1
|
Pellerino A, Verdijk RM, Nichelli L, Andratschke NH, Idbaih A, Goldbrunner R. Primary Meningeal Melanocytic Tumors of the Central Nervous System: A Review from the Ultra-Rare Brain Tumors Task Force of the European Network for Rare Cancers (EURACAN). Cancers (Basel) 2024; 16:2508. [PMID: 39061148 PMCID: PMC11274408 DOI: 10.3390/cancers16142508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Primary meningeal melanocytic tumors are ultra-rare entities with distinct histological and molecular features compared with other melanocytic or pigmented lesions, such as brain and leptomeningeal metastases from metastatic melanoma. METHODS The European Network for Rare Cancers (EURACAN) Task Force on Ultra-Rare Brain Tumors (domain 10, subdomain 10) performed a literature review from January 1985 to December 2023 regarding the epidemiologic and clinical characteristics, histological and molecular features, radiological findings, and efficacy of local treatments (surgery and radiotherapy) and systemic treatments for these entities. RESULTS Molecular analysis can detect specific mutations, including GNAQ, GNA11, SF3B1, EIF1AX, BAP1, that are typically found in circumscribed primary meningeal melanocytic tumors and not in other melanocytic lesions, whereas NRAS and BRAF mutations are typical for diffuse primary meningeal melanocytic tumors. The neuroimaging of the whole neuroaxis suggests a melanocytic nature of a lesion, depicts its circumscribed or diffuse nature, but cannot predict the tumor's aggressiveness. Gross-total resection is the first choice in the case of circumscribed meningeal melanocytoma and melanoma; conversely, meningeal biopsy may be reserved for patients with diffuse and multinodular leptomeningeal spread to achieve a definitive diagnosis. High-dose radiotherapy is rarely indicated in diffuse melanocytic tumors except as palliative treatment to alleviate symptoms. Last, a definitive advantage of a specific systemic treatment could not be concluded, as most of the data available derive from case reports or small cohorts. CONCLUSIONS As primary meningeal melanocytic tumors are extremely rare, the correlations between the clinical characteristics, molecular profile, radiological findings at diagnosis and progression are weak, and poor evidence on the best therapeutic approach is available. There is a need to develop shared platforms and registries to capture more knowledge regarding these ultra-rare entities.
Collapse
Affiliation(s)
- Alessia Pellerino
- Division of Neuro-Oncology, Department of Neuroscience “Rita Levi Montalcini”, University and City of Health and Science Hospital, 10126 Torino, Italy
| | - Robert M. Verdijk
- Department of Pathology, Section Ophthalmic Pathology, Erasmus MC University Medical Center, 3015 Rotterdam, The Netherlands;
- Department of Pathology, Leiden University Medical Center, 2333 Leiden, The Netherlands
| | - Lucia Nichelli
- Department of Neuroradiology, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, Groupe Hospitalier Pitié-Salpêtrière-Charles Foix, 75013 Paris, France;
| | - Nicolaus H. Andratschke
- Department of Radiation Oncology, University of Zurich, University Hospital Zurich, 8091 Zurich, Switzerland;
| | - Ahmed Idbaih
- CNRS, Inserm, DMU Neurosciences, Service de Neuro-Oncologie-Institut de Neurologie, Sorbonne Université, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, F-75013 Paris, France;
| | - Roland Goldbrunner
- Center for Neurosurgery, Department of General Neurosurgery, University of Cologne, 50923 Cologne, Germany;
| |
Collapse
|
2
|
Bai S, Hu S, Dai Y, Jin R, Zhang C, Yao F, Weng Q, Zhai P, Zhao B, Wu X, Chen Y. NRAS promotes the proliferation of melanocytes to increase melanin deposition in Rex rabbits. Genome 2023; 66:1-10. [PMID: 36440769 DOI: 10.1139/gen-2021-0111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Melanocytes play a major role in the formation of mammalian fur color and are regulated by several genes. Despite playing the pivotal role in the study of melanoma, the mechanistic role of NRAS (neuroblastoma RAS viral oncogene homolog) in the formation of mammalian epidermal color is still elusive. First of all, the expression levels of NRAS mRNA and protein in the dorsal skin of different colored Rex rabbits were detected by qRT-PCR and Western blot. Then, the subcellular localization of NRAS was identified in melanocytes by indirect immunofluorescence. Next, the expression of NRAS was overexpressed and knocked down in melanocytes, and its efficiency was verified by qRT-PCR and Western blot. Subsequently, NaOH, CCK-8, and Annexin V-FITC were used to verify the changes in melanin content, proliferation, and apoptosis in melanocytes. Finally, we analyzed the regulation of NRAS on other genes (MITF, TYR, DCT, PMEL, and CREB) that affect melanin production. In silico studies showed NRAS as a stable and hydrophilic protein, and it is localized in the cytoplasm and nucleus of melanocytes. The mRNA and protein expression levels of NRAS were significantly different in skin of different colored Rex rabbits, and the highest level was found in black skin (P < 0.01). Moreover, the NRAS demonstrated impact on the proliferation, apoptosis, and melanin production of melanocytes (P < 0.05), and the strong correlation of NRAS with melanin-related genes was evidently observed (P < 0.05). Our results suggested that NRAS can be used as a gene that regulates melanin production and controls melanocyte proliferation and apoptosis, providing a new theoretical basis for studying the mechanism of mammalian fur color formation.
Collapse
Affiliation(s)
- Shaocheng Bai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Shuaishuai Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Yingying Dai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Rongshuai Jin
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Chen Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Fan Yao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Qiaoqin Weng
- Yuyao Xinnong Rabbit Industry Co., Ltd, Ningbo 315400, China
| | - Pin Zhai
- Jiangsu Academy of Agricultural Sciences, Nanjing 210000, China
| | - Bohao Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Xinsheng Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225000, China
| | - Yang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225000, China
| |
Collapse
|
3
|
Rahman RK, Majmundar N, Ghani H, San A, Koirala M, Gajjar AA, Pappert A, Mazzola CA. Neurosurgical management of patients with neurocutaneous melanosis: a systematic review. Neurosurg Focus 2022; 52:E8. [DOI: 10.3171/2022.2.focus21791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/21/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE
Neurocutaneous melanocytosis (NCM), also referred to as neurocutaneous melanosis, is a rare neurocutaneous disorder characterized by excess melanocytic proliferation in the skin, leptomeninges, and cranial parenchyma. NCM most often presents in pediatric patients within the first 2 years of life and is associated with high mortality due to proliferation of melanocytes in the brain. Prognosis is poor, as patients typically die within 3 years of symptom onset. Due to the rarity of NCM, there are no specific guidelines for management. The aims of this systematic review were to investigate approaches toward diagnosis and examine modern neurosurgical management of NCM.
METHODS
A systematic review was performed using the PubMed database between April and December 2021 to identify relevant articles using PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Search criteria were created and checked independently among the authors. Inclusion criteria specified unique studies and case reports of NCM patients in which relevant neurosurgical management was considered and/or applied. Exclusion criteria included studies that did not report associated neurological diagnoses and neuroimaging findings, clinical reports without novel observations, and those unavailable in the English language. All articles that met the study inclusion criteria were included and analyzed.
RESULTS
A total of 26 extracted articles met inclusion criteria and were used for quantitative analysis, yielding a cumulative of 74 patients with NCM. These included 21 case reports, 1 case series, 2 retrospective cohort studies, 1 prospective cohort study, and 1 review. The mean patient age was 16.66 years (range 0.25–67 years), and most were male (76%). Seizures were the most frequently reported symptom (55%, 41/74 cases). Neurological diagnoses associated with NCM included epilepsy (45%, 33/74 cases), hydrocephalus (24%, 18/74 cases), Dandy-Walker malformation (24%, 18/74 cases), and primary CNS melanocytic tumors (23%, 17/74 cases). The most common surgical technique was CSF shunting (43%, 24/56 operations), with tethered cord release (4%, 2/56 operations) being the least frequently performed.
CONCLUSIONS
Current management of NCM includes CSF shunting to reduce intracranial pressure, surgery, chemotherapy, radiotherapy, immunotherapy, and palliative care. Neurosurgical intervention can aid in the diagnosis of NCM through tissue biopsy and resection of lesions with surgical decompression. Further evidence is required to establish the clinical outcomes of this rare entity and to describe the diverse spectrum of intracranial and intraspinal abnormalities present.
Collapse
Affiliation(s)
- Raphia K. Rahman
- Rowan University School of Osteopathic Medicine, Stratford, New Jersey
| | - Neil Majmundar
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Hira Ghani
- New York Institute of Technology College of Osteopathic Medicine, Glen Head, New York
| | - Ali San
- Kansas City University College of Osteopathic Medicine, Kansas City, Missouri
| | - Monika Koirala
- Kansas City University College of Osteopathic Medicine, Kansas City, Missouri
| | - Avi A. Gajjar
- Department of Chemistry, Union College, Schenectady, New York; and
| | - Amy Pappert
- Department of Dermatology, Rutgers Robert Wood Johnson Medical School, Newark, New Jersey
| | - Catherine A. Mazzola
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, New Jersey
| |
Collapse
|
4
|
Fledderus AC, Widdershoven AL, Lapid O, Breugem CC, Pasmans SGMA, van der Horst CMAM, Engelen MM, Spuls PI. Neurological signs, symptoms and MRI abnormalities in patients with congenital melanocytic naevi and evaluation of routine MRI-screening: systematic review and meta-analysis. Orphanet J Rare Dis 2022; 17:95. [PMID: 35236387 PMCID: PMC8889704 DOI: 10.1186/s13023-022-02234-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 02/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A congenital melanocytic naevus (CMN) is a rare skin condition that can be associated with abnormalities of the central nervous system (CNS). These anomalies can sometimes cause severe complications, and rarely death. Adequate information about aetiology and management is therefore crucial. To identify how to monitor patients with CMN, we aimed to estimate the prevalence of neurological involvement in patients with CMN and to summarize what specific neurological signs and symptoms and MRI abnormalities are reported in the medical literature. In addition, we summarized and evaluated the recommendations regarding MRI-screening reported in the medical literature. METHODS This review was registered in PROSPERO and reported according to the MOOSE checklist. A search was conducted in EMBASE (Ovid), PubMed, and the Cochrane Library. We included studies with 10 or more patients with CMN, reporting on neurological signs and symptoms or CNS MRI. Study selection, data extraction and methodological quality assessment were performed by two independent reviewers. A meta-analysis was used to assess the prevalence of neurological signs and symptoms. RESULTS Out of 1287 studies, fourteen studies were eligible for inclusion of which eight were included in the meta-analysis. Neurological signs and symptoms prevalence was 7.04% (CI 95% 4.47-10.93%) in the meta-analysis group and 6.26% (95% CI 3.85-10%) in a subgroup of patients with a CMN > 6 cm, evaluated in seven studies. Neurodevelopmental delay and seizures were the most frequently reported signs and symptoms. CNS melanocytosis and hydrocephalus were the most frequently reported MRI abnormalities. It was not possible to estimate the increased risk of neurological involvement in patients with CMN due to low quality of evidence and clinical heterogeneity. CONCLUSION Standardization in CMN studies and a multi-centre prospective study are needed to evaluate neurological involvement. Based on current literature, it is not possible to make strong recommendations on routine MRI-screening. For now, every clinical centre should decide on its own policy and weigh the advantages and disadvantages of routine MRI.
Collapse
Affiliation(s)
- Anne C Fledderus
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Department of Dermatology, Amsterdam Public Health, Amsterdam University Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC, Location AMC, University of Amsterdam, 1100 DD, Amsterdam, The Netherlands.
| | - Anna Linn Widdershoven
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Department of Pediatric Neurology, Amsterdam Public Health, Amsterdam University Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Oren Lapid
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Corstiaan C Breugem
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Suzanne G M A Pasmans
- Department of Dermatology, Erasmus MC University Medical Center Rotterdam-Sophia Children's Hospital, Doctor Molewaterplein 40, 3015GD, Rotterdam, The Netherlands
| | - Chantal M A M van der Horst
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Marc M Engelen
- Department of Pediatric Neurology, Amsterdam Public Health, Amsterdam University Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Phyllis I Spuls
- Department of Dermatology, Amsterdam Public Health, Amsterdam University Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Nerve-associated Schwann cell precursors contribute extracutaneous melanocytes to the heart, inner ear, supraorbital locations and brain meninges. Cell Mol Life Sci 2021; 78:6033-6049. [PMID: 34274976 PMCID: PMC8316242 DOI: 10.1007/s00018-021-03885-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/07/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
Melanocytes are pigmented cells residing mostly in the skin and hair follicles of vertebrates, where they contribute to colouration and protection against UV-B radiation. However, the spectrum of their functions reaches far beyond that. For instance, these pigment-producing cells are found inside the inner ear, where they contribute to the hearing function, and in the heart, where they are involved in the electrical conductivity and support the stiffness of cardiac valves. The embryonic origin of such extracutaneous melanocytes is not clear. We took advantage of lineage-tracing experiments combined with 3D visualizations and gene knockout strategies to address this long-standing question. We revealed that Schwann cell precursors are recruited from the local innervation during embryonic development and give rise to extracutaneous melanocytes in the heart, brain meninges, inner ear, and other locations. In embryos with a knockout of the EdnrB receptor, a condition imitating Waardenburg syndrome, we observed only nerve-associated melanoblasts, which failed to detach from the nerves and to enter the inner ear. Finally, we looked into the evolutionary aspects of extracutaneous melanocytes and found that pigment cells are associated mainly with nerves and blood vessels in amphibians and fish. This new knowledge of the nerve-dependent origin of extracutaneous pigment cells might be directly relevant to the formation of extracutaneous melanoma in humans.
Collapse
|
6
|
Ruggieri M, Polizzi A, Catanzaro S, Bianco ML, Praticò AD, Di Rocco C. Neurocutaneous melanocytosis (melanosis). Childs Nerv Syst 2020; 36:2571-2596. [PMID: 33048248 DOI: 10.1007/s00381-020-04770-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/23/2020] [Indexed: 02/03/2023]
Abstract
Neurocutaneous melanosis (NCM; MIM # 249400; ORPHA: 2481], first reported by the Bohemian pathologist Rokitansky in 1861, and now more precisely defined as neurocutaneous melanocytosis, is a rare, congenital syndrome characterised by the association of (1) congenital melanocytic nevi (CMN) of the skin with overlying hypertrichosis, presenting as (a) large (LCMN) or giant and/or multiple (MCMN) melanocytic lesions (or both; sometimes associated with smaller "satellite" nevi) or (b) as proliferative melanocytic nodules; and (2) melanocytosis (with infiltration) of the brain parenchyma and/or leptomeninges. CMN of the skin and leptomeningeal/nervous system infiltration are usually benign, more rarely may progress to melanoma or non-malignant melanosis of the brain. Approximately 12% of individuals with LCMN will develop NCM: wide extension and/or dorsal axial distribution of LCMN increases the risk of NCM. The CMN are recognised at birth and are distributed over the skin according to 6 or more patterns (6B patterns) in line with the archetypical patterns of distribution of mosaic skin disorders. Neurological manifestations can appear acutely in infancy, or more frequently later in childhood or adult life, and include signs/symptoms of intracranial hypertension, seizures/epilepsy, cranial nerve palsies, motor/sensory deficits, cognitive/behavioural abnormalities, sleep cycle anomalies, and eventually neurological deterioration. NMC patients may be symptomatic or asymptomatic, with or without evidence of the typical nervous system changes at MRI. Associated brain and spinal cord malformations include the Dandy-Walker malformation (DWM) complex, hemimegalencephaly, cortical dysplasia, arachnoid cysts, Chiari I and II malformations, syringomyelia, meningoceles, occult spinal dysraphism, and CNS lipoma/lipomatosis. There is no systemic involvement, or only rarely. Pathogenically, single postzygotic mutations in the NRAS (neuroblastoma RAS viral oncogene homologue; MIM # 164790; at 1p13.2) proto-oncogene explain the occurrence of single/multiple CMNs and melanocytic and non-melanocytic nervous system lesions in NCM: these disrupt the RAS/ERK/mTOR/PI3K/akt pathways. Diagnostic/surveillance work-ups require physical examination, ophthalmoscopy, brain/spinal cord magnetic resonance imaging (MRI) and angiography (MRA), positron emission tomography (PET), and video-EEG and IQ testing. Treatment strategies include laser therapy, chemical peeling, dermabrasion, and surgical removal/grafting for CMNs and shunt surgery and surgical removal/chemo/radiotherapy for CNS lesions. Biologically targeted therapies tailored (a) BRAF/MEK in NCM mice (MEK162) and GCMN (trametinib); (b) PI3K/mTOR (omipalisib/GSK2126458) in NMC cells; (c) RAS/MEK (vemurafenib and trametinib) in LCMNs cells; or created experimental NMC cells (YP-MEL).
Collapse
Affiliation(s)
- Martino Ruggieri
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy.
| | - Agata Polizzi
- Chair of Pediatrics, Department of Educational Sciences, University of Catania, Catania, Italy
| | - Stefano Catanzaro
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
- Unit of Neonatology and Neonatal Intensive Care Unit (NICU), AOU "Policlinico", PO "San Marco", University of Catania, Catania, Italy
| | - Manuela Lo Bianco
- Postgraduate Programme in Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Andrea D Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Concezio Di Rocco
- Pediatric Neurosurgery, International Neuroscience Institute (INI), Hannover, Germany
| |
Collapse
|
7
|
Sarnat HB, Flores-Sarnat L, Boltshauser E. Area Postrema: Fetal Maturation, Tumors, Vomiting Center, Growth, Role in Neuromyelitis Optica. Pediatr Neurol 2019; 94:21-31. [PMID: 30797593 DOI: 10.1016/j.pediatrneurol.2018.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/12/2018] [Accepted: 12/17/2018] [Indexed: 01/17/2023]
Abstract
INTRODUCTION The area postrema in the caudal fourth ventricular floor is highly vascular without blood-brain or blood-cerebrospinal fluid barrier. In addition to its function as vomiting center, several others are part of the circumventricular organs for vasomotor/angiotensin II regulation, role in neuromyelitis optica related to aquaporin-4, and somatic growth and appetite regulation. Functions are immature at birth. The purpose was to demonstrate neuronal, synaptic, glial, or ependymal maturation in the area postrema of normal fetuses. We describe three area postrema tumors. METHODS Sections of caudal fourth ventricle of 12 normal human fetal brains at autopsy aged six to 40 weeks and three infants aged three to 18 months were examined. Immunocytochemical neuronal and glial markers were applied to paraffin sections. Two infants with area postrema tumors and another with neurocutaneous melanocytosis and pernicious vomiting also studied. RESULTS Area postrema neurons exhibited cytologic maturity and synaptic circuitry by 14 weeks'. Astrocytes coexpressed vimentin, glial fibrillary acidic protein, and S-100β protein. The ependyma is thin over area postrema, with fetal ependymocytic basal processes. A glial layer separates area postrema from medullary tegmentum. Melanocytes infiltrated area postrema in the toddler with pernicious vomiting; two children had primary area postrema pilocytic astrocytomas. CONCLUSIONS Although area postrema is cytologically mature by 14 weeks, growth increases and functions mature during postnatal months. We recommend neuroimaging for patients with unexplained vomiting and that area postrema neuropathology includes synaptophysin and microtubule-associated protein-2 in patients with suspected dysfunction.
Collapse
Affiliation(s)
- Harvey B Sarnat
- Departments of Paediatrics, University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada; Pathology (Neuropathology), University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada; Clinical Neurosciences, University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.
| | - Laura Flores-Sarnat
- Departments of Paediatrics, University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada; Clinical Neurosciences, University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Eugen Boltshauser
- Department of Paediatric Neurology, Children's University Hospital, Zürich, Switzerland
| |
Collapse
|
8
|
Abstract
This chapter focuses on the development of the human olfactory system. In this system, function does not require full neuroanatomical maturity. Thus, discrimination of odorous molecules, including a number within the mother's diet, occurs in amniotic fluid after 28-30 weeks of gestation, at which time the olfactory bulbs are identifiable by MRI. Hypoplasia/aplasia of the bulbs is documented in the third trimester and postnatally. Interestingly, olfactory axons project from the nasal epithelium to the telencephalon before formation of the olfactory bulbs and lack a peripheral ganglion, but the synaptic glomeruli of the future olfactory bulb serves this function. Histologic lamination of the olfactory bulb is present by 14 weeks, but maturation remains incomplete at term for neuronal differentiation, synaptogenesis, myelination, and persistence of the normal transitory fetal ventricular recess. Myelination occurs postnatally. Although olfaction is the only sensory system without direct thalamic projections, the olfactory bulb and anterior olfactory nucleus are, in effect, thalamic surrogates. For example, many dendro-dendritic synapses occur within the bulb between GABAergic granular neurons and periglomerular neurons. Moreover, bulbar synaptic glomeruli are analogous to peripheral ganglia of other sensory cranial nerves. The olfactory tract contains much gray as well as white matter. The olfactory epithelium and bulb both incorporate progenitor cells at all ages. Diverse malformations of the olfactory bulb can be detected by clinical examination, imaging, and neuropathology; indeed, olfactory reflexes of the neonate can be reliably tested. We recommend that such testing be routine in the neonatal neurologic examination, especially in children with brain malformations, endocrinopathies, chromosomopathies, genetic/metabolic disorders, and perinatal hypoxic/ischemic encephalopathy.
Collapse
Affiliation(s)
- Harvey B Sarnat
- Department of Paediatrics, University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute, Calgary, AB, Canada; Department of Clinical Neurosciences, University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute, Calgary, AB, Canada; Department of Pathology and Laboratory Medicine (Neuropathology), University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute, Calgary, AB, Canada.
| | - Laura Flores-Sarnat
- Department of Paediatrics, University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute, Calgary, AB, Canada; Department of Clinical Neurosciences, University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| |
Collapse
|
9
|
Omar AT, Bagnas MAC, Del Rosario-Blasco KAR, Diestro JDB, Khu KJO. Shunt Surgery for Neurocutaneous Melanosis with Hydrocephalus: Case Report and Review of the Literature. World Neurosurg 2018; 120:583-589.e3. [DOI: 10.1016/j.wneu.2018.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/30/2018] [Accepted: 09/02/2018] [Indexed: 12/19/2022]
|
10
|
Cerebellar networks and neuropathology of cerebellar developmental disorders. HANDBOOK OF CLINICAL NEUROLOGY 2018; 154:109-128. [PMID: 29903435 DOI: 10.1016/b978-0-444-63956-1.00007-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cerebellar system is a series of axonal projections and synaptic circuits as networks, similar to those of the limbic system and those subserving the propagation and spread of seizures. Three principal cerebellar networks are identified and cerebellar disease often affects components of the networks other than just the cerebellar cortex. Contemporary developmental neuropathology of the cerebellum is best considered in the context of alterations of developmental processes: embryonic segmentation and genetic gradients along the three axes of the neural tube, individual neuronal and glial cell differentiation, migration, synaptogenesis, and myelination. Precisely timed developmental processes may be delayed or precocious rhombencephalosynapsis and pontocerebellar hypoplasia exemplify opposite gradients in the horizontal axis. Chiari II malformation may be reconsidered as a disorder of segmentation rather than simply due to mechanical forces upon normally developing hindbrain structures. Cellular nodules in the roof of the fourth ventricle are heterotopia of histologically differentiated but architecturally disoriented and disorganized neurons and glial cells; they often are less mature immunocytochemically than similar cells in adjacent normal folia. Cell rests are nodules of undifferentiated neuroepithelial cells. Both are frequent in human fetuses and neonates. Axonal projections from heterotopia to adjacent cerebellar folia or nuclei are few or absent, hence these nodules are clinically silent despite neuronal differentiation.
Collapse
|
11
|
Keratinocyte Sonic Hedgehog Upregulation Drives the Development of Giant Congenital Nevi via Paracrine Endothelin-1 Secretion. J Invest Dermatol 2017; 138:893-902. [PMID: 29138054 DOI: 10.1016/j.jid.2017.10.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/21/2017] [Accepted: 10/23/2017] [Indexed: 01/20/2023]
Abstract
Giant congenital nevi are associated with clinical complications such as neurocutaneous melanosis and melanoma. Virtually nothing is known about why some individuals develop these lesions. We previously identified the sonic hedgehog (Shh) pathway regulator Cdon as a candidate nevus modifier gene. Here we validate this by studying Cdon knockout mice, and go on to establishing the mechanism by which Shh exacerbates nevogenesis. Cdon knockout mice develop blue nevi without the need for somatic melanocyte oncogenic mutation. In a mouse model carrying melanocyte NRASQ61K, we found that strain backgrounds that carry genetic variants that cause increased keratinocyte Shh pathway activity, as measured by Gli1 and Gli2 expression, develop giant congenital nevi. Shh components are also active adjacent to human congenital nevi. Mechanistically, this exacerbation of nevogenesis is driven via the release of the melanocyte mitogen endothelin-1 from keratinocytes. We then suppressed nevus development in mice using Shh and endothelin antagonists. Our work suggests an aspect of nevus development whereby keratinocyte cytokines such as endothelin-1 can exacerbate nevogenesis, and provides potential therapeutic approaches for giant congenital nevi. Furthermore, it highlights the notion that germline genetic variation, in addition to somatic melanocyte mutation, can strongly influence the histopathological features of melanocytic nevi.
Collapse
|
12
|
Abstract
Olfactory axons project from nasal epithelium to the primitive telencephalon before olfactory bulbs form. Olfactory bulb neurons do not differentiate in situ but arrive via the rostral migratory stream. Synaptic glomeruli and concentric laminar architecture are unlike other cortices. Fetal olfactory maturation of neuronal differentiation, synaptogenesis, and myelination remains incomplete at term and have a protracted course of postnatal development. The olfactory ventricular recess involutes postnatally but dilates in congenital hydrocephalus. Olfactory bulb, tract and epithelium are repositories of progenitor stem cells in fetal and adult life. Diverse malformations of the olfactory bulb can be diagnosed by clinical examination, imaging, and neuropathologically. Cellular markers of neuronal differentiation and synaptogenesis demonstrate immaturity of the olfactory system at birth, previously believed by histology alone to occur early in fetal life. Immaturity does not preclude function.
Collapse
Affiliation(s)
- Harvey B Sarnat
- 1 Department of Paediatrics, University of Calgary and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,2 Department of Pathology and Laboratory Medicine (Neuropathology), University of Calgary and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,3 Department of Clinical Neurosciences, University of Calgary and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Laura Flores-Sarnat
- 1 Department of Paediatrics, University of Calgary and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,3 Department of Clinical Neurosciences, University of Calgary and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| |
Collapse
|
13
|
Shih F, Yip S, McDonald PJ, Chudley AE, Del Bigio MR. Oncogenic codon 13 NRAS mutation in a primary mesenchymal brain neoplasm and nevus of a child with neurocutaneous melanosis. Acta Neuropathol Commun 2014; 2:140. [PMID: 25330907 PMCID: PMC4209081 DOI: 10.1186/s40478-014-0140-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/08/2014] [Indexed: 12/01/2022] Open
Abstract
A 28-month female with a clinical diagnosis of neurocutaneous melanosis and numerous intracranial abnormalities (including a right choroid plexus tumor and left hemimegalencephaly) presented with a rapidly expanding tumor in the left occipital cerebrum. Microscopic examination of the resected specimen revealed a myxoid mesenchymal neoplasm consisting of fusiform cells that were immunoreactive for vimentin, CD34, and P53 but no melanocyte markers. Focused amplicon deep sequencing on DNA extracted from the brain tumor and a cutaneous nevus revealed a heterozygous (c.37G > C; p.G13R) substitution in the NRAS gene. DNA sequencing of “normal” skin and buccal swab showed the identical NRAS change albeit at lower allelic frequency. Her parents did not harbor the NRAS mutation. The skin lesion, but not the brain tumor, had a BRAF mutation (c.1397G > T; p.G466V). A germline single nucleotide polymorphism in MET was found in the child and her father (c.3209C > T; p.T1010I). The findings suggest NRAS mosaicism that occurred sometime after conception and imply an oncogenic role of the activating NRAS mutation in both the brain and skin lesions in this child.
Collapse
|