1
|
Zheng B, Tuszynski MH. Regulation of axonal regeneration after mammalian spinal cord injury. Nat Rev Mol Cell Biol 2023; 24:396-413. [PMID: 36604586 DOI: 10.1038/s41580-022-00562-y] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2022] [Indexed: 01/06/2023]
Abstract
One hundred years ago, Ramón y Cajal, considered by many as the founder of modern neuroscience, stated that neurons of the adult central nervous system (CNS) are incapable of regenerating. Yet, recent years have seen a tremendous expansion of knowledge in the molecular control of axon regeneration after CNS injury. We now understand that regeneration in the adult CNS is limited by (1) a failure to form cellular or molecular substrates for axon attachment and elongation through the lesion site; (2) environmental factors, including inhibitors of axon growth associated with myelin and the extracellular matrix; (3) astrocyte responses, which can both limit and support axon growth; and (4) intraneuronal mechanisms controlling the establishment of an active cellular growth programme. We discuss these topics together with newly emerging hypotheses, including the surprising finding from transcriptomic analyses of the corticospinal system in mice that neurons revert to an embryonic state after spinal cord injury, which can be sustained to promote regeneration with neural stem cell transplantation. These gains in knowledge are steadily advancing efforts to develop effective treatment strategies for spinal cord injury in humans.
Collapse
Affiliation(s)
- Binhai Zheng
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA. .,VA San Diego Research Service, San Diego, CA, USA.
| | - Mark H Tuszynski
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA. .,VA San Diego Research Service, San Diego, CA, USA.
| |
Collapse
|
2
|
Vargova I, Kriska J, Kwok JCF, Fawcett JW, Jendelova P. Long-Term Cultures of Spinal Cord Interneurons. Front Cell Neurosci 2022; 16:827628. [PMID: 35197829 PMCID: PMC8859857 DOI: 10.3389/fncel.2022.827628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/12/2022] [Indexed: 11/25/2022] Open
Abstract
Spinal cord interneurons (SpINs) are highly diverse population of neurons that play a significant role in circuit reorganization and spontaneous recovery after spinal cord injury. Regeneration of SpIN axons across rodent spinal injuries has been demonstrated after modification of the environment and neurotrophin treatment, but development of methods to enhance the intrinsic regenerative ability of SpINs is needed. There is a lack of described in vitro models of spinal cord neurons in which to develop new regeneration treatments. For this reason, we developed a new model of mouse primary spinal cord neuronal culture in which to analyze maturation, morphology, physiology, connectivity and regeneration of identified interneurons. Isolated from E14 mice, the neurons mature over 15 days in vitro, demonstrated by expression of maturity markers, electrophysiological patch-clamp recordings, and formation of synapses. The neurons express markers of SpINs, including Tlx3, Lmx1b, Lbx1, Chx10, and Pax2. The neurons demonstrate distinct morphologies and some form perineuronal nets in long-term cultivation. Live neurons in various maturation stages were axotomized, using a 900 nm multiphoton laser and their fate was observed overnight. The percentage of axons that regenerated declined with neuronal maturity. This model of SpINs will be a valuable tool in future regenerative, developmental, and functional studies alongside existing models using cortical or hippocampal neurons.
Collapse
Affiliation(s)
- Ingrid Vargova
- Department of Neuroregeneration, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Jan Kriska
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| | - Jessica C. F. Kwok
- The Center for Reconstructive Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - James W. Fawcett
- The Center for Reconstructive Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Pavla Jendelova
- Department of Neuroregeneration, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
3
|
Pre-Clinical Evaluation of CBD-NT3 Modified Collagen Scaffolds in Completely Spinal Cord Transected Non-Human Primates. J Neurotrauma 2019; 36:2316-2324. [DOI: 10.1089/neu.2018.6078] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
4
|
Robinson J, Lu P. Optimization of trophic support for neural stem cell grafts in sites of spinal cord injury. Exp Neurol 2017; 291:87-97. [DOI: 10.1016/j.expneurol.2017.02.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/30/2017] [Accepted: 02/07/2017] [Indexed: 11/30/2022]
|
5
|
|
6
|
Ding YM, Li YY, Wang C, Huang H, Zheng CC, Huang SH, Xuan Y, Sun XY, Zhang X. Nischarin-siRNA delivered by polyethylenimine-alginate nanoparticles accelerates motor function recovery after spinal cord injury. Neural Regen Res 2017; 12:1687-1694. [PMID: 29171434 PMCID: PMC5696850 DOI: 10.4103/1673-5374.217348] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A previous study by our group found that inhibition of nischarin promotes neurite outgrowth and neuronal regeneration in Neuro-2a cells and primary cortical neurons. In recent years, more and more studies have shown that nanomaterials have good prospects in treatment of spinal cord injury. We proposed that small interfering RNA targeting nischarin (Nis-siRNA) delivered by polyethyleneimine-alginate (PEI-ALG) nanoparticles promoted motor function recovery in rats with spinal cord injury. Direct microinjection of 5 μL PEI-ALG/Nis-siRNA into the spinal cord lesion area of spinal cord injury rats was performed. From day 7 after surgery, Basso, Beattie and Bresnahan score was significantly higher in rats from the PEI-ALG/Nis-siRNA group compared with the spinal cord injury group and PEI-ALG/Control-siRNA group. On day 21 after injection, hematoxylin-eosin staining showed that the necrotic area was reduced in the PEI-ALG/Nis-siRNA group. Immunohistochemistry and western blot assay results confirmed successful inhibition of nischarin expression and increased protein expression of growth-associated protein-43 in the PEI-ALG/Nis-siRNA group. These findings suggest that a complex of PEI-ALG nanoparticles and Nis-siRNA effectively suppresses nischarin expression, induces expression of growth-associated protein-43, and accelerates motor function recovery after spinal cord injury.
Collapse
Affiliation(s)
- Yue-Min Ding
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang Province, China
| | - Yu-Ying Li
- Department of Physiology, School of Medicine, Quzhou College of Technology, Quzhou, Zhejiang Province, China
| | - Chu Wang
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang Province, China
| | - Hao Huang
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang Province, China
| | - Chen-Chen Zheng
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang Province, China
| | - Shao-Han Huang
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang Province, China
| | - Yang Xuan
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang Province, China
| | - Xiao-Yi Sun
- Department of Pharmacy, Zhejiang University City College, Hangzhou, Zhejiang Province, China
| | - Xiong Zhang
- Department of Basic Medicine, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
7
|
Hodgetts SI, Harvey AR. Neurotrophic Factors Used to Treat Spinal Cord Injury. VITAMINS AND HORMONES 2016; 104:405-457. [PMID: 28215303 DOI: 10.1016/bs.vh.2016.11.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The application of neurotrophic factors as a therapy to improve morphological and behavioral outcomes after experimental spinal cord injury (SCI) has been the focus of many studies. These studies vary markedly in the type of neurotrophic factor that is delivered, the mode of administration, and the location, timing, and duration of the treatment. Generally, the majority of studies have had significant success if neurotrophic factors are applied in or close to the lesion site during the acute or the subacute phase after SCI. Comparatively fewer studies have administered neurotrophic factors in order to directly target the somata of injured neurons. The mode of delivery varies between acute injection of recombinant proteins, subacute or chronic delivery using a variety of strategies including osmotic minipumps, cell-mediated delivery, delivery using polymer release vehicles or supporting bridges of some sort, or the use of gene therapy to modify neurons, glial cells, or precursor/stem cells. In this brief review, we summarize the state of play of many of the therapies using these factors, most of which have been undertaken in rodent models of SCI.
Collapse
Affiliation(s)
- S I Hodgetts
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth, WA, Australia; Western Australian Neuroscience Research Institute, Perth, WA, Australia.
| | - A R Harvey
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth, WA, Australia; Western Australian Neuroscience Research Institute, Perth, WA, Australia
| |
Collapse
|
8
|
Blocking the Nogo-A Signaling Pathway to Promote Regeneration and Plasticity After Spinal Cord Injury and Stroke. Transl Neurosci 2016. [DOI: 10.1007/978-1-4899-7654-3_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
9
|
van Niekerk EA, Tuszynski MH, Lu P, Dulin JN. Molecular and Cellular Mechanisms of Axonal Regeneration After Spinal Cord Injury. Mol Cell Proteomics 2015; 15:394-408. [PMID: 26695766 DOI: 10.1074/mcp.r115.053751] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Indexed: 12/28/2022] Open
Abstract
Following axotomy, a complex temporal and spatial coordination of molecular events enables regeneration of the peripheral nerve. In contrast, multiple intrinsic and extrinsic factors contribute to the general failure of axonal regeneration in the central nervous system. In this review, we examine the current understanding of differences in protein expression and post-translational modifications, activation of signaling networks, and environmental cues that may underlie the divergent regenerative capacity of central and peripheral axons. We also highlight key experimental strategies to enhance axonal regeneration via modulation of intraneuronal signaling networks and the extracellular milieu. Finally, we explore potential applications of proteomics to fill gaps in the current understanding of molecular mechanisms underlying regeneration, and to provide insight into the development of more effective approaches to promote axonal regeneration following injury to the nervous system.
Collapse
Affiliation(s)
- Erna A van Niekerk
- From the ‡Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093;
| | - Mark H Tuszynski
- From the ‡Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093; §Veterans Administration Medical Center, San Diego, CA 92161
| | - Paul Lu
- From the ‡Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093; §Veterans Administration Medical Center, San Diego, CA 92161
| | - Jennifer N Dulin
- From the ‡Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093
| |
Collapse
|
10
|
Lorber B, Chew DJ, Hauck SM, Chong RS, Fawcett JW, Martin KR. Retinal glia promote dorsal root ganglion axon regeneration. PLoS One 2015; 10:e0115996. [PMID: 25816134 PMCID: PMC4376801 DOI: 10.1371/journal.pone.0115996] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/03/2014] [Indexed: 11/17/2022] Open
Abstract
Axon regeneration in the adult central nervous system (CNS) is limited by several factors including a lack of neurotrophic support. Recent studies have shown that glia from the adult rat CNS, specifically retinal astrocytes and Müller glia, can promote regeneration of retinal ganglion cell axons. In the present study we investigated whether retinal glia also exert a growth promoting effect outside the visual system. We found that retinal glial conditioned medium significantly enhanced neurite growth and branching of adult rat dorsal root ganglion neurons (DRG) in culture. Furthermore, transplantation of retinal glia significantly enhanced regeneration of DRG axons past the dorsal root entry zone after root crush in adult rats. To identify the factors that mediate the growth promoting effects of retinal glia, mass spectrometric analysis of retinal glial conditioned medium was performed. Apolipoprotein E and secreted protein acidic and rich in cysteine (SPARC) were found to be present in high abundance, a finding further confirmed by western blotting. Inhibition of Apolipoprotein E and SPARC significantly reduced the neuritogenic effects of retinal glial conditioned medium on DRG in culture, suggesting that Apolipoprotein E and SPARC are the major mediators of this regenerative response.
Collapse
Affiliation(s)
- Barbara Lorber
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, CB2 0PY, United Kingdom
| | - Daniel J. Chew
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, CB2 0PY, United Kingdom
| | - Stefanie M. Hauck
- Research Unit Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Rachel S. Chong
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, CB2 0PY, United Kingdom
| | - James W. Fawcett
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, CB2 0PY, United Kingdom
- Cambridge NIHR Biomedical Research Centre, Cambridge, CB2 0PY, United Kingdom
| | - Keith R. Martin
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, CB2 0PY, United Kingdom
- Cambridge NIHR Biomedical Research Centre, Cambridge, CB2 0PY, United Kingdom
- Wellcome Trust–Medical Research Council Cambridge Stem Cell Institute, Cambridge, United Kingdom
| |
Collapse
|
11
|
Morano M, Wrobel S, Fregnan F, Ziv-Polat O, Shahar A, Ratzka A, Grothe C, Geuna S, Haastert-Talini K. Nanotechnology versus stem cell engineering: in vitro comparison of neurite inductive potentials. Int J Nanomedicine 2014; 9:5289-306. [PMID: 25484582 PMCID: PMC4238897 DOI: 10.2147/ijn.s71951] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose Innovative nerve conduits for peripheral nerve reconstruction are needed in order to specifically support peripheral nerve regeneration (PNR) whenever nerve autotransplantation is not an option. Specific support of PNR could be achieved by neurotrophic factor delivery within the nerve conduits via nanotechnology or stem cell engineering and transplantation. Methods Here, we comparatively investigated the bioactivity of selected neurotrophic factors conjugated to iron oxide nanoparticles (np-NTFs) and of bone marrow-derived stem cells genetically engineered to overexpress those neurotrophic factors (NTF-BMSCs). The neurite outgrowth inductive activity was monitored in culture systems of adult and neonatal rat sensory dorsal root ganglion neurons as well as in the cell line from rat pheochromocytoma (PC-12) cell sympathetic culture model system. Results We demonstrate that np-NTFs reliably support numeric neurite outgrowth in all utilized culture models. In some aspects, especially with regard to their long-term bioactivity, np-NTFs are even superior to free NTFs. Engineered NTF-BMSCs proved to be less effective in induction of sensory neurite outgrowth but demonstrated an increased bioactivity in the PC-12 cell culture system. In contrast, primary nontransfected BMSCs were as effective as np-NTFs in sensory neurite induction and demonstrated an impairment of neuronal differentiation in the PC-12 cell system. Conclusion Our results evidence that nanotechnology as used in our setup is superior over stem cell engineering when it comes to in vitro models for PNR. Furthermore, np-NTFs can easily be suspended in regenerative hydrogel matrix and could be delivered that way to nerve conduits for future in vivo studies and medical application.
Collapse
Affiliation(s)
- Michela Morano
- Department of Clinical and Biological Sciences, Università Degli Studi di Torino, Orbassano, Piemonte, Italy
| | - Sandra Wrobel
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Lower-Saxony, Germany ; Center for Systems Neuroscience (ZSN), Hannover, Lower-Saxony, Germany
| | - Federica Fregnan
- Department of Clinical and Biological Sciences, Università Degli Studi di Torino, Orbassano, Piemonte, Italy
| | | | | | - Andreas Ratzka
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Lower-Saxony, Germany
| | - Claudia Grothe
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Lower-Saxony, Germany ; Center for Systems Neuroscience (ZSN), Hannover, Lower-Saxony, Germany
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, Università Degli Studi di Torino, Orbassano, Piemonte, Italy
| | - Kirsten Haastert-Talini
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Lower-Saxony, Germany ; Center for Systems Neuroscience (ZSN), Hannover, Lower-Saxony, Germany
| |
Collapse
|
12
|
Harvey AR, Lovett SJ, Majda BT, Yoon JH, Wheeler LPG, Hodgetts SI. Neurotrophic factors for spinal cord repair: Which, where, how and when to apply, and for what period of time? Brain Res 2014; 1619:36-71. [PMID: 25451132 DOI: 10.1016/j.brainres.2014.10.049] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/20/2014] [Accepted: 10/23/2014] [Indexed: 12/22/2022]
Abstract
A variety of neurotrophic factors have been used in attempts to improve morphological and behavioural outcomes after experimental spinal cord injury (SCI). Here we review many of these factors, their cellular targets, and their therapeutic impact on spinal cord repair in different, primarily rodent, models of SCI. A majority of studies report favourable outcomes but results are by no means consistent, thus a major aim of this review is to consider how best to apply neurotrophic factors after SCI to optimize their therapeutic potential. In addition to which factors are chosen, many variables need be considered when delivering trophic support, including where and when to apply a given factor or factors, how such factors are administered, at what dose, and for how long. Overall, the majority of studies have applied neurotrophic support in or close to the spinal cord lesion site, in the acute or sub-acute phase (0-14 days post-injury). Far fewer chronic SCI studies have been undertaken. In addition, comparatively fewer studies have administered neurotrophic factors directly to the cell bodies of injured neurons; yet in other instructive rodent models of CNS injury, for example optic nerve crush or transection, therapies are targeted directly at the injured neurons themselves, the retinal ganglion cells. The mode of delivery of neurotrophic factors is also an important variable, whether delivered by acute injection of recombinant proteins, sub-acute or chronic delivery using osmotic minipumps, cell-mediated delivery, delivery using polymer release vehicles or supporting bridges of some sort, or the use of gene therapy to modify neurons, glial cells or precursor/stem cells. Neurotrophic factors are often used in combination with cell or tissue grafts and/or other pharmacotherapeutic agents. Finally, the dose and time-course of delivery of trophic support should ideally be tailored to suit specific biological requirements, whether they relate to neuronal survival, axonal sparing/sprouting, or the long-distance regeneration of axons ending in a different mode of growth associated with terminal arborization and renewed synaptogenesis. This article is part of a Special Issue entitled SI: Spinal cord injury.
Collapse
Affiliation(s)
- Alan R Harvey
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | - Sarah J Lovett
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Bernadette T Majda
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Jun H Yoon
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Lachlan P G Wheeler
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Stuart I Hodgetts
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
13
|
Estrada V, Müller HW. Spinal cord injury - there is not just one way of treating it. F1000PRIME REPORTS 2014; 6:84. [PMID: 25343041 PMCID: PMC4166939 DOI: 10.12703/p6-84] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the last century, research in the field of spinal cord trauma has brought insightful knowledge which has led to a detailed understanding of mechanisms that are involved in injury- and recovery-related processes. The quest for a cure for the yet generally incurable condition as well as the exponential rise in gained information has brought about the development of numerous treatment approaches while at the same time the abundance of data has become quite unmanageable. Owing to an enormous amount of preclinical therapeutic approaches, this report highlights important trends rather than specific treatment strategies. We focus on current advances in the treatment of spinal cord injury and want to further draw attention to arising problems in spinal cord injury (SCI) research and discuss possible solutions.
Collapse
Affiliation(s)
- Veronica Estrada
- Molecular Neurobiology Laboratory, Department of Neurology, Heinrich-Heine-University Medical Center Düsseldorf Moorenstr. 5, 40225 Düsseldorf Germany
| | - Hans Werner Müller
- Molecular Neurobiology Laboratory, Department of Neurology, Heinrich-Heine-University Medical Center Düsseldorf Moorenstr. 5, 40225 Düsseldorf Germany
| |
Collapse
|
14
|
Ji W, Hu S, Zhou J, Wang G, Wang K, Zhang Y. Tissue engineering is a promising method for the repair of spinal cord injuries (Review). Exp Ther Med 2013; 7:523-528. [PMID: 24520240 PMCID: PMC3919911 DOI: 10.3892/etm.2013.1454] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 12/10/2013] [Indexed: 12/23/2022] Open
Abstract
Spinal cord injury (SCI) may lead to a devastating and permanent loss of neurological function, which may place a great economic burden on the family of the patient and society. Methods for reducing the death of neuronal cells, inhibiting immune and inflammatory reactions, and promoting the growth of axons in order to build up synapses with the target cells are the focus of current research. Target cells are located in the damaged spinal cord which create a connect with the scaffold. As tissue engineering technology is developed for use in a variety of different areas, particularly the biomedical field, a clear understanding of the mechanisms of tissue engineering is important. This review establishes how this technology may be used in basic experiments with regard to SCI and considers its potential future clinical use.
Collapse
Affiliation(s)
- Wenchen Ji
- Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China ; Department of Physiology, College of Medicine, University of Sydney, Sydney 2006, Australia
| | - Shouye Hu
- Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jiao Zhou
- Department of Surgery, The Third Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710068, P.R. China
| | - Gang Wang
- Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Kunzheng Wang
- Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yuelin Zhang
- Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
15
|
Brazda N, Voss C, Estrada V, Lodin H, Weinrich N, Seide K, Müller J, Müller HW. A mechanical microconnector system for restoration of tissue continuity and long-term drug application into the injured spinal cord. Biomaterials 2013; 34:10056-64. [PMID: 24090837 DOI: 10.1016/j.biomaterials.2013.09.057] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/17/2013] [Indexed: 11/18/2022]
Abstract
Complete transection of the spinal cord leaves a gap of several mm which fills with fibrous scar tissue. Several approaches in rodent models have used tubes, foams, matrices or tissue implants to bridge this gap. Here, we describe a mechanical microconnector system (mMS) to re-adjust the retracted spinal cord stumps. The mMS is a multi-channel system of polymethylmethacrylate (PMMA), designed to fit into the spinal cord tissue gap after transection, with an outlet tubing system to apply negative pressure to the mMS thus sucking the spinal cord stumps into the honeycomb-structured holes. The stumps adhere to the microstructure of the mMS walls and remain in the mMS after removal of the vacuum. We show that the mMS preserves tissue integrity and allows axonal regrowth at 2, 5 and 19 weeks post lesion with no adverse tissue effects like in-bleeding or cyst formation. Preliminary assessment of locomotor function in the open field suggested beneficial effects of the mMS. Additional inner micro-channels enable local substance delivery into the lesion center via an attached osmotic minipump. We suggest that the mMS is a suitable device to adapt and stabilize the injured spinal cord after surgical resection of scar tissue (e.g., for chronic patients) or traumatic injuries with large tissue and bone damages.
Collapse
Affiliation(s)
- Nicole Brazda
- Molecular Neurobiology Laboratory, Neurology, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Yu Y, Schachner M. Syntenin-a promotes spinal cord regeneration following injury in adult zebrafish. Eur J Neurosci 2013; 38:2280-9. [PMID: 23607754 DOI: 10.1111/ejn.12222] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/15/2013] [Accepted: 03/20/2013] [Indexed: 02/05/2023]
Abstract
In contrast to mammals, adult zebrafish recover locomotor function after spinal cord injury, in part due to the capacity of the central nervous system to repair severed connections. To identify molecular cues that underlie regeneration, we conducted mRNA expression profiling and found that syntenin-a expression is upregulated in the adult zebrafish spinal cord caudal to the lesion site after injury. Syntenin is a scaffolding protein involved in mammalian cell adhesion and movement, axonal outgrowth, establishment of cell polarity, and protein trafficking. It could thus be expected to be involved in supporting regeneration in fish. Syntenin-a mRNA and protein are expressed in neurons, glia and newly generated neural cells, and upregulated caudal to the lesion site on days 6 and 11 following spinal cord injury. Treatment of spinal cord-injured fish with two different antisense morpholinos to knock down syntenin-a expression resulted in significant inhibition of locomotor recovery at 5 and 6 weeks after injury, when compared to control morpholino-treated fish. Knock-down of syntenin-a reduced regrowth of descending axons from brainstem neurons into the spinal cord caudal to the lesion site. These observations indicate that syntenin-a is involved in regeneration after traumatic insult to the central nervous system of adult zebrafish, potentially leading to novel insights into the cellular and molecular mechanisms that require activation in the regeneration-deficient mammalian central nervous system.
Collapse
Affiliation(s)
- Yong Yu
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong 515041, China
| | | |
Collapse
|