1
|
Guaraná BB, Nunes MR, Muniz VF, Diniz BL, Nunes MR, Böttcher AK, Rosa RFM, Mergener R, Zen PRG. Turner syndrome and neuropsychological abnormalities: a review and case series. REVISTA PAULISTA DE PEDIATRIA : ORGAO OFICIAL DA SOCIEDADE DE PEDIATRIA DE SAO PAULO 2024; 43:e2023199. [PMID: 39258641 PMCID: PMC11385741 DOI: 10.1590/1984-0462/2025/43/2023199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/29/2024] [Indexed: 09/12/2024]
Abstract
OBJECTIVE The objective of this study was to establish the genotype-phenotype correlation between karyotype results and the neurological and psychiatric alterations presented in patients with Turner syndrome (TS). METHODS A retrospective study was conducted on the medical records of 10/140 patients with TS and neurophysiological abnormalities seen at a university hospital in southern Brazil. In addition, a literature review spanning the period from January 1, 2012 to January 1, 2023 was carried out using the PubMed and Virtual Health Library databases. RESULTS Our study showed a potential correlation between neurological and psychiatric alterations in patients with TS. These findings are in accordance with those described in literature such as a high prevalence of learning or intellectual disabilities. However, our sample found more seizure episodes than those reported in other studies. CONCLUSIONS The correlation established could be due to X chromosome dose-effect, as the review suggests that sex chromosome number and hormonal development can be associated with verbal, social, and cognitive skills or impairments.
Collapse
Affiliation(s)
| | - Marcela Rodrigues Nunes
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Irmandade da Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, RS, Brazil
| | - Victória Feitosa Muniz
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Irmandade da Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, RS, Brazil
| | - Bruna Lixinski Diniz
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | | | - Ana Kalise Böttcher
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Rafael Fabiano Machado Rosa
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Irmandade da Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, RS, Brazil
| | - Rafaella Mergener
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Paulo Ricardo Gazzola Zen
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Irmandade da Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
2
|
Tovini L, Johnson SC, Guscott MA, Andersen AM, Spierings DCJ, Wardenaar R, Foijer F, McClelland SE. Targeted assembly of ectopic kinetochores to induce chromosome-specific segmental aneuploidies. EMBO J 2023; 42:e111587. [PMID: 37063065 PMCID: PMC10183824 DOI: 10.15252/embj.2022111587] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/18/2023] Open
Abstract
Cancer cells display persistent underlying chromosomal instability, with individual tumour types intriguingly exhibiting characteristic subsets of whole, and subchromosomal aneuploidies. Few methods to induce specific aneuploidies will exist, hampering investigation of functional consequences of recurrent aneuploidies, as well as the acute consequences of specific chromosome mis-segregation. We therefore investigated the possibility of sabotaging the mitotic segregation of specific chromosomes using nuclease-dead CRISPR-Cas9 (dCas9) as a cargo carrier to specific genomic loci. We recruited the kinetochore-nucleating domain of centromere protein CENP-T to assemble ectopic kinetochores either near the centromere of chromosome 9, or the telomere of chromosome 1. Ectopic kinetochore assembly led to increased chromosome instability and partial aneuploidy of the target chromosomes, providing the potential to induce specific chromosome mis-segregation events in a range of cell types. We also provide an analysis of putative endogenous repeats that could support ectopic kinetochore formation. Overall, our findings provide new insights into ectopic kinetochore biology and represent an important step towards investigating the role of specific aneuploidy and chromosome mis-segregation events in diseases associated with aneuploidy.
Collapse
Affiliation(s)
| | - Sarah C Johnson
- Centre for Cancer Genomics and Computational BiologyBarts Cancer Institute, Queen Mary University of LondonLondonUK
| | - Molly A Guscott
- Centre for Cancer Genomics and Computational BiologyBarts Cancer Institute, Queen Mary University of LondonLondonUK
| | - Alexander M Andersen
- Centre for Cancer Genomics and Computational BiologyBarts Cancer Institute, Queen Mary University of LondonLondonUK
| | - Diana Carolina Johanna Spierings
- European Research Institute for the Biology of AgeingUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - René Wardenaar
- European Research Institute for the Biology of AgeingUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of AgeingUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Sarah E McClelland
- Centre for Cancer Genomics and Computational BiologyBarts Cancer Institute, Queen Mary University of LondonLondonUK
| |
Collapse
|
3
|
Zhu S, Zhu Y, Zhang F, Wu J, Lei C, Jiang F. Comprehensive chromosome FISH assessment of sperm aneuploidy in normozoospermic males. J Assist Reprod Genet 2022; 39:1887-1900. [PMID: 35731322 PMCID: PMC9428091 DOI: 10.1007/s10815-022-02536-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/04/2022] [Indexed: 01/19/2023] Open
Abstract
PURPOSE Sperm chromosomal abnormalities impact male fertility and pregnancy outcomes. However, the proportion of sperm with chromosomal abnormalities in normozoospermic men remains unclear. Herein, we evaluated sperm aneuploidy for 23 chromosomes to elucidate its incidence in normozoospermic men. METHODS Sperm from ten normozoospermic donors were obtained from a human sperm bank and analyzed using fluorescence in situ hybridization. The frequencies of nullisomy, disomy, and diploidy were analyzed along with trisomy, triploidy, tetraploidy, and other numerical abnormalities per chromosome and per donor levels. RESULTS A total of 248,811 sperm cells were analyzed (average: 24,881 ± 381 cells/donor), of which 246, 658 were haploid, 818 nullisomic, 393 disomic, 894 diploid, 13 triploid, 8 tetraploid, 3 trisomic, and 24 harbored multiple aneuploidies. Among the 22 autosomal and 2 sex chromosomes, the mean frequency of aneuploidy per chromosome was 0.49 ± 0.16%, including 0.33 ± 0.16% for nullisomy and 0.16 ± 0.08% for disomy. The mean frequencies of nullisomy, disomy, and aneuploidy per donor were 0.33 ± 0.13%, 0.16 ± 0.05%, and 0.49 ± 0.13%, respectively. The total frequencies of nullisomy, disomy, diploidy, and aneuploidy per donor were 7.62 ± 3.06%, 3.63 ± 1.12%, 0.36 ± 0.15%, and 11.25 ± 3.05%, respectively. CONCLUSIONS The dominant chromosome numerical abnormalities in normozoospermic men are nullisomy, disomy, and diploidy. Generally, the frequency of nullisomy is higher than that of disomy. The disomy or nullisomy frequencies for each chromosome being gained or lost were not unified and varied; some chromosomes (e.g., chromosomes 21 and 22 and sex chromosomes) are more prone to disomy while some others (e.g., chromosome 3) are more prone to nullisomy.
Collapse
Affiliation(s)
- Saijuan Zhu
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai, 200011 China
| | - Yong Zhu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011 China
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011 China
| | - Jiangnan Wu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011 China
| | - Caixia Lei
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai, 200011 China
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011 China
| | - Feng Jiang
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai, 200011 China
| |
Collapse
|
4
|
Capelli E, Silibello G, Ajmone PF, Altamore E, Lalatta F, Vizziello PG, Costantino MA, Zampini L. Language Development in Sex Chromosome Trisomies: Developmental Profiles at 2 and 4 Years of Age, and Predictive Measures. Dev Neurorehabil 2022; 25:337-348. [PMID: 34983283 DOI: 10.1080/17518423.2021.2020925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE Describing language development in children with sex chromosome trisomies (SCT) and testing the predictive value of early language measures on later outcomes. METHOD Thirteen children with SCT were followed longitudinally. Their developmental profile was assessed, with particular attention to language, at 2 and 4 years. The predictive value of direct (spontaneous speech analysis) and indirect (communicative development inventory) language measures at 2 on performances at 4 was tested. RESULTS Language performances at both ages were lower than non-verbal development. At 2, more than 50% of the group produced less than 50 words. At 4, impaired performances were observed in speech sound development and expressive morpho-syntax. Direct measures of Pre-syntactic development predicted later global language outcomes and Sentence Repetition. The number of consonants used at 2 was significantly related to Nonword Repetition at 4. CONCLUSIONS The study highlights the importance of early detection and careful follow-up for children with SCT.
Collapse
Affiliation(s)
| | - Gaia Silibello
- Foundation Irccs Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Elena Altamore
- Foundation Irccs Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Faustina Lalatta
- Foundation Irccs Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | | | | |
Collapse
|
5
|
Importance of determining variations in the number of copies in newborns with autosomal aneuploidies. ACTA ACUST UNITED AC 2021; 41:282-292. [PMID: 34214269 PMCID: PMC8387016 DOI: 10.7705/biomedica.5354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Indexed: 11/21/2022]
Abstract
Introducción. Las aneuploidías son trastornos genéticos frecuentes en la práctica clínica; sin embargo, se conoce poco sobre las otras variantes genéticas que modifican el fenotipo final. Objetivo. Determinar las variantes en el número de copias y las regiones con pérdida de heterocigosidad autosómica mayor de 0,5 % o de regiones mayores de 10 Mb en neonatos con aneuploidías autosómicas. Materiales y métodos. Se hizo el análisis cromosómico por micromatrices a los neonatos con aneuploidías autosómicas (n=7), trisomía 21 (n=5) y trisomía 18 (n=2) evaluados en los hospitales Antonio Lorena y Regional de Cusco, Perú, en el 2018. Resultados. En dos neonatos se encontraron variantes en el número de copias, patogénicas o probablemente patogénicas, en regiones diferentes al cromosoma 21 o al 18. Además, se observaron dos variantes del número de copias con más de 500 kpb de patogenia desconocida. Conclusiones. Si bien el número de pacientes era muy reducido, es importante resaltar que se encontraron otras variantes en el número de copias que se han descrito asociadas con trastornos del neurodesarrollo, varias anomalías congénitas, hipoacusia y talla baja o alta, entre otras, lo que probablemente influye negativamente en el fenotipo de este grupo de pacientes.
Collapse
|
6
|
Hapala I, Griac P, Holic R. Metabolism of Storage Lipids and the Role of Lipid Droplets in the Yeast Schizosaccharomyces pombe. Lipids 2020; 55:513-535. [PMID: 32930427 DOI: 10.1002/lipd.12275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/14/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022]
Abstract
Storage lipids, triacylglycerols (TAG), and steryl esters (SE), are predominant constituents of lipid droplets (LD) in fungi. In several yeast species, metabolism of TAG and SE is linked to various cellular processes, including cell division, sporulation, apoptosis, response to stress, and lipotoxicity. In addition, TAG are an important source for the generation of value-added lipids for industrial and biomedical applications. The fission yeast Schizosaccharomyces pombe is a widely used unicellular eukaryotic model organism. It is a powerful tractable system used to study various aspects of eukaryotic cellular and molecular biology. However, the knowledge of S. pombe neutral lipids metabolism is quite limited. In this review, we summarize and discuss the current knowledge of the homeostasis of storage lipids and of the role of LD in the fission yeast S. pombe with the aim to stimulate research of lipid metabolism and its connection with other essential cellular processes. We also discuss the advantages and disadvantages of fission yeast in lipid biotechnology and recent achievements in the use of S. pombe in the biotechnological production of valuable lipid compounds.
Collapse
Affiliation(s)
- Ivan Hapala
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Peter Griac
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Roman Holic
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| |
Collapse
|
7
|
Shilton CA, Kahler A, Davis BW, Crabtree JR, Crowhurst J, McGladdery AJ, Wathes DC, Raudsepp T, de Mestre AM. Whole genome analysis reveals aneuploidies in early pregnancy loss in the horse. Sci Rep 2020; 10:13314. [PMID: 32769994 PMCID: PMC7415156 DOI: 10.1038/s41598-020-69967-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/20/2020] [Indexed: 01/10/2023] Open
Abstract
The first 8 weeks of pregnancy is a critical time, with the majority of pregnancy losses occurring during this period. Abnormal chromosome number (aneuploidy) is a common finding in human miscarriage, yet is rarely reported in domestic animals. Equine early pregnancy loss (EPL) has no diagnosis in over 80% of cases. The aim of this study was to characterise aneuploidies associated with equine EPL. Genomic DNA from clinical cases of spontaneous miscarriage (EPLs; 14-65 days of gestation) and healthy control placentae (various gestational ages) were assessed using a high density genotyping array. Aneuploidy was detected in 12/55 EPLs (21.8%), and 0/15 healthy control placentae. Whole genome sequencing (30X) and digital droplet PCR (ddPCR) validated results. The majority of these aneuploidies have never been reported in live born equines, supporting their embryonic/fetal lethality. Aneuploidies were detected in both placental and fetal compartments. Rodents are currently used to study how maternal ageing impacts aneuploidy risk, however the differences in reproductive biology is a limitation of this model. We present the first evidence of aneuploidy in naturally occurring equine EPLs at a similar rate to human miscarriage. We therefore suggest the horse as an alternative to rodent models to study mechanisms resulting in aneuploid pregnancies.
Collapse
Affiliation(s)
- Charlotte A Shilton
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
| | - Anne Kahler
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
| | - Brian W Davis
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | | | | | | | - D Claire Wathes
- Department of Production and Population Health, The Royal Veterinary College, University of London, Hatfield, UK
| | - Terje Raudsepp
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Amanda M de Mestre
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK.
| |
Collapse
|
8
|
Green T, Flash S, Reiss AL. Sex differences in psychiatric disorders: what we can learn from sex chromosome aneuploidies. Neuropsychopharmacology 2019; 44:9-21. [PMID: 30127341 PMCID: PMC6235860 DOI: 10.1038/s41386-018-0153-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 06/01/2018] [Accepted: 06/21/2018] [Indexed: 12/17/2022]
Abstract
The study of sexual dimorphism in psychiatric and neurodevelopmental disorders is challenging due to the complex interplay of diverse biological, psychological, and social factors. Males are more susceptible to neurodevelopmental disorders including intellectual disability, autism spectrum disorder, and attention-deficit activity disorder. Conversely, after puberty, females are more prone to major depressive disorder and anxiety disorders compared to males. One major biological factor contributing to sex differences is the sex chromosomes. First, the X and Y chromosomes have unique and specific genetic effects as well as downstream gonadal effects. Second, males have one X chromosome and one Y chromosome, while females have two X chromosomes. Thus, sex chromosome constitution also differs between the sexes. Due to this complexity, determining genetic and downstream biological influences on sexual dimorphism in humans is challenging. Sex chromosome aneuploidies, such as Turner syndrome (X0) and Klinefelter syndrome (XXY), are common genetic conditions in humans. The study of individuals with sex chromosome aneuploidies provides a promising framework for studying sexual dimorphism in neurodevelopmental and psychiatric disorders. Here we will review and contrast four syndromes caused by variation in the number of sex chromosomes: Turner syndrome, Klinefelter syndrome, XYY syndrome, and XXX syndrome. Overall we describe an increased rate of attention-deficit hyperactivity disorder and autism spectrum disorder, along with the increased rates of major depressive disorder and anxiety disorders in one or more of these conditions. In addition to contributing unique insights about sexual dimorphism in neuropsychiatric disorders, awareness of the increased risk of neurodevelopmental and psychiatric disorders in sex chromosome aneuploidies can inform appropriate management of these common genetic disorders.
Collapse
Affiliation(s)
- Tamar Green
- Center for Interdisciplinary Brain Sciences Research, Stanford University, Stanford, CA, 94305, USA.
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA.
| | - Shira Flash
- Center for Interdisciplinary Brain Sciences Research, Stanford University, Stanford, CA, 94305, USA
| | - Allan L Reiss
- Center for Interdisciplinary Brain Sciences Research, Stanford University, Stanford, CA, 94305, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
9
|
The chromatin basis of neurodevelopmental disorders: Rethinking dysfunction along the molecular and temporal axes. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:306-327. [PMID: 29309830 DOI: 10.1016/j.pnpbp.2017.12.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/19/2017] [Accepted: 12/24/2017] [Indexed: 12/13/2022]
Abstract
The complexity of the human brain emerges from a long and finely tuned developmental process orchestrated by the crosstalk between genome and environment. Vis à vis other species, the human brain displays unique functional and morphological features that result from this extensive developmental process that is, unsurprisingly, highly vulnerable to both genetically and environmentally induced alterations. One of the most striking outcomes of the recent surge of sequencing-based studies on neurodevelopmental disorders (NDDs) is the emergence of chromatin regulation as one of the two domains most affected by causative mutations or Copy Number Variations besides synaptic function, whose involvement had been largely predicted for obvious reasons. These observations place chromatin dysfunction at the top of the molecular pathways hierarchy that ushers in a sizeable proportion of NDDs and that manifest themselves through synaptic dysfunction and recurrent systemic clinical manifestation. Here we undertake a conceptual investigation of chromatin dysfunction in NDDs with the aim of systematizing the available evidence in a new framework: first, we tease out the developmental vulnerabilities in human corticogenesis as a structuring entry point into the causation of NDDs; second, we provide a much needed clarification of the multiple meanings and explanatory frameworks revolving around "epigenetics", highlighting those that are most relevant for the analysis of these disorders; finally we go in-depth into paradigmatic examples of NDD-causing chromatin dysregulation, with a special focus on human experimental models and datasets.
Collapse
|
10
|
Locklear MN, Michaelos M, Collins WF, Kritzer MF. Gonadectomy but not biological sex affects burst-firing in dopamine neurons of the ventral tegmental area and in prefrontal cortical neurons projecting to the ventral tegmentum in adult rats. Eur J Neurosci 2016; 45:106-120. [PMID: 27564091 DOI: 10.1111/ejn.13380] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/03/2016] [Accepted: 08/22/2016] [Indexed: 12/25/2022]
Abstract
The mesocortical and mesolimbic dopamine systems regulate cognitive and motivational processes and are strongly implicated in neuropsychiatric disorders in which these processes are disturbed. Sex differences and sex hormone modulation are also known for these dopamine-sensitive behaviours in health and disease. One relevant mechanism of hormone impact appears to be regulation of cortical and subcortical dopamine levels. This study asked whether this regulation of dopamine tone is a consequence of sex or sex hormone impact on the firing modes of ventral midbrain dopamine neurons. To address this, single unit extracellular recordings made in the ventral tegmental area and substantia nigra were compared among urethane-anaesthetized adult male, female, gonadectomized male rats. These comparisons showed that gonadectomy had no effect on nigral cells and no effects on pacemaker, bursty, single-spiking or random modes of dopamine activity in the ventral tegmental area. However, it did significantly and selectively increase burst firing in these cells in a testosterone-sensitive, estradiol-insensitive manner. Given the roles of prefrontal cortex (PFC) in modulating midbrain dopamine cell firing, we next asked whether gonadectomy's effects on dopamine cell bursting had correlated effects on the activity of ventral tegmentally projecting prefrontal cortical neurons. We found that gonadectomy indeed significantly and selectively increased burst firing in ventral tegmentally projecting but not neighbouring prefrontal cells. These effects were also androgen-sensitive. Together, these findings suggest a working model wherein androgen influence over the activity of PFC neurons regulates its top-down modulation of mesocortical and mesolimbic dopamine systems and related dopamine-sensitive behaviours.
Collapse
Affiliation(s)
- Mallory N Locklear
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Michalis Michaelos
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - William F Collins
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Mary F Kritzer
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| |
Collapse
|
11
|
Guedj F, Pennings JLA, Massingham LJ, Wick HC, Siegel AE, Tantravahi U, Bianchi DW. An Integrated Human/Murine Transcriptome and Pathway Approach To Identify Prenatal Treatments For Down Syndrome. Sci Rep 2016; 6:32353. [PMID: 27586445 PMCID: PMC5009456 DOI: 10.1038/srep32353] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/27/2016] [Indexed: 01/23/2023] Open
Abstract
Anatomical and functional brain abnormalities begin during fetal life in Down syndrome (DS). We hypothesize that novel prenatal treatments can be identified by targeting signaling pathways that are consistently perturbed in cell types/tissues obtained from human fetuses with DS and mouse embryos. We analyzed transcriptome data from fetuses with trisomy 21, age and sex-matched euploid controls, and embryonic day 15.5 forebrains from Ts1Cje, Ts65Dn, and Dp16 mice. The new datasets were compared to other publicly available datasets from humans with DS. We used the human Connectivity Map (CMap) database and created a murine adaptation to identify FDA-approved drugs that can rescue affected pathways. USP16 and TTC3 were dysregulated in all affected human cells and two mouse models. DS-associated pathway abnormalities were either the result of gene dosage specific effects or the consequence of a global cell stress response with activation of compensatory mechanisms. CMap analyses identified 56 molecules with high predictive scores to rescue abnormal gene expression in both species. Our novel integrated human/murine systems biology approach identified commonly dysregulated genes and pathways. This can help to prioritize therapeutic molecules on which to further test safety and efficacy. Additional studies in human cells are ongoing prior to pre-clinical prenatal treatment in mice.
Collapse
Affiliation(s)
- Faycal Guedj
- Mother Infant Research Institute, Tufts Medical Center and the Floating Hospital for Children, Boston, MA, United States
| | - Jeroen LA Pennings
- Center for Health Protection (GZB), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Lauren J Massingham
- Mother Infant Research Institute, Tufts Medical Center and the Floating Hospital for Children, Boston, MA, United States
| | - Heather C Wick
- Department of Computer Science, Tufts University, Medford, MA, United States
| | - Ashley E Siegel
- Mother Infant Research Institute, Tufts Medical Center and the Floating Hospital for Children, Boston, MA, United States
| | - Umadevi Tantravahi
- Department of Pathology, Women and Infants' Hospital, Providence, RI, United States
| | - Diana W Bianchi
- Mother Infant Research Institute, Tufts Medical Center and the Floating Hospital for Children, Boston, MA, United States
| |
Collapse
|
12
|
Genetic Counseling for Patients Considering Screening and Diagnosis for Chromosomal Abnormalities. Clin Lab Med 2016; 36:227-36. [DOI: 10.1016/j.cll.2016.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
13
|
Tartaglia N, Howell S, Wilson R, Janusz J, Boada R, Martin S, Frazier JB, Pfeiffer M, Regan K, McSwegin S, Zeitler P. The eXtraordinarY Kids Clinic: an interdisciplinary model of care for children and adolescents with sex chromosome aneuploidy. J Multidiscip Healthc 2015; 8:323-34. [PMID: 26229481 PMCID: PMC4514383 DOI: 10.2147/jmdh.s80242] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Purpose Individuals with sex chromosome aneuploidies (SCAs) are born with an atypical number of X and/or Y chromosomes, and present with a range of medical, developmental, educational, behavioral, and psychological concerns. Rates of SCA diagnoses in infants and children are increasing, and there is a need for specialized interdisciplinary care to address associated risks. The eXtraordinarY Kids Clinic was established to provide comprehensive and experienced care for children and adolescents with SCA, with an interdisciplinary team composed of developmental–behavioral pediatrics, endocrinology, genetic counseling, child psychology, pediatric neuropsychology, speech–language pathology, occupational therapy, nursing, and social work. The clinic model includes an interdisciplinary approach to care, where assessment results by each discipline are integrated to develop unified diagnostic impressions and treatment plans individualized for each patient. Additional objectives of the eXtraordinarY Kids Clinic program include prenatal genetic counseling, research, education, family support, and advocacy. Methods Satisfaction surveys were distributed to 496 patients, and responses were received from 168 unique patients. Results Satisfaction with the overall clinic visit was ranked as “very satisfied” in 85%, and as “satisfied” in another 9.8%. Results further demonstrate specific benefits from the clinic experience, the importance of a knowledgeable clinic coordinator, and support the need for similar clinics across the country. Three case examples of the interdisciplinary approach to assessment and treatment are included.
Collapse
Affiliation(s)
- Nicole Tartaglia
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA ; Child Development Unit, Children's Hospital Colorado, Aurora, CO, USA
| | - Susan Howell
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA ; Child Development Unit, Children's Hospital Colorado, Aurora, CO, USA
| | - Rebecca Wilson
- Child Development Unit, Children's Hospital Colorado, Aurora, CO, USA
| | - Jennifer Janusz
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA ; Child Development Unit, Children's Hospital Colorado, Aurora, CO, USA
| | - Richard Boada
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA ; Child Development Unit, Children's Hospital Colorado, Aurora, CO, USA
| | - Sydney Martin
- Child Development Unit, Children's Hospital Colorado, Aurora, CO, USA
| | | | - Michelle Pfeiffer
- Child Development Unit, Children's Hospital Colorado, Aurora, CO, USA
| | - Karen Regan
- Child Development Unit, Children's Hospital Colorado, Aurora, CO, USA
| | - Sarah McSwegin
- Child Development Unit, Children's Hospital Colorado, Aurora, CO, USA
| | - Philip Zeitler
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA ; Child Development Unit, Children's Hospital Colorado, Aurora, CO, USA
| |
Collapse
|
14
|
Agatisa PK, Mercer MB, Leek AC, Smith MB, Philipson E, Farrell RM. A first look at women's perspectives on noninvasive prenatal testing to detect sex chromosome aneuploidies and microdeletion syndromes. Prenat Diagn 2015; 35:692-8. [DOI: 10.1002/pd.4594] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/20/2015] [Accepted: 03/13/2015] [Indexed: 12/26/2022]
Affiliation(s)
| | | | - Angela C. Leek
- Department of Bioethics; Cleveland Clinic; Cleveland OH USA
| | | | - Elliot Philipson
- Department of Obstetrics & Gynecology; Cleveland Clinic Women's Health Institute; Cleveland OH USA
| | - Ruth M. Farrell
- Department of Bioethics; Cleveland Clinic; Cleveland OH USA
- Genomic Medicine Institute; Cleveland Clinic; Cleveland OH USA
- Department of Obstetrics & Gynecology; Cleveland Clinic Women's Health Institute; Cleveland OH USA
| |
Collapse
|
15
|
The Economic Burden of Genetic Tests for the Infertile Male: A Pilot Algorithm to Improve Test Predictive Value. J Urol 2014; 191:1066-71. [DOI: 10.1016/j.juro.2013.10.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2013] [Indexed: 11/18/2022]
|