1
|
Celik H, Ozdemir FMA, Aksoy E, Oztoprak U, Kilic M, Yuksel D. Evaluation of clinical and electroencephalographic findings in patients with early childhood epilepsy and inborn errors of metabolism. Acta Neurol Belg 2022; 122:1575-1581. [DOI: 10.1007/s13760-022-02066-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/11/2022] [Indexed: 11/01/2022]
|
2
|
Mazurkiewicz-Bełdzińska M, Del Toro M, Haliloğlu G, Huidekoper HH, Kravljanac R, Mühlhausen C, Andersen BN, Prpić I, Striano P, Auvin S. Managing CLN2 disease: a treatable neurodegenerative condition among other treatable early childhood epilepsies. Expert Rev Neurother 2021; 21:1275-1282. [PMID: 33538188 DOI: 10.1080/14737175.2021.1885374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Neuronal ceroid lipofuscinosis type 2 (CLN2 disease) is a rare pediatric neurodegenerative condition, which is usually fatal by mid-adolescence. Seizures are one of the most common early symptoms of CLN2 disease, but patients often experience language deficits, movement disorders, and behavioral problems. Diagnosis of CLN2 disease is challenging (particularly when differentiating between early-onset developmental, metabolic, or epileptic syndromes), and diagnostic delays often overlap with rapid disease progression. An enzyme replacement therapy (cerliponase alfa) is now available, adding CLN2 disease to the list of potentially treatable disorders requiring a prompt diagnosis. AREAS COVERED Although advances in enzymatic activity testing and genetic testing have facilitated diagnoses of CLN2 disease, our review highlights the presenting symptoms that are vital in directing clinicians to perform appropriate tests or seek expert opinion. We also describe common diagnostic challenges and some potential misdiagnoses that may occur during differential diagnosis. EXPERT OPINION An awareness of CLN2 disease as a potentially treatable disorder and increased understanding of the key presenting symptoms can support selection of appropriate tests and prompt diagnosis. The available enzyme replacement therapy heralds an even greater imperative for early diagnosis, and for clinicians to direct patients to appropriate diagnostic pathways.
Collapse
Affiliation(s)
| | - Mireia Del Toro
- Department of Pediatric Neurology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Göknur Haliloğlu
- Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Hidde H Huidekoper
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Ružica Kravljanac
- Institute for Mother and Child Healthcare of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Chris Mühlhausen
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Göttingen, Germany
| | - Brian Nauheimer Andersen
- Department of Pediatric and Adolescent Medicine, Centre for Rare Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Igor Prpić
- Faculty of Medicine, Clinical Hospital Centre Rijeka, University of Rijeka, Rijeka, Croatia
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Stéphane Auvin
- Pediatric Neurology Department, Rare Epilepsy Center, Université de Paris, Robert Debré University Hospital, Paris, France
| |
Collapse
|
3
|
Abstract
Seizures are common in the pediatric population; however, most children do not go on to develop epilepsy later in life. Selecting appropriate diagnostic modalities to determine an accurate diagnosis and appropriate treatment as well as with counseling families regarding the etiology and prognosis of seizures, is essential. This article will review updated definitions of seizures, including provoked versus unprovoked, as well as the International League Against Epilepsy operational definition of epilepsy. A variety of specific acute symptomatic seizures requiring special consideration are discussed, along with neonatal seizures and seizure mimics, which are common in pediatric populations.
Collapse
Affiliation(s)
- Lubov Romantseva
- Section of Pediatric Neurology, Department of Pediatrics, Rush University Medical Center, Chicago, Illinois
| | - Nan Lin
- Section of Pediatric Neurology, Department of Pediatrics, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
4
|
Mohamed S, El Melegy EM, Talaat I, Hosny A, Abu-Amero KK. Neurometabolic Disorders-Related Early Childhood Epilepsy: A Single-Center Experience in Saudi Arabia. Pediatr Neonatol 2015; 56:393-401. [PMID: 26117549 DOI: 10.1016/j.pedneo.2015.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/20/2015] [Accepted: 02/12/2015] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Data on the pattern of epilepsy caused by metabolic disorders in the first 2 years of life are limited in developing countries. We aimed to identify the metabolic causes of epilepsy presented in the first 2 years of life and to describe their clinical, radiological, molecular, and electroencephalographic characteristics. METHODS This retrospective study was conducted between January 2010 and December 2011 at Saad Specialist Hospital (Al Khobar, Saudi Arabia). All patients younger than 2 years at the onset of epilepsy caused by metabolic disorders were reviewed. The International League Against Epilepsy definition was used, and febrile convulsion was excluded. RESULTS Of 221 children diagnosed with epilepsy in the first 2 years of life at our hospital, 24 had metabolic diseases. The characteristics of these 24 children included the following: consanguinity in 18 patients (75%), developmental delay in 13 (54%), generalized tonic-clonic seizures in 10 (42%), infantile spasms in four (17%), myoclonic in seven (29%), and focal seizures in three. The diagnosis was confirmed by DNA studies in 17 patients (71%) and enzyme assay in seven (29%). The main diagnoses were peroxisomal disorders (n = 3), nonketotic hyperglycinemia (n = 3), Menkes disease (n = 2), neuronal ceroid lipofuscinosis (n = 2), biotinidase deficiency (n = 2), and mitochondrial disorder (n = 2). The remaining patients had lysosomal storage disease, aminoacidopathy, fatty acid oxidation defects, and organic aciduria. Seizure freedom was achieved in one third of patients in this cohort. CONCLUSION Different metabolic disorders were identified in this cohort, which caused different types of epilepsy, especially myoclonic seizures and infantile spasms.
Collapse
Affiliation(s)
- Sarar Mohamed
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia; Department of Pediatrics, Saad Specialist Hospital, Al Khobar, Saudi Arabia.
| | | | - Iman Talaat
- Department of Pediatrics, Saad Specialist Hospital, Al Khobar, Saudi Arabia
| | - Amany Hosny
- Department of Pediatrics, Saad Specialist Hospital, Al Khobar, Saudi Arabia
| | - Khaled K Abu-Amero
- Ophthalmic Genetics Laboratory, Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Bhatnagar M, Shorvon S. Genetic mutations associated with status epilepticus. Epilepsy Behav 2015; 49:104-110. [PMID: 25982265 DOI: 10.1016/j.yebeh.2015.04.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 04/06/2015] [Accepted: 04/07/2015] [Indexed: 01/28/2023]
Abstract
This paper reports the results of a preliminary search of the literature aimed at identifying the genetic mutations reported to be strongly associated with status epilepticus. Genetic mutations were selected for inclusion if status epilepticus was specifically mentioned as a consequence of the mutation in standard genetic databases or in a case report or review article. Mutations in 122 genes were identified. The genetic mutations identified were found in only rare conditions (sometimes vanishingly rare) and mostly in infants and young children with multiple other handicaps. Most of the genetic mutations can be subdivided into those associated with cortical dysplasias, inborn errors of metabolism, mitochondrial disease, or epileptic encephalopathies and childhood syndromes. There are no identified 'pure status epilepticus genes'. The range of genes underpinning status epilepticus differs in many ways from the range of genes underpinning epilepsy, which suggests that the processes underpinning status epilepticus differ from those underpinning epilepsy. It has been frequently postulated that status epilepticus is the result of a failure of 'seizure termination mechanisms', but the wide variety of genes affecting very diverse biochemical pathways identified in this survey makes any unitary cause unlikely. The genetic influences in status epilepticus are likely to involve a wide range of mechanisms, some related to development, some to cerebral energy production, some to diverse altered biochemical pathways, some to transmitter and membrane function, and some to defects in networks or systems. The fact that many of the identified genes are involved with cerebral development suggests that status epilepticus might often be a system or network phenomenon. To date, there are very few genes identified which are associated with adult-onset status epilepticus (except in those with preexisting neurological damage), and this is disappointing as the cause of many adult-onset status epilepticus cases remains obscure. It has been suggested that idiopathic adult-onset status epilepticus might often have an immunological cause but no gene mutations which relate to immunological mechanisms were identified. Overall, the clinical utility of what is currently known about the genetics of status epilepticus is slight and the findings have had little impact on clinical treatment despite what has been a very large investment in money and time. New genetic technologies may result in the identification of further genes, but if the identified genetic defects confer only minor susceptibility, this is unlikely to influence therapy. It is also important to recognize that genetics has social implications in a way that other areas of science do not. This article is part of a Special Issue entitled "Status Epilepticus".
Collapse
Affiliation(s)
- M Bhatnagar
- UCL Institute of Neurology, University College London, UK
| | - S Shorvon
- UCL Institute of Neurology, University College London, UK.
| |
Collapse
|
6
|
Olson HE, Poduri A, Pearl PL. Genetic forms of epilepsies and other paroxysmal disorders. Semin Neurol 2014; 34:266-79. [PMID: 25192505 DOI: 10.1055/s-0034-1386765] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genetic mechanisms explain the pathophysiology of many forms of epilepsy and other paroxysmal disorders, such as alternating hemiplegia of childhood, familial hemiplegic migraine, and paroxysmal dyskinesias. Epilepsy is a key feature of well-defined genetic syndromes including tuberous sclerosis complex, Rett syndrome, Angelman syndrome, and others. There is an increasing number of single-gene causes or susceptibility factors associated with several epilepsy syndromes, including the early-onset epileptic encephalopathies, benign neonatal/infantile seizures, progressive myoclonus epilepsies, genetic generalized and benign focal epilepsies, epileptic aphasias, and familial focal epilepsies. Molecular mechanisms are diverse, and a single gene can be associated with a broad range of phenotypes. Additional features, such as dysmorphisms, head size, movement disorders, and family history may provide clues to a genetic diagnosis. Genetic testing can impact medical care and counseling. We discuss genetic mechanisms of epilepsy and other paroxysmal disorders, tools and indications for genetic testing, known genotype-phenotype associations, the importance of genetic counseling, and a look toward the future of epilepsy genetics.
Collapse
Affiliation(s)
- Heather E Olson
- Division of Epilepsy, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Annapurna Poduri
- Division of Epilepsy, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Phillip L Pearl
- Division of Epilepsy, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| |
Collapse
|
7
|
Nodwell MB, Koch MF, Alte F, Schneider S, Sieber SA. A subfamily of bacterial ribokinases utilizes a hemithioacetal for pyridoxal phosphate salvage. J Am Chem Soc 2014; 136:4992-9. [PMID: 24601602 DOI: 10.1021/ja411785r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pyridoxal 5'-phosphate (PLP) is the active vitamer of vitamin B6 and acts as an essential cofactor in many aspects of amino acid and sugar metabolism. The virulence and survival of pathogenic bacteria such as Mycobacterium tuberculosis depend on PLP, and deficiencies in humans have also been associated with neurological disorders and inflammation. While PLP can be synthesized by a de novo pathway in bacteria and plants, most higher organisms rely on a salvage pathway that phosphorylates either pyridoxal (PL) or its related vitamers, pyridoxine (PN) and pyridoxamine (PM). PL kinases (PLKs) are essential for this phosphorylation step and are thus of major importance for cellular viability. We recently identified a pyridoxal kinase (SaPLK) as a target of the natural product antibiotic rugulactone (Ru) in Staphylococcus aureus. Surprisingly, Ru selectively modified SaPLK not at the active site cysteine, but on a remote cysteine residue. Based on structural and biochemical studies, we now provide insight into an unprecedented dual Cys charge relay network that is mandatory for PL phosphorylation. The key component is the reactive Cys 110 residue in the lid region that forms a hemithioactetal intermediate with the 4'-aldehyde of PL. This hemithioacetal, in concert with the catalytic Cys 214, increases the nucleophilicity of the PL 5'-OH group for the inline displacement reaction with the γ-phosphate of ATP. A closer inspection of related enzymes reveals that Cys 110 is conserved and thus serves as a characteristic mechanistic feature for a dual-function ribokinase subfamily herein termed CC-PLKs.
Collapse
Affiliation(s)
- Matthew B Nodwell
- Organic Chemistry II, Centre for Integrated Protein Science CIPSM, Institute of Advanced Studies, and ‡Biochemistry, Department of Chemistry, Technische Universität München , Lichtenbergstrasse 4, 85747 Garching, Germany
| | | | | | | | | |
Collapse
|
8
|
Masri A, Wahsh SA. Manifestations and treatment of epilepsy in children with neurometabolic disorders: a series from Jordan. Seizure 2013; 23:10-5. [PMID: 23998926 DOI: 10.1016/j.seizure.2013.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/15/2013] [Accepted: 08/09/2013] [Indexed: 11/29/2022] Open
Abstract
PURPOSE To examine the characteristics of epilepsy in children with neurometabolic disorders to reveal co morbidities and optimal treatment. METHODS We retrospectively reviewed the files of children diagnosed with a neurometabolic disorder and treated at Jordan University Hospital between 2001 and 2012. We examined the incidence, age at onset, clinical characteristics, and medical control of epilepsy. RESULTS Cases treated (40 boys, 30 girls) included the different categories of neurometabolic diseases. Twenty-nine patients (41.4%) were also diagnosed with epilepsy, with age at seizure onset ranging from 3 days to 7 years. All types of seizures were reported, but generalized tonic-clonic and mixed types were most common (16/29 patients, 55.2%). Patients were on either a single antiepileptic drug (16/29, 55.2%) or multiple drugs (13/29, 44.7%), and most drugs prescribed were older generation anticonvulsants. Complete seizure control was achieved in 19/29 patients (65.5%), partial control in 7/29 (24.1%), and poor or no control in 3/29 (10.3%). EEG recordings were missing from the medical files of 10/29 patients. The first EEG revealed epileptiform activity in 12/19 patients (63.2%) and was normal in 7/19 patients (36.8%). CONCLUSIONS Epilepsy was diagnosed in about half of pediatric neurometabolic disease patients, with the majority of seizure cases well controlled.
Collapse
Affiliation(s)
- Amira Masri
- Department of Pediatrics, Division of Child Neurology, Faculty of Medicine, The University of Jordan, P.O. Box 1612, 11941 Amman, Jordan.
| | - Shourouk Al Wahsh
- Department of Pediatrics, Faculty of Medicine, The University of Jordan, Jordan
| |
Collapse
|