. Strikingly, the same Purkinje cell genes are downregulated in mouse models of two other SCAs. Thus, our work reveals a disease signature shared among several SCAs and uncovers potential molecular targets for their treatment.
Collapse
Affiliation(s)
- Anna Niewiadomska-Cimicka
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Frédéric Doussau
- Université de Strasbourg, Illkirch 67404, France
- Centre National de la Recherche Scientifique UPR3212, Strasbourg 67000, France
| | - Jean-Baptiste Perot
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Direction de la Recherche Fondamentale, Institut de biologie François Jacob, Molecular Imaging Research Center, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses 92260, France
| | - Michel J Roux
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Celine Keime
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Antoine Hache
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Françoise Piguet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Ariana Novati
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen 72076, Germany
- Department of Human Genetics, Medical Faculty, Ruhr University Bochum, Bochum 44801, Germany
| | - Chantal Weber
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Binnaz Yalcin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Hamid Meziane
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
- Celphedia, Phenomin, Institut Clinique de la Souris, Illkirch 67404, France
| | - Marie-France Champy
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
- Celphedia, Phenomin, Institut Clinique de la Souris, Illkirch 67404, France
| | - Erwan Grandgirard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Alice Karam
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Nadia Messaddeq
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Aurélie Eisenmann
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Emmanuel Brouillet
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Direction de la Recherche Fondamentale, Institut de biologie François Jacob, Molecular Imaging Research Center, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses 92260, France
| | - Hoa Huu Phuc Nguyen
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen 72076, Germany
- Department of Human Genetics, Medical Faculty, Ruhr University Bochum, Bochum 44801, Germany
| | - Julien Flament
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Direction de la Recherche Fondamentale, Institut de biologie François Jacob, Molecular Imaging Research Center, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses 92260, France
| | - Philippe Isope
- Université de Strasbourg, Illkirch 67404, France
- Centre National de la Recherche Scientifique UPR3212, Strasbourg 67000, France
| | - Yvon Trottier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| |
Collapse
|
12
|
Park JY, Joo K, Woo SJ. Ophthalmic Manifestations and Genetics of the Polyglutamine Autosomal Dominant Spinocerebellar Ataxias: A Review. Front Neurosci 2020; 14:892. [PMID: 32973440 PMCID: PMC7472957 DOI: 10.3389/fnins.2020.00892] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/30/2020] [Indexed: 12/20/2022] Open
Abstract
Spinocerebellar ataxia (SCA) is a part of the cerebellar neurodegenerative disease group that is diverse in genetics and phenotypes. It usually shows autosomal dominant inheritance. SCAs, always together with the cerebellar degeneration, may exhibit clinical deficits in brainstem or eye, especially retina or optic nerve. Interestingly, autosomal dominant SCAs share a common genetic mechanism; the length of the glutamine chain is abnormally expanded due to the increase in the cytosine–adenine–guanine (CAG) repeats of the disease causing gene. Studies have suggested that the mutant ataxin induces alteration of protein conformation and abnormal aggregation resulting in nuclear inclusions, and causes cellular loss of photoreceptors through a toxic effect. As a result, these pathologic changes induce a downregulation of genes involved in the phototransduction, development, and differentiation of photoreceptors such as CRX, one of the photoreceptor transcription factors. However, the exact mechanism of neuronal degeneration by mutant ataxin restricted to only certain type of neuronal cell including cerebellar Purkinje neurons and photoreceptor is still unclear. The most common SCAs are types 1, 2, 3, 6, 7, and 17 which contain about 80% of autosomal dominant SCA cases. Various aspects of eye movement abnormalities are evident depending on the degree of cerebellar and brainstem degeneration in SCAs. In addition, certain types of SCAs such as SCA7 are characterized by both cerebellar ataxia and visual loss mainly due to retinal degeneration. The severity of the retinopathy can vary from occult macular photoreceptor disruption to extensive retinal atrophy and is correlated with the number of CAG repeats. The value of using optical coherence tomography in conjunction with electrodiagnostic and genetic testing is emphasized as the combination of these tests can provide critical information regarding the etiology, morphological evaluation, and functional significances. Therefore, ophthalmologists need to recognize and differentiate SCAs in order to properly diagnose and evaluate the disease. In this review, we have described and discussed SCAs showing ophthalmic abnormalities with particular attention to their ophthalmic features, neurodegenerative mechanisms, genetics, and future perspectives.
Collapse
Affiliation(s)
- Jun Young Park
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Kwangsic Joo
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Se Joon Woo
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
13
|
Lalonde R, Strazielle C. Motor Performances of Spontaneous and Genetically Modified Mutants with Cerebellar Atrophy. THE CEREBELLUM 2019; 18:615-634. [PMID: 30820866 DOI: 10.1007/s12311-019-01017-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chance discovery of spontaneous mutants with atrophy of the cerebellar cortex has unearthed genes involved in optimizing motor coordination. Rotorod, stationary beam, and suspended wire tests are useful in delineating behavioral phenotypes of spontaneous mutants with cerebellar atrophy such as Grid2Lc, Grid2ho, Rorasg, Agtpbp1pcd, Relnrl, and Dab1scm. Likewise, transgenic or null mutants serving as experimental models of spinocerebellar ataxia (SCA) are phenotyped with the same tests. Among experimental models of autosomal dominant SCA, rotorod deficits were reported in SCA1 to 3, SCA5 to 8, SCA14, SCA17, and SCA27 and stationary beam deficits in SCA1 to 3, SCA5, SCA6, SCA13, SCA17, and SCA27. Beam tests are sensitive to experimental therapies of various kinds including molecules affecting glutamate signaling, mesenchymal stem cells, anti-oligomer antibodies, lentiviral vectors carrying genes, interfering RNAs, or neurotrophic factors, and interbreeding with other mutants.
Collapse
Affiliation(s)
- Robert Lalonde
- Department of Psychology, University of Rouen, 76821, Mont-Saint-Aignan Cedex, France.
| | - Catherine Strazielle
- Laboratory of Stress, Immunity, and Pathogens EA7300, and CHRU of Nancy, University of Lorraine, 54500, Vandoeuvre-les-Nancy, France
| |
Collapse
|
14
|
Niewiadomska-Cimicka A, Trottier Y. Molecular Targets and Therapeutic Strategies in Spinocerebellar Ataxia Type 7. Neurotherapeutics 2019; 16:1074-1096. [PMID: 31432449 PMCID: PMC6985300 DOI: 10.1007/s13311-019-00778-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Spinocerebellar ataxia type 7 (SCA7) is a rare autosomal dominant neurodegenerative disorder characterized by progressive neuronal loss in the cerebellum, brainstem, and retina, leading to cerebellar ataxia and blindness as major symptoms. SCA7 is due to the expansion of a CAG triplet repeat that is translated into a polyglutamine tract in ATXN7. Larger SCA7 expansions are associated with earlier onset of symptoms and more severe and rapid disease progression. Here, we summarize the pathological and genetic aspects of SCA7, compile the current knowledge about ATXN7 functions, and then focus on recent advances in understanding the pathogenesis and in developing biomarkers and therapeutic strategies. ATXN7 is a bona fide subunit of the multiprotein SAGA complex, a transcriptional coactivator harboring chromatin remodeling activities, and plays a role in the differentiation of photoreceptors and Purkinje neurons, two highly vulnerable neuronal cell types in SCA7. Polyglutamine expansion in ATXN7 causes its misfolding and intranuclear accumulation, leading to changes in interactions with native partners and/or partners sequestration in insoluble nuclear inclusions. Studies of cellular and animal models of SCA7 have been crucial to unveil pathomechanistic aspects of the disease, including gene deregulation, mitochondrial and metabolic dysfunctions, cell and non-cell autonomous protein toxicity, loss of neuronal identity, and cell death mechanisms. However, a better understanding of the principal molecular mechanisms by which mutant ATXN7 elicits neurotoxicity, and how interconnected pathogenic cascades lead to neurodegeneration is needed for the development of effective therapies. At present, therapeutic strategies using nucleic acid-based molecules to silence mutant ATXN7 gene expression are under development for SCA7.
Collapse
Affiliation(s)
- Anna Niewiadomska-Cimicka
- Institute of Genetic and Molecular and Cellular Biology (IGBMC), Centre National de la Recherche Scientifique (UMR7104), Institut National de la Santé et de la Recherche Médicale (U1258), University of Strasbourg, Illkirch, France
| | - Yvon Trottier
- Institute of Genetic and Molecular and Cellular Biology (IGBMC), Centre National de la Recherche Scientifique (UMR7104), Institut National de la Santé et de la Recherche Médicale (U1258), University of Strasbourg, Illkirch, France.
| |
Collapse
|
15
|
Cloud V, Thapa A, Morales-Sosa P, Miller TM, Miller SA, Holsapple D, Gerhart PM, Momtahan E, Jack JL, Leiva E, Rapp SR, Shelton LG, Pierce RA, Martin-Brown S, Florens L, Washburn MP, Mohan RD. Ataxin-7 and Non-stop coordinate SCAR protein levels, subcellular localization, and actin cytoskeleton organization. eLife 2019; 8:e49677. [PMID: 31348003 PMCID: PMC6693919 DOI: 10.7554/elife.49677] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 07/22/2019] [Indexed: 12/18/2022] Open
Abstract
Atxn7, a subunit of SAGA chromatin remodeling complex, is subject to polyglutamine expansion at the amino terminus, causing spinocerebellar ataxia type 7 (SCA7), a progressive retinal and neurodegenerative disease. Within SAGA, the Atxn7 amino terminus anchors Non-stop, a deubiquitinase, to the complex. To understand the scope of Atxn7-dependent regulation of Non-stop, substrates of the deubiquitinase were sought. This revealed Non-stop, dissociated from Atxn7, interacts with Arp2/3 and WAVE regulatory complexes (WRC), which control actin cytoskeleton assembly. There, Non-stop countered polyubiquitination and proteasomal degradation of WRC subunit SCAR. Dependent on conserved WRC interacting receptor sequences (WIRS), Non-stop augmentation increased protein levels, and directed subcellular localization, of SCAR, decreasing cell area and number of protrusions. In vivo, heterozygous mutation of SCAR did not significantly rescue knockdown of Atxn7, but heterozygous mutation of Atxn7 rescued haploinsufficiency of SCAR.
Collapse
Affiliation(s)
- Veronica Cloud
- University of Missouri - Kansas CityKansas CityUnited States
| | - Ada Thapa
- University of Missouri - Kansas CityKansas CityUnited States
| | | | - Tayla M Miller
- University of Missouri - Kansas CityKansas CityUnited States
| | - Sara A Miller
- University of Missouri - Kansas CityKansas CityUnited States
| | | | - Paige M Gerhart
- University of Missouri - Kansas CityKansas CityUnited States
| | - Elaheh Momtahan
- University of Missouri - Kansas CityKansas CityUnited States
| | - Jarrid L Jack
- University of Missouri - Kansas CityKansas CityUnited States
| | - Edgardo Leiva
- University of Missouri - Kansas CityKansas CityUnited States
| | - Sarah R Rapp
- University of Missouri - Kansas CityKansas CityUnited States
| | | | | | | | | | - Michael P Washburn
- Stowers Institute for Medical ResearchKansas CityUnited States
- Department of Pathology and Laboratory MedicineUniversity of Kansas Medical CenterKansas CityUnited States
| | - Ryan D Mohan
- University of Missouri - Kansas CityKansas CityUnited States
| |
Collapse
|
16
|
Ophthalmic features of spinocerebellar ataxia type 7. Eye (Lond) 2017; 32:120-127. [PMID: 28799562 DOI: 10.1038/eye.2017.135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 05/31/2017] [Indexed: 01/27/2023] Open
Abstract
PurposeTo analyze the relation between ophthalmologic and motor changes in spinocerebellar ataxia type 7 (SCA7).Patients and methodsThis was a case series study. Sixteen SCA7 patients underwent a comprehensive ophthalmic examination, including ocular extrinsic motility testing, color vision test, and optical coherence tomography of the optic nerve and macula. Changes in the corneal endothelium, electroretinographic patterns, and a complete neurologic evaluation using the Scale for the Assessment and Rating of Ataxia (SARA) were evaluated. Correlations of endothelial cell density (ECD) with number of CAG repetitions and the SARA scores were estimated.ResultsAll patients showed various degrees of visual impairment mainly due to macular deterioration. Notably, they also presented decreased ECD. Pairwise correlations of ECD with number of CAG repeats and severity of motor symptoms quantified with the SARA scores were inverse (r=-0.46, P=0.083 and r=-0.64, P=0.009, respectively). Further analyses indicated an average ECD decrease of 48 cells/mm2 (P=0.006) per unit of change on the number of CAG repeats, and of 75 cells/mm2 (P=0.001) per unit of change on the SARA scores.ConclusionsThe results agree with previous ophthalmological findings regarding the widespread effect of SCA7 mutation on the patient's visual system. However, the results also show a significant negative correlation of decreased ECD with both CAG repetitions and SARA scores. This suggests that motor systems could degenerate in parallel with visual systems, although more research is needed to determine whether the degeneration is caused by the same mechanisms.
Collapse
|
17
|
Lindsay E, Storey E. Cognitive Changes in the Spinocerebellar Ataxias Due to Expanded Polyglutamine Tracts: A Survey of the Literature. Brain Sci 2017; 7:brainsci7070083. [PMID: 28708110 PMCID: PMC5532596 DOI: 10.3390/brainsci7070083] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/27/2017] [Accepted: 07/06/2017] [Indexed: 12/18/2022] Open
Abstract
The dominantly-inherited ataxias characterised by expanded polyglutamine tracts—spinocere bellar ataxias (SCAs) 1, 2, 3, 6, 7, 17, dentatorubral pallidoluysian atrophy (DRPLA) and, in part, SCA 8—have all been shown to result in various degrees of cognitive impairment. We survey the literature on the cognitive consequences of each disorder, attempting correlation with their published neuropathological, magnetic resonance imaging (MRI) and clinical features. We suggest several psychometric instruments for assessment of executive function, whose results are unlikely to be confounded by visual, articulatory or upper limb motor difficulties. Finally, and with acknowledgement of the inadequacies of the literature to date, we advance a tentative classification of these disorders into three groups, based on the reported severity of their cognitive impairments, and correlated with their neuropathological topography and MRI findings: group 1—SCAs 6 and 8—mild dysexecutive syndrome based on disruption of cerebello-cortical circuitry; group 2—SCAs 1, 2, 3, and 7—more extensive deficits based largely on disruption of striatocortical in addition to cerebello-cerebral circuitry; and group 3—SCA 17 and DRPLA—in which cognitive impairment severe enough to cause a dementia syndrome is a frequent feature.
Collapse
Affiliation(s)
- Evelyn Lindsay
- Department of Medicine (Neuroscience), Monash University (Alfred Hospital Campus), Commercial Road, Melbourne, VIC 3004, Australia.
| | - Elsdon Storey
- Department of Medicine (Neuroscience), Monash University (Alfred Hospital Campus), Commercial Road, Melbourne, VIC 3004, Australia.
| |
Collapse
|
18
|
Specific cerebellar and cortical degeneration correlates with ataxia severity in spinocerebellar ataxia type 7. Brain Imaging Behav 2016; 10:252-7. [PMID: 25917872 DOI: 10.1007/s11682-015-9389-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Spinocerebellar ataxia type 7 (SCA7) is a progressive neurodegenerative disorder that is accompanied by loss of motor control and macular degeneration. Previous studies have shown cerebellar and pons atrophy as well as functional connectivity changes across the whole brain. Although different MRI modalities have been used to study the degenerative process, little is known about the relationship between the motor symptoms and cerebral atrophy. Twenty-four patients with molecular diagnosis of SCA7 where invited to participate in this study. Ataxia severity was evaluated using the scale for the assessment and rating of ataxia (SARA). Structural magnetic resonance imaging (MRI) brain images were used to obtain the grey matter volume of each participant. As expected, we found a significant negative correlation between the SARA score and the grey matter volume in distinct regions of the cerebellum in the patient group. Additionally, we found significant correlations between the ataxia degree and the degeneration of specific cortical areas in these patients. These findings provide a better understanding of the relationship between gray matter atrophy and ataxia related symptoms that result from the SCA7 mutation.
Collapse
|
19
|
Abstract
While the onset of a dominantly inherited ataxia is typically taken to be the onset of gait ataxia, a wide range of other symptoms related to central and/or peripheral nervous system impairment, or even to non-neurological involvement, can be the presenting feature. Knowledge of these is fairly robust for the commonest spinocerebellar ataxias (SCAs 1, 2, 3 and 6) and for those where a striking non-ataxic presentation is the norm (SCAs 7 and 12), but the literature is potentially misleading in the rarer dominant ataxias. This review summarises what is currently known of these non-ataxic presentations and outlines and explains the difficulties associated with determining non-ataxic presentations of dominant ataxias. The relevant literature was surveyed, including systematic reviews (where available) and case reports. Non-ataxic presentations of dominant ataxias are classified by symptom.
Collapse
Affiliation(s)
- Elsdon Storey
- Department of Medicine (Neuroscience), Monash University, Alfred Hospital Campus, Commercial Road, Melbourne, VIC, 3004, Australia. .,Department of Neuroscience, Alfred Hospital, Commercial Road, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
20
|
Hekman KE, Gomez CM. The autosomal dominant spinocerebellar ataxias: emerging mechanistic themes suggest pervasive Purkinje cell vulnerability. J Neurol Neurosurg Psychiatry 2015; 86:554-61. [PMID: 25136055 PMCID: PMC6718294 DOI: 10.1136/jnnp-2014-308421] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/27/2014] [Indexed: 01/05/2023]
Abstract
The spinocerebellar ataxias are a genetically heterogeneous group of disorders with clinically overlapping phenotypes arising from Purkinje cell degeneration, cerebellar atrophy and varying degrees of degeneration of other grey matter regions. For 22 of the 32 subtypes, a genetic cause has been identified. While recurring themes are emerging, there is no clear correlation between the clinical phenotype or penetrance, the type of genetic defect or the category of the disease mechanism, or the neuronal types involved beyond Purkinje cells. These phenomena suggest that cerebellar Purkinje cells may be a uniquely vulnerable neuronal cell type, more susceptible to a wider variety of genetic/cellular insults than most other neuron types.
Collapse
Affiliation(s)
- Katherine E Hekman
- Department of Vascular Surgery, McGaw Medical Center of Northwestern University, Chicago, Illinois, USA
| | | |
Collapse
|
21
|
Somatic instability of expanded CAG repeats of ATXN7 in Japanese patients with spinocerebellar ataxia type 7. Doc Ophthalmol 2015; 130:189-95. [DOI: 10.1007/s10633-015-9488-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 01/28/2015] [Indexed: 11/30/2022]
|
22
|
Datta D, Kim KS. Induced Pluripotent Stem Cells (iPSCs) to Study and Treat Movement Disorders. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
23
|
Beh SC, Frohman TC, Frohman EM. Neuro-ophthalmic Manifestations of Cerebellar Disease. Neurol Clin 2014; 32:1009-80. [DOI: 10.1016/j.ncl.2014.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shin C Beh
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Teresa C Frohman
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Elliot M Frohman
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
24
|
A comprehensive clinical and genetic study of a large Mexican population with spinocerebellar ataxia type 7. Neurogenetics 2014; 16:11-21. [DOI: 10.1007/s10048-014-0424-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 09/08/2014] [Indexed: 01/26/2023]
|
25
|
Wictorin K, Brådvik B, Nilsson K, Soller M, van Westen D, Bynke G, Bauer P, Schöls L, Puschmann A. Autosomal dominant cerebellar ataxia with slow ocular saccades, neuropathy and orthostatism: a novel entity? Parkinsonism Relat Disord 2014; 20:748-54. [PMID: 24787759 DOI: 10.1016/j.parkreldis.2014.03.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/21/2014] [Accepted: 03/31/2014] [Indexed: 11/25/2022]
Abstract
BACKGROUND We describe the clinical characteristics of a Swedish family with autosomal dominant cerebellar ataxia, sensory and autonomic neuropathy, additional neurological features and unknown genetic cause. METHODS Fourteen affected family members were identified. Their disorder was characterized by neurological examination, MRI, electroneurography, electromyography, MIBG-scintigraphy, and tilt-testing. RESULTS The disorder presented as a balance and gait disturbance starting between 16 and 47 years of age. Cerebellar ataxia progressed slowly over the course of decades, and MRI showed mild to moderate cerebellar atrophy. Sensory axonal polyneuropathy was the most prominent additional feature and occurred in all patients examined. Autonomic neuropathy caused pronounced orthostatic dysregulation in at least four patients. Several affected members showed muscle wasting, and mild upper or lower motor neuron signs were documented. Patients had no nystagmus but slow or hypometric horizontal saccades and ocular motor apraxia. Cognition remained unimpaired, and there were no non-neurological disease manifestations. The disorder affected men and women in successive generations in a pattern compatible with autosomal dominant inheritance without evidence of anticipation. A second family where 7 members had very similar symptoms was identified and its origin traced back to the same village in southern Sweden as that of the first family's ancestors. All relevant known genetic causes of cerebellar ataxia were excluded by a novel next-generation sequencing approach. CONCLUSION We present two probably related Swedish families with a characteristic and novel clinical syndrome of cerebellar ataxia and sensory polyneuropathy. The study serves as a basis for the mapping of the underlying genetic cause.
Collapse
Affiliation(s)
- Klas Wictorin
- Division of Neurology, Department of Clinical Sciences, Lund University, Sweden; Department for Neurology, Skåne University Hospital, Sweden
| | - Björn Brådvik
- Division of Neurology, Department of Clinical Sciences, Lund University, Sweden; Department for Neurology, Skåne University Hospital, Sweden
| | - Karin Nilsson
- Division of Geriatric Psychiatry, Department of Clinical Sciences, Lund University, Sweden
| | - Maria Soller
- Department for Clinical Genetics, Regional and University Laboratories, Lund, Sweden
| | - Danielle van Westen
- Center for Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden; Institution for Clinical Sciences, Diagnostic Radiology, Lund University, Sweden
| | - Gunnel Bynke
- Department of Ophthalmology, Institution of Clinical Sciences, Lund University, Sweden
| | - Peter Bauer
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Germany
| | - Ludger Schöls
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Germany; German Research Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Andreas Puschmann
- Division of Neurology, Department of Clinical Sciences, Lund University, Sweden; Department for Neurology, Skåne University Hospital, Sweden.
| |
Collapse
|
26
|
García-Velázquez LE, Canizales-Quinteros S, Romero-Hidalgo S, Ochoa-Morales A, Martínez-Ruano L, Márquez-Luna C, Acuña-Alonzo V, Villarreal-Molina MT, Alonso-Vilatela ME, Yescas-Gómez P. Founder effect and ancestral origin of the spinocerebellar ataxia type 7 (SCA7) mutation in Mexican families. Neurogenetics 2013; 15:13-7. [DOI: 10.1007/s10048-013-0387-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 12/04/2013] [Indexed: 11/28/2022]
|
27
|
Lowenthal RM, Tegg EM, Dickinson JL. The Familial Tasmanian Haematological Malignancies Study (FaTHMS): its origins, its history and the phenomenon of anticipation. Transfus Apher Sci 2013; 49:113-5. [PMID: 23968988 DOI: 10.1016/j.transci.2013.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We began epidemiological studies of haematological malignancies (lymphomas, leukaemias and related diseases) in Tasmania, the island state of Australia, in 1972. Our work has identified a number of families each containing several cases. In contrast to reports from elsewhere, we recognised familial cases incorporating the range of haematological malignancies, that is, not confined to a single diagnosis. Furthermore the average number of cases per extended family tree has exceeded that of any prior report. An unexpected discovery from the detailed familial analysis was that of anticipation, the phenomenon whereby the symptoms of a disorder become apparent at an earlier age as it is passed on to the next generation. These findings strengthen the case for there being genetic anomalies underlying the development of haematological malignancies at least in some cases, and are the subject of ongoing research.
Collapse
Affiliation(s)
- Ray M Lowenthal
- Menzies Research Institute of the University of Tasmania, 17 Liverpool Street, Hobart TAS 7000, Australia.
| | | | | |
Collapse
|
28
|
Hernandez-Castillo CR, Alcauter S, Galvez V, Barrios FA, Yescas P, Ochoa A, Garcia L, Diaz R, Gao W, Fernandez-Ruiz J. Disruption of visual and motor connectivity in spinocerebellar ataxia type 7. Mov Disord 2013; 28:1708-16. [DOI: 10.1002/mds.25618] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/28/2013] [Accepted: 07/01/2013] [Indexed: 11/06/2022] Open
Affiliation(s)
- Carlos R. Hernandez-Castillo
- Instituto de Neuroetologia; Universidad Veracruzana; Xalapa Mexico
- Department of Radiology and BRIC; University of North Carolina; Chapel Hill North Carolina USA
| | - Sarael Alcauter
- Department of Radiology and BRIC; University of North Carolina; Chapel Hill North Carolina USA
| | - Victor Galvez
- Instituto de Neuroetologia; Universidad Veracruzana; Xalapa Mexico
| | - Fernando A. Barrios
- Instituto de Neurobiología; Universidad Nacional Autónoma de México; Mexico City Mexico
| | - Petra Yescas
- Departamento de Neurogenetica y Biologia Molecular; Instituto Nacional de Neurologia y Neurocirugia. Manuel Velasco Suarez; Mexico City Mexico
| | - Adriana Ochoa
- Departamento de Neurogenetica y Biologia Molecular; Instituto Nacional de Neurologia y Neurocirugia. Manuel Velasco Suarez; Mexico City Mexico
| | - Lizbeth Garcia
- Departamento de Neurogenetica y Biologia Molecular; Instituto Nacional de Neurologia y Neurocirugia. Manuel Velasco Suarez; Mexico City Mexico
| | - Rosalinda Diaz
- Departamento de Fisiologia, Facultad de Medicina; Universidad Nacional Autonoma de Mexico; Mexico City Mexico
| | - Wei Gao
- Department of Radiology and BRIC; University of North Carolina; Chapel Hill North Carolina USA
| | - Juan Fernandez-Ruiz
- Instituto de Neuroetologia; Universidad Veracruzana; Xalapa Mexico
- Departamento de Fisiologia, Facultad de Medicina; Universidad Nacional Autonoma de Mexico; Mexico City Mexico
- Facultad de Psicologia; Universidad Veracruzana; Xalapa Mexico
| |
Collapse
|
29
|
Magistri M, Faghihi MA, St Laurent G, Wahlestedt C. Regulation of chromatin structure by long noncoding RNAs: focus on natural antisense transcripts. Trends Genet 2012; 28:389-96. [PMID: 22541732 DOI: 10.1016/j.tig.2012.03.013] [Citation(s) in RCA: 228] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 03/28/2012] [Accepted: 03/29/2012] [Indexed: 11/26/2022]
Abstract
In the decade following the publication of the Human Genome, noncoding RNAs (ncRNAs) have reshaped our understanding of the broad landscape of genome regulation. During this period, natural antisense transcripts (NATs), which are transcribed from the opposite strand of either protein or non-protein coding genes, have vaulted to prominence. Recent findings have shown that NATs can exert their regulatory functions by acting as epigenetic regulators of gene expression and chromatin remodeling. Here, we review recent work on the mechanisms of epigenetic modifications by NATs and their emerging role as master regulators of chromatin states. Unlike other long ncRNAs, antisense RNAs usually regulate their counterpart sense mRNA in cis by bridging epigenetic effectors and regulatory complexes at specific genomic loci. Understanding the broad range of effects of NATs will shed light on the complex mechanisms that regulate chromatin remodeling and gene expression in development and disease.
Collapse
Affiliation(s)
- Marco Magistri
- Department of Psychiatry and Behavioral Sciences, and Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | |
Collapse
|