1
|
Sinha U, Sinha S. Magnetic Resonance Imaging Biomarkers of Muscle. Tomography 2024; 10:1411-1438. [PMID: 39330752 PMCID: PMC11436019 DOI: 10.3390/tomography10090106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
This review is focused on the current status of quantitative MRI (qMRI) of skeletal muscle. The first section covers the techniques of qMRI in muscle with the focus on each quantitative parameter, the corresponding imaging sequence, discussion of the relation of the measured parameter to underlying physiology/pathophysiology, the image processing and analysis approaches, and studies on normal subjects. We cover the more established parametric mapping from T1-weighted imaging for morphometrics including image segmentation, proton density fat fraction, T2 mapping, and diffusion tensor imaging to emerging qMRI features such as magnetization transfer including ultralow TE imaging for macromolecular fraction, and strain mapping. The second section is a summary of current clinical applications of qMRI of muscle; the intent is to demonstrate the utility of qMRI in different disease states of the muscle rather than a complete comprehensive survey.
Collapse
Affiliation(s)
- Usha Sinha
- Department of Physics, San Diego State University, San Diego, CA 92182, USA
| | - Shantanu Sinha
- Muscle Imaging and Modeling Lab., Department of Radiology, University of California at San Diego, San Diego, CA 92037, USA
| |
Collapse
|
2
|
Rehmann R, Enax-Krumova E, Meyer-Frießem CH, Schlaffke L. Quantitative muscle MRI displays clinically relevant myostructural abnormalities in long-term ICU-survivors: a case-control study. BMC Med Imaging 2023; 23:38. [PMID: 36934222 PMCID: PMC10024415 DOI: 10.1186/s12880-023-00995-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/08/2023] [Indexed: 03/20/2023] Open
Abstract
BACKGROUND Long-term data on ICU-survivors reveal persisting sequalae and a reduced quality-of-life even after years. Major complaints are neuromuscular dysfunction due to Intensive care unit acquired weakness (ICUAW). Quantitative MRI (qMRI) protocols can quantify muscle alterations in contrast to standard qualitative MRI-protocols. METHODS Using qMRI, the aim of this study was to analyse persisting myostructural abnormalities in former ICU patients compared to controls and relate them to clinical assessments. The study was conducted as a cohort/case-control study. Nine former ICU-patients and matched controls were recruited (7 males; 54.8y ± 16.9; controls: 54.3y ± 11.1). MRI scans were performed on a 3T-MRI including a mDTI, T2 mapping and a mDixonquant sequence. Water T2 times, fat-fraction and mean values of the eigenvalue (λ1), mean diffusivity (MD), radial diffusivity (RD) and fractional anisotropy (FA) were obtained for six thigh and seven calf muscles bilaterally. Clinical assessment included strength testing, electrophysiologic studies and a questionnaire on quality-of-life (QoL). Study groups were compared using a multivariate general linear model. qMRI parameters were correlated to clinical assessments and QoL questionnaire using Pearson´s correlation. RESULTS qMRI parameters were significantly higher in the patients for fat-fraction (p < 0.001), water T2 time (p < 0.001), FA (p = 0.047), MD (p < 0.001) and RD (p < 0.001). Thighs and calves showed a different pattern with significantly higher water T2 times only in the calves. Correlation analysis showed a significant negative correlation of muscle strength (MRC sum score) with FA and T2-time. The results were related to impairment seen in QoL-questionnaires, clinical testing and electrophysiologic studies. CONCLUSION qMRI parameters show chronic next to active muscle degeneration in ICU survivors even years after ICU therapy with ongoing clinical relevance. Therefore, qMRI opens new doors to characterize and monitor muscle changes of patients with ICUAW. Further, better understanding on the underlying mechanisms of the persisting complaints could contribute the development of personalized rehabilitation programs.
Collapse
Affiliation(s)
- R Rehmann
- Department of Neurology, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, Bürkle-de-La-Camp-Platz 1, 44789, Bochum, Germany.
| | - E Enax-Krumova
- Department of Neurology, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, Bürkle-de-La-Camp-Platz 1, 44789, Bochum, Germany
| | - C H Meyer-Frießem
- Department of Anaesthesiology, Intensive Care and Pain Medicine, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - L Schlaffke
- Department of Neurology, BG-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, Bürkle-de-La-Camp-Platz 1, 44789, Bochum, Germany
| |
Collapse
|
3
|
Alcalde-Estévez E, Sosa P, Asenjo-Bueno A, Plaza P, Valenzuela PL, Naves-Díaz M, Olmos G, López-Ongil S, Ruiz-Torres MP. Dietary phosphate restriction prevents the appearance of sarcopenia signs in old mice. J Cachexia Sarcopenia Muscle 2023; 14:1060-1074. [PMID: 36855841 PMCID: PMC10067497 DOI: 10.1002/jcsm.13194] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 01/05/2023] [Accepted: 01/23/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Sarcopenia is defined by the progressive and generalized loss of muscle mass and function associated with aging. We have previously proposed that aging-related hyperphosphataemia is linked with the appearance of sarcopenia signs. Because there are not effective treatments to prevent sarcopenia, except for resistance exercise, we propose here to analyse whether the dietary restriction of phosphate could be a useful strategy to improve muscle function and structure in an animal model of aging. METHODS Five-month-old (young), 24-month-old (old) and 28-month-old (geriatric) male C57BL6 mice were used. Old and geriatric mice were divided into two groups, one fed with a standard diet (0.6% phosphate) and the other fed with a low-phosphate (low-P) diet (0.2% phosphate) for 3 or 7 months, respectively. A phosphate binder, Velphoro®, was also supplemented in a group of old mice, mixed with a standard milled diet for 3 months. Muscle mass was measured by the weight of gastrocnemius and tibial muscles, and quality by nuclear magnetic resonance imaging (NMRI) and histological staining assays. Muscle strength was measured by grip test and contractile properties of the tibialis muscle by electrical stimulation of the common peroneal nerve. Gait parameters were analysed during the spontaneous locomotion of the mice with footprinting. Orientation and motor coordination were evaluated using a static rod test. RESULTS Old mice fed with low-P diet showed reduced serum phosphate concentration (16.46 ± 0.77 mg/dL young; 21.24 ± 0.95 mg/dL old; 17.46 ± 0.82 mg/dL low-P diet). Old mice fed with low-P diet displayed 44% more mass in gastrocnemius muscles with respect to old mice (P = 0.004). NMRI revealed a significant reduction in T2 relaxation time (P = 0.014) and increased magnetization transfer (P = 0.045) and mean diffusivity (P = 0.045) in low-P diet-treated mice compared with their coetaneous. The hypophosphataemic diet increased the fibre size and reduced the fibrotic area by 52% in gastrocnemius muscle with respect to old mice (P = 0.002). Twitch force and tetanic force were significantly increased in old mice fed with the hypophosphataemic diet (P = 0.004 and P = 0.014, respectively). Physical performance was also improved, increasing gait speed by 30% (P = 0.032) and reducing transition time in the static rod by 55% (P = 0.012). Similar results were found when diet was supplemented with Velphoro®. CONCLUSIONS The dietary restriction of phosphate in old mice improves muscle quantity and quality, muscle strength and physical performance. Similar results were found using the phosphate binder Velphoro®, supporting the role of phosphate in the impairment of muscle structure and function that occurs during aging.
Collapse
Affiliation(s)
- Elena Alcalde-Estévez
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Biología de Sistemas, Universidad de Alcalá, 28871, Madrid, Alcalá de Henares, Spain.,Unidad de Investigación de la Fundación para la Investigación Biomédica del Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
| | - Patricia Sosa
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Biología de Sistemas, Universidad de Alcalá, 28871, Madrid, Alcalá de Henares, Spain.,Fundación para la investigación Biomédica del Hospital Universitario de Getafe, Getafe, Spain
| | - Ana Asenjo-Bueno
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Biología de Sistemas, Universidad de Alcalá, 28871, Madrid, Alcalá de Henares, Spain.,Unidad de Investigación de la Fundación para la Investigación Biomédica del Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
| | - Patricia Plaza
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Biología de Sistemas, Universidad de Alcalá, 28871, Madrid, Alcalá de Henares, Spain.,Unidad de Investigación Clínica de Cáncer de Pulmón H120-CNIO, Madrid, Spain
| | - Pedro L Valenzuela
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Biología de Sistemas, Universidad de Alcalá, 28871, Madrid, Alcalá de Henares, Spain.,Physical Activity and Health Research Group (PaHerg), Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), Madrid, Spain
| | - Manuel Naves-Díaz
- Unidad de Gestión Clínica de Metabolismo Óseo, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Gemma Olmos
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Biología de Sistemas, Universidad de Alcalá, 28871, Madrid, Alcalá de Henares, Spain.,Instituto Reina Sofía de Investigación Nefrológica (IRSIN) de la Fundación Renal Iñigo Álvarez de Toledo (FRIAT), Madrid, Spain.,Área 3-Fisiología y Fisiopatología Renal y Vascular del IRYCIS, Madrid, Spain
| | - Susana López-Ongil
- Unidad de Investigación de la Fundación para la Investigación Biomédica del Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain.,Instituto Reina Sofía de Investigación Nefrológica (IRSIN) de la Fundación Renal Iñigo Álvarez de Toledo (FRIAT), Madrid, Spain.,Área 3-Fisiología y Fisiopatología Renal y Vascular del IRYCIS, Madrid, Spain
| | - María P Ruiz-Torres
- Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Biología de Sistemas, Universidad de Alcalá, 28871, Madrid, Alcalá de Henares, Spain.,Instituto Reina Sofía de Investigación Nefrológica (IRSIN) de la Fundación Renal Iñigo Álvarez de Toledo (FRIAT), Madrid, Spain.,Área 3-Fisiología y Fisiopatología Renal y Vascular del IRYCIS, Madrid, Spain
| |
Collapse
|
4
|
Rehmann R, Schneider-Gold C, Froeling M, Güttsches AK, Rohm M, Forsting J, Vorgerd M, Schlaffke L. Diffusion Tensor Imaging Shows Differences Between Myotonic Dystrophy Type 1 and Type 2. J Neuromuscul Dis 2021; 8:949-962. [PMID: 34180419 DOI: 10.3233/jnd-210660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Myotonic Dystrophies type 1 and type 2 are hereditary myopathies with dystrophic muscle degeneration in varying degrees. Differences in muscle diffusion between both diseases have not been evaluated yet. OBJECTIVE To evaluate the ability to of muscle diffusion tensor imaging (mDTI) and Dixon fat-quantification to distinguish between Myotonic dystrophy (DM) type 1 and type 2 and if both diseases show distinct muscle involvement patterns. METHODS We evaluated 6 thigh and 7 calf muscles (both legs) of 10 DM 1 and 13 DM 2 and 28 healthy controls (HC) with diffusion tensor imaging, T1w and mDixonquant sequences in a 3T MRI scanner. The quantitative mDTI-values axial diffusivity (λ1), mean diffusivity (MD), radial diffusivity (RD) and fractional anisotropy (FA) as well as fat-fraction were analysed. CTG-Triplett repeat-length of DM 1 patients was correlated to diffusion metrics and fat-fraction. RESULTS mDTI showed significant differences between DM 1 and DM 2 vs. healthy controls in diffusion parameters of the thigh (all p < 0.001) except for FA (p = 0.0521 / 0.8337). In calf muscles mDTI showed significant differences between DM 1 and DM 2 patients (all p < 0.0001) as well as between DM 1 patients and controls (all p = 0.0001). Thigh muscles had a significant higher fat-fraction in both groups vs. controls (p < 0.05). There was no correlation of CTG triplet length with mDTI values and fat-fraction. DISCUSSION mDTI reveals specific changes of the diffusion parameters and fat-fraction in muscles of DM 1 and DM 2 patients. Thus, the quantitative MRI methods presented in this study provide a powerful tool in differential diagnosis and follow-up of DM 1 and DM 2, however, the data must be validated in larger studies.
Collapse
Affiliation(s)
- R Rehmann
- Department of Neurology, Heimer Institute for muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - C Schneider-Gold
- Department of Neurology, University Hospital St. Josef, Ruhr-University Bochum, Bochum, Germany
| | - M Froeling
- Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - A K Güttsches
- Department of Neurology, Heimer Institute for muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - M Rohm
- Department of Neurology, Heimer Institute for muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - J Forsting
- Department of Neurology, Heimer Institute for muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - M Vorgerd
- Department of Neurology, Heimer Institute for muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - L Schlaffke
- Department of Neurology, Heimer Institute for muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
5
|
Weber MA, Nagel AM, Kan HE, Wattjes MP. Quantitative Imaging in Muscle Diseases with Focus on Non-proton MRI and Other Advanced MRI Techniques. Semin Musculoskelet Radiol 2020; 24:402-412. [PMID: 32992368 DOI: 10.1055/s-0040-1712955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The role of neuromuscular imaging in the diagnosis of inherited and acquired muscle diseases has gained clinical relevance. In particular, magnetic resonance imaging (MRI), especially whole-body applications, is increasingly being used for the diagnosis and monitoring of disease progression. In addition, they are considered as a powerful outcome measure in clinical trials. Because many muscle diseases have a distinct muscle involvement pattern, whole-body imaging can be of diagnostic value by identifying this pattern and thus narrowing the differential diagnosis and supporting the clinical diagnosis. In addition, more advanced MRI applications including non-proton MRI, diffusion tensor imaging, perfusion MRI, T2 mapping, and magnetic resonance spectroscopy provide deeper insights into muscle pathophysiology beyond the mere detection of fatty degeneration and/or muscle edema. In this review article, we present and discuss recent data on these quantitative MRI techniques in muscle diseases, with a particular focus on non-proton imaging techniques.
Collapse
Affiliation(s)
- Marc-André Weber
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Center Rostock, Rostock, Germany
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hermien E Kan
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.,Duchenne Center, The Netherlands
| | - Mike P Wattjes
- Department of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
6
|
Chaudry O, Friedberger A, Grimm A, Uder M, Nagel AM, Kemmler W, Engelke K. Segmentation of the fascia lata and reproducible quantification of intermuscular adipose tissue (IMAT) of the thigh. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2020; 34:367-376. [PMID: 32761398 PMCID: PMC8154773 DOI: 10.1007/s10334-020-00878-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/21/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
Objective To develop a precise semi-automated segmentation of the fascia lata (FL) of the thigh to quantify IMAT volume in T1w MR images and fat fraction (FF) in Dixon MR images. Materials and methods A multi-step segmentation approach was developed to identify fibrous structures of the FL and combining them into a closed 3D surface. 23 healthy young men with low and 50 elderly sarcopenic men with moderate levels of IMAT were measured by T1w and 6pt Dixon MRI at 3T. 20 datasets were used to determine reanalysis precision errors. IMAT volume was compared using the new FL segmentation versus an easier to segment but less accurate, tightly fitting envelope of the thigh muscle ensemble. Results The segmentation was successfully applied to all 73 datasets and took about 7 min per 28 slices. In particular, in elderly subjects, it includes a large amount of adipose tissue below the FL typically not accounted for in other segmentation approaches. Inter- and intra-operator RMS-CVs were 0.33% and 0.14%, respectively, for IMAT volume and 0.04% and 0.02%, respectively, for FFMT. Discussion The FL segmentation is an important step to quantify IMAT with high precision and may be useful to investigate effects of aging and treatment on changes of IMAT and FF. ClinicalTrials.gov identifier NCT2857660, August 5, 2016. Trial registration ClinicalTrials.gov identifier NCT2857660, August 5, 2016.
Collapse
Affiliation(s)
- Oliver Chaudry
- Department of Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg and University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany. .,Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestrasse 91, 91052, Erlangen, Germany.
| | - Andreas Friedberger
- Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestrasse 91, 91052, Erlangen, Germany
| | - Alexandra Grimm
- Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestrasse 91, 91052, Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg and University Hospital Erlangen, Maximiliansplatz 3, 91054, Erlangen, Germany
| | - Armin Michael Nagel
- Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestrasse 91, 91052, Erlangen, Germany.,Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg and University Hospital Erlangen, Maximiliansplatz 3, 91054, Erlangen, Germany
| | - Wolfgang Kemmler
- Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestrasse 91, 91052, Erlangen, Germany
| | - Klaus Engelke
- Department of Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg and University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany.,Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestrasse 91, 91052, Erlangen, Germany
| |
Collapse
|
7
|
Rehmann R, Froeling M, Rohm M, Forsting J, Kley RA, Schmidt-Wilcke T, Karabul N, Meyer-Frießem CH, Vollert J, Tegenthoff M, Vorgerd M, Schlaffke L. Diffusion tensor imaging reveals changes in non-fat infiltrated muscles in late onset Pompe disease. Muscle Nerve 2020; 62:541-549. [PMID: 32654203 DOI: 10.1002/mus.27021] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/20/2022]
Abstract
MRI is a helpful tool for monitoring disease progression in late-onset Pompe disease (LOPD). Our study aimed to evaluate if muscle diffusion tensor imaging (mDTI) shows alterations in muscles of LOPD patients with <10% fat-fraction. We evaluated 6 thigh and 7 calf muscles (both legs) of 18 LOPD and 29 healthy controls (HC) with muscle diffusion tensor imaging (mDTI), T1w, and mDixonquant sequences in a 3T MRI scanner. The quantitative mDTI-values axial diffusivity (λ1 ), mean diffusivity (MD), radial diffusivity (RD), and fractional anisotropy (FA) as well as fat-fraction were analyzed. 6-Minute Walk Test (6-MWT) data were correlated to diffusion metrics. We found that mDTI showed significant differences between LOPD and HC in diffusion parameters (P < .05). Thigh muscles with <10% fat-fraction showed significant differences in MD, RD, and λ1-3 . MD positively correlated with 6-MWT (P = .06). To conclude, mDTI reveals diffusion restrictions in muscles of LOPD with and without fat-infiltration and reflects structural changes prior to fatty degeneration.
Collapse
Affiliation(s)
- Robert Rehmann
- Department of Neurology, Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Martijn Froeling
- Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Marlena Rohm
- Department of Neurology, Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Johannes Forsting
- Department of Neurology, Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Rudolf André Kley
- Department of Neurology, Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany.,Department of Neurology, St. Marien-Hospital Borken, Borken, Germany
| | - Tobias Schmidt-Wilcke
- St. Mauritius Therapieklinik, Meerbusch, Germany.,Institute of Clinical Neuroscience and Medical Psychology, University Hospital, University of Düsseldorf, Düsseldorf, Germany
| | - Nesrin Karabul
- Endokrinologikum Frankfurt a. Main, Center of Hormonal and Metabolic Diseases, Rheumatology, Osteology and Neurology, Frankfurt a. M, Germany
| | - Christine H Meyer-Frießem
- Department of Anaesthesiology Intensive Care Medicine and Pain Management, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Jan Vollert
- Pain Research, Department of Surgery and Cancer, Imperial College, London, UK.,Neurophysiology, Center of Biomedicine and Medical Technology Mannheim CBTM, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Martin Tegenthoff
- Department of Neurology, Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Matthias Vorgerd
- Department of Neurology, Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Lara Schlaffke
- Department of Neurology, Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
8
|
Rooney WD, Berlow YA, Triplett WT, Forbes SC, Willcocks RJ, Wang DJ, Arpan I, Arora H, Senesac C, Lott DJ, Tennekoon G, Finkel R, Russman BS, Finanger EL, Chakraborty S, O'Brien E, Moloney B, Barnard A, Sweeney HL, Daniels MJ, Walter GA, Vandenborne K. Modeling disease trajectory in Duchenne muscular dystrophy. Neurology 2020; 94:e1622-e1633. [PMID: 32184340 DOI: 10.1212/wnl.0000000000009244] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/17/2019] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To quantify disease progression in individuals with Duchenne muscular dystrophy (DMD) using magnetic resonance biomarkers of leg muscles. METHODS MRI and magnetic resonance spectroscopy (MRS) biomarkers were acquired from 104 participants with DMD and 51 healthy controls using a prospective observational study design with patients with DMD followed up yearly for up to 6 years. Fat fractions (FFs) in vastus lateralis and soleus muscles were determined with 1H MRS. MRI quantitative T2 (qT2) values were measured for 3 muscles of the upper leg and 5 muscles of the lower leg. Longitudinal changes in biomarkers were modeled with a cumulative distribution function using a nonlinear mixed-effects approach. RESULTS MRS FF and MRI qT2 increased with DMD disease duration, with the progression time constants differing markedly between individuals and across muscles. The average age at half-maximal muscle involvement (μ) occurred 4.8 years earlier in vastus lateralis than soleus, and these measures were strongly associated with loss-of-ambulation age. Corticosteroid treatment was found to delay μ by 2.5 years on average across muscles, although there were marked differences between muscles with more slowly progressing muscles showing larger delay. CONCLUSIONS MRS FF and MRI qT2 provide sensitive noninvasive measures of DMD progression. Modeling changes in these biomarkers across multiple muscles can be used to detect and monitor the therapeutic effects of corticosteroids on disease progression and to provide prognostic information on functional outcomes. This modeling approach provides a method to transform these MRI biomarkers into well-understood metrics, allowing concise summaries of DMD disease progression at individual and population levels. CLINICALTRIALSGOV IDENTIFIER NCT01484678.
Collapse
Affiliation(s)
- William D Rooney
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR.
| | - Yosef A Berlow
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - William T Triplett
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Sean C Forbes
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Rebecca J Willcocks
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Dah-Jyuu Wang
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Ishu Arpan
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Harneet Arora
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Claudia Senesac
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Donovan J Lott
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Gihan Tennekoon
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Richard Finkel
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Barry S Russman
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Erika L Finanger
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Saptarshi Chakraborty
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Elliott O'Brien
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Brendan Moloney
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Alison Barnard
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - H Lee Sweeney
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Michael J Daniels
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Glenn A Walter
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| | - Krista Vandenborne
- From the Advanced Imaging Research Center (W.D.R., Y.A.B., I.A., E.O., B.M.), Department of Neurology (W.D.R., I.A., B.S.R., E.L.F.), Department of Biomedical Engineering (W.D.R.), Department of Behavioral Neuroscience (W.D.R., Y.A.B.), and Department of Pediatrics (B.S.R., E.L.F.), Oregon Health & Science University, Portland; Departments of Physical Therapy (W.T.T., S.C.F., R.J.W., H.A., C.S., D.J.L., K.V.), Statistics (S.C., M.J.D.), Physiology and Functional Genomics (A.B., G.A.W.), and Pharmacology & Therapeutics (H.L.S.), University of Florida, Gainesville; Department of Radiology (D.-J.W.) and Division of Neurology (G.T.), Children's Hospital of Philadelphia, PA; Department of Pediatrics (R.F.), Nemours Children's Hospital, Orlando, FL; and Shriners Hospital (B.S.R., E.L.F.), Portland, OR
| |
Collapse
|
9
|
Schlaffke L, Rehmann R, Rohm M, Otto LAM, de Luca A, Burakiewicz J, Baligand C, Monte J, den Harder C, Hooijmans MT, Nederveen A, Schlaeger S, Weidlich D, Karampinos DC, Stouge A, Vaeggemose M, D'Angelo MG, Arrigoni F, Kan HE, Froeling M. Multi-center evaluation of stability and reproducibility of quantitative MRI measures in healthy calf muscles. NMR IN BIOMEDICINE 2019; 32:e4119. [PMID: 31313867 DOI: 10.1002/nbm.4119] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/17/2019] [Accepted: 04/23/2019] [Indexed: 05/18/2023]
Abstract
The purpose of this study was to evaluate temporal stability, multi-center reproducibility and the influence of covariates on a multimodal MR protocol for quantitative muscle imaging and to facilitate its use as a standardized protocol for evaluation of pathology in skeletal muscle. Quantitative T2, quantitative diffusion and four-point Dixon acquisitions of the calf muscles of both legs were repeated within one hour. Sixty-five healthy volunteers (31 females) were included in one of eight 3-T MR systems. Five traveling subjects were examined in six MR scanners. Average values over all slices of water-T2 relaxation time, proton density fat fraction (PDFF) and diffusion metrics were determined for seven muscles. Temporal stability was tested with repeated measured ANOVA and two-way random intraclass correlation coefficient (ICC). Multi-center reproducibility of traveling volunteers was assessed by a two-way mixed ICC. The factors age, body mass index, gender and muscle were tested for covariance. ICCs of temporal stability were between 0.963 and 0.999 for all parameters. Water-T2 relaxation decreased significantly (P < 10-3 ) within one hour by ~ 1 ms. Multi-center reproducibility showed ICCs within 0.879-0.917 with the lowest ICC for mean diffusivity. Different muscles showed the highest covariance, explaining 20-40% of variance for observed parameters. Standardized acquisition and processing of quantitative muscle MRI data resulted in high comparability among centers. The imaging protocol exhibited high temporal stability over one hour except for water T2 relaxation times. These results show that data pooling is feasible and enables assembling data from patients with neuromuscular diseases, paving the way towards larger studies of rare muscle disorders.
Collapse
Affiliation(s)
- Lara Schlaffke
- Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- C.J., Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Robert Rehmann
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Marlena Rohm
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Louise A M Otto
- Brain Centre Rudolf Magnus, Department of Neurology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Alberto de Luca
- Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Jedrzej Burakiewicz
- C.J., Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Celine Baligand
- C.J., Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Jithsa Monte
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Chiel den Harder
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Melissa T Hooijmans
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Aart Nederveen
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Sarah Schlaeger
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Dominik Weidlich
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Anders Stouge
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Filippo Arrigoni
- Neuroimaging Lab, Scientific Institute, IRCCS E. Medea, Bosisio Parini, Italy
| | - Hermien E Kan
- C.J., Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Martijn Froeling
- Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
10
|
Meheissen MA, Mohamed AS, Kamal M, Hernandez M, Volpe S, Elhalawani H, Barrow MP, Ding Y, Wang J, Davuluri R, Rostom Y, Hegazy N, Gunn GB, Lai SY, Garden AS, Lewin JS, Rosenthal DI, Frank SJ, Fuller CD, Hutcheson KA. A prospective longitudinal assessment of MRI signal intensity kinetics of non-target muscles in patients with advanced stage oropharyngeal cancer in relationship to radiotherapy dose and post-treatment radiation-associated dysphagia: Preliminary findings from a randomized trial. Radiother Oncol 2019; 130:46-55. [PMID: 30206020 PMCID: PMC6482823 DOI: 10.1016/j.radonc.2018.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 11/20/2022]
Abstract
PURPOSE To assess quantitative signal intensity (SI) kinetics obtained from serial MRI of swallowing muscles as a potential imaging biomarker of radiation-induced dysphagia in oropharyngeal cancer (OPC) patients receiving radiotherapy (RT). METHODS Patients were enrolled under an IRB approved Phase II/III randomized trial. Patients underwent serial MRIs at pre-, mid-, and post-RT. Normalized T1, T1+ contrast (T1 + C), and T2 SI for swallowing muscle volumes-of-interest (VOIs) were collected and delta SI changes (Δ) were calculated. Mid- and post-RT SI relative to baseline were assessed and correlations between radiation dose and percent change in SI were calculated. Independent samples' t-tests were used to compare the percent change of SI between patients divided into two groups based on dysphagia status post-RT. RESULTS Forty-six patients with stage III/IV HPV+ OPC were included in this study. Relative to baseline, mean T2 and T1 + C SIs for middle pharyngeal constrictor were both significantly higher at mid- and post-RT (p < 0.004 for all). Superior pharyngeal constrictor also showed a significant increase in T1 + C SI at mid-RT (p = 0.0004). Additional muscle VOIs showed significant changes post-RT, but not earlier at mid-RT. Both mid- and post-RT doses were significantly correlated with the percent change of normalized T2 and T1 + C SI for examined muscle VOIs (p < 0.002). Mean percent changes of normalized T2 SI at mid-RT relative to baseline for all muscle VOIs were significantly higher in patients who developed grade ≥2 dysphagia relative to patients with no/mild dysphasia (mean Δ%: 8.2% vs 1.9%; respectively, p = 0.002). However, at post-RT, these changes were only significant in T1 SI (11.2% vs -1.3%; p < 0.0001). CONCLUSION Signal intensity kinetics of radiation injury can be broadly correlated with the functional muscular defect. Serial MRI during the course of RT may provide an opportunity to quantitatively track muscular pathology for subclinical detection of patients at high risk to develop dysphagia.
Collapse
|
11
|
Abstract
Advances in high-resolution ultrasound have provided clinicians with unique opportunities to study diseases of the peripheral nervous system. Ultrasound complements the clinical and electrophysiology exam by showing the degree of abnormalities in myopathies, as well as spontaneous muscle activities in motor neuron diseases and other disorders. In experienced hands, ultrasound is more sensitive than MRI in detecting peripheral nerve pathologies. It can also guide needle placement for electromyography exam, therapeutic injections, and muscle biopsy. Ultrasound enhances the ability to detect carpal tunnel syndrome and other focal nerve entrapment, as well as pathological nerve enlargements in genetic and acquired neuropathies. Furthermore, ultrasound can potentially be used as a biomarker for muscular dystrophy and spinal muscular atrophy. The combination of electromyography and ultrasound can increase the diagnostic certainty of amyotrophic lateral sclerosis, aid in the localization of brachial plexus or peripheral nerve trauma and allow for surveillance of nerve tumor progression in neurofibromatosis. Potential limitations of ultrasound include an inability to image deeper structures, with lower sensitivities in detecting neuromuscular diseases in young children and those with mitochondrial myopathies, due to subtle changes or early phase of the disease. As well, its utility in detecting critical illness neuromyopathy remains unclear. This review will focus on the clinical applications of neuromuscular ultrasound. The diagnostic values of ultrasound for screening of myopathies, neuropathies, and motor neuron diseases will be presented.
Collapse
Affiliation(s)
- Jean K Mah
- Departments of Pediatrics and Clinical Neurosciences, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nens van Alfen
- Department of Neurology and Clinical Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
12
|
Diaz-Manera J, Fernandez-Torron R, LLauger J, James MK, Mayhew A, Smith FE, Moore UR, Blamire AM, Carlier PG, Rufibach L, Mittal P, Eagle M, Jacobs M, Hodgson T, Wallace D, Ward L, Smith M, Stramare R, Rampado A, Sato N, Tamaru T, Harwick B, Rico Gala S, Turk S, Coppenrath EM, Foster G, Bendahan D, Le Fur Y, Fricke ST, Otero H, Foster SL, Peduto A, Sawyer AM, Hilsden H, Lochmuller H, Grieben U, Spuler S, Tesi Rocha C, Day JW, Jones KJ, Bharucha-Goebel DX, Salort-Campana E, Harms M, Pestronk A, Krause S, Schreiber-Katz O, Walter MC, Paradas C, Hogrel JY, Stojkovic T, Takeda S, Mori-Yoshimura M, Bravver E, Sparks S, Bello L, Semplicini C, Pegoraro E, Mendell JR, Bushby K, Straub V. Muscle MRI in patients with dysferlinopathy: pattern recognition and implications for clinical trials. J Neurol Neurosurg Psychiatry 2018; 89:1071-1081. [PMID: 29735511 PMCID: PMC6166612 DOI: 10.1136/jnnp-2017-317488] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 03/02/2018] [Accepted: 03/26/2018] [Indexed: 11/08/2022]
Abstract
BACKGROUND AND OBJECTIVE Dysferlinopathies are a group of muscle disorders caused by mutations in the DYSF gene. Previous muscle imaging studies describe a selective pattern of muscle involvement in smaller patient cohorts, but a large imaging study across the entire spectrum of the dysferlinopathies had not been performed and previous imaging findings were not correlated with functional tests. METHODS We present cross-sectional T1-weighted muscle MRI data from 182 patients with genetically confirmed dysferlinopathies. We have analysed the pattern of muscles involved in the disease using hierarchical analysis and presented it as heatmaps. Results of the MRI scans have been correlated with relevant functional tests for each region of the body analysed. RESULTS In 181 of the 182 patients scanned, we observed muscle pathology on T1-weighted images, with the gastrocnemius medialis and the soleus being the most commonly affected muscles. A similar pattern of involvement was identified in most patients regardless of their clinical presentation. Increased muscle pathology on MRI correlated positively with disease duration and functional impairment. CONCLUSIONS The information generated by this study is of high diagnostic value and important for clinical trial development. We have been able to describe a pattern that can be considered as characteristic of dysferlinopathy. We have defined the natural history of the disease from a radiological point of view. These results enabled the identification of the most relevant regions of interest for quantitative MRI in longitudinal studies, such as clinical trials. CLINICAL TRIAL REGISTRATION NCT01676077.
Collapse
Affiliation(s)
- Jordi Diaz-Manera
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain.,Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Roberto Fernandez-Torron
- Neuromuscular Area, Biodonostia Health Research Institute, Neurology Service, Donostia University Hospital, Donostia-San Sebastian, Spain.,The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Newcastle upon Tyne, UK
| | - Jaume LLauger
- Radiology Department, Universitat Autònoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Meredith K James
- The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Newcastle upon Tyne, UK
| | - Anna Mayhew
- The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Newcastle upon Tyne, UK
| | - Fiona E Smith
- Magnetic Resonance Centre, Institute for Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Ursula R Moore
- The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Newcastle upon Tyne, UK
| | - Andrew M Blamire
- Magnetic Resonance Centre, Institute for Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Pierre G Carlier
- AIM & CEA NMR Laboratory, Institute of Myology, Pitié-Salpêtrière University Hospital, Paris, France
| | | | | | - Michelle Eagle
- The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Newcastle upon Tyne, UK
| | - Marni Jacobs
- Center for Translational Science, Division of Biostatistics and Study Methodology, Children's National Health System, Washington, District of Columbia, USA.,Department of Pediatrics, Epidemiology and Biostatistics, George Washington University, Washington, District of Columbia, USA
| | - Tim Hodgson
- Magnetic Resonance Centre, Institute for Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Dorothy Wallace
- Magnetic Resonance Centre, Institute for Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Louise Ward
- Magnetic Resonance Centre, Institute for Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Mark Smith
- Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Roberto Stramare
- Radiology Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Alessandro Rampado
- Radiology Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Noriko Sato
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takeshi Tamaru
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Bruce Harwick
- Department of Radiology, CMC Mercy Charlotte, Carolinas Healthcare System Neurosciences Institute, Charlotte, North Carolina, USA
| | - Susana Rico Gala
- Department of Radiology, Hospital U. Virgen de Valme, Sevilla, Spain
| | - Suna Turk
- AIM & CEA NMR Laboratory, Institute of Myology, Pitié-Salpêtrière University Hospital, Paris, France
| | - Eva M Coppenrath
- Department of Clinical Radiology, Ludwig-Maximilians-University, Munich, Germany
| | - Glenn Foster
- Center for Clinical Imaging Research CCIR, Washington University, St. Louis, Missouri, USA
| | - David Bendahan
- Centre de Résonance, Magnétique Biologique et Médicale, Marseille, France.,Aix-Marseille Université, Marseille, France
| | | | - Stanley T Fricke
- Department of Diagnostic Imaging and Radiology, Children's National Health System, Washington, District of Columbia, USA
| | - Hansel Otero
- Department of Diagnostic Imaging and Radiology, Children's National Health System, Washington, District of Columbia, USA
| | - Sheryl L Foster
- Department of Radiology, Westmead Hospital, Westmead, New South Wales, Australia.,Faculty of Health Sciences, University of Sydney, Sydney, Australia
| | - Anthony Peduto
- Department of Radiology, Westmead Hospital, Westmead, New South Wales, Australia.,Faculty of Health Sciences, University of Sydney, Sydney, Australia
| | - Anne Marie Sawyer
- Lucas Center for Imaging, Stanford University School of Medicine, Stanford, California, USA
| | - Heather Hilsden
- The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Newcastle upon Tyne, UK
| | - Hanns Lochmuller
- The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Newcastle upon Tyne, UK
| | - Ulrike Grieben
- Charite Muscle Research Unit, Experimental and Clinical Research Center, A Joint Co-operation of the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Simone Spuler
- Charite Muscle Research Unit, Experimental and Clinical Research Center, A Joint Co-operation of the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Carolina Tesi Rocha
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - John W Day
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Kristi J Jones
- Institute for Neuroscience and Muscle Research, Children's Hospital at Westmead, University of Sydney, Sydney, New South Wales, Australia
| | - Diana X Bharucha-Goebel
- Department of Neurology, Children's National Health System, Washington, District of Columbia, USA.,National Institutes of Health (NINDS), Bethesda, Maryland, USA
| | | | - Matthew Harms
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alan Pestronk
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sabine Krause
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Olivia Schreiber-Katz
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Maggie C Walter
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Carmen Paradas
- Neuromuscular Unit, Department of Neurology, Hospital U. Virgen del Rocío/Instituto de Biomedicina de Sevilla, Sevilla, Spain
| | - Jean-Yves Hogrel
- Institut de Myologie, AP-HP, G.H. Pitié-Salpêtrière, Paris, Île-de-France, France
| | - Tanya Stojkovic
- Institut de Myologie, AP-HP, G.H. Pitié-Salpêtrière, Paris, Île-de-France, France
| | - Shin'ichi Takeda
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Madoka Mori-Yoshimura
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Elena Bravver
- Neurosciences Institute, Carolinas Healthcare System, Charlotte, North Carolina, USA
| | - Susan Sparks
- Neurosciences Institute, Carolinas Healthcare System, Charlotte, North Carolina, USA
| | - Luca Bello
- Department of Neurosciences, University of Padova, Padova, Italy
| | | | - Elena Pegoraro
- Department of Neurosciences, University of Padova, Padova, Italy
| | | | - Kate Bushby
- The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Newcastle upon Tyne, UK
| | - Volker Straub
- The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Newcastle upon Tyne, UK
| | | |
Collapse
|
13
|
Trinh L, Lind E, Peterson P, Svensson J, Olsson LE, Månsson S. High-Resolution MR Imaging of Muscular Fat Fraction-Comparison of Three T 2-Based Methods and Chemical Shift-Encoded Imaging. Tomography 2018; 3:153-162. [PMID: 30042979 PMCID: PMC6024436 DOI: 10.18383/j.tom.2017.00011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chemical shift-encoded imaging (CSEI) is the most common magnetic resonance imaging fat–water separation method. However, when high spatial resolution fat fraction (FF) images are desired, CSEI might be challenging owing to the increased interecho spacing. Here, 3 T2-based methods have been assessed as alternative methods for obtaining high-resolution FF images. Images from the calf of 10 healthy volunteers were acquired; FF maps were then estimated using 3 T2-based methods (2- and 3-parameter nonlinear least squares fit and a Bayesian probability method) and CSEI for reference. In addition, simulations were conducted to characterize the performance of various methods. Here, all T2-based methods resulted in qualitatively improved high-resolution FF images compared with high-resolution CSEI. The 2-parameter fit showed best quantitative agreement to low-resolution CSEI, even at low FF. The estimated T2-values of fat and water, and the estimated muscle FF of the calf, agreed well with previously published data. In conclusion, T2-based methods can provide improved high-resolution FF images of the calf compared with the CSEI method.
Collapse
Affiliation(s)
- Lena Trinh
- Medical Radiation Physics, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Emelie Lind
- Medical Radiation Physics, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden.,Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Pernilla Peterson
- Medical Radiation Physics, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Jonas Svensson
- Medical Radiation Physics, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden.,Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
| | - Lars E Olsson
- Medical Radiation Physics, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Sven Månsson
- Medical Radiation Physics, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
14
|
Murphy S, Zweyer M, Mundegar RR, Swandulla D, Ohlendieck K. Proteomic serum biomarkers for neuromuscular diseases. Expert Rev Proteomics 2018; 15:277-291. [DOI: 10.1080/14789450.2018.1429923] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland
| | - Margit Zweyer
- Department of Physiology II, University of Bonn, Bonn, Germany
| | | | | | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland
| |
Collapse
|
15
|
[Imaging of primary muscular diseases : What do neurologists expect from radiologists?]. Radiologe 2017; 57:1005-1011. [PMID: 28986620 DOI: 10.1007/s00117-017-0309-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Imaging, in particular magnetic resonance imaging (MRI), has in recent years increasingly become a crucial tool for the diagnostics of inherited and acquired muscular diseases. The aim of imaging in neuromuscular disorders goes beyond the detection and quantification of degenerative muscular changes, such as fatty degeneration and includes recognition of very early signs of muscular pathologies presenting as muscular edema. Therefore, imaging is a valuable diagnostic method to support the clinical diagnosis and to narrow down the differential diagnoses, leading to specific additional diagnostic tests in order to establish the correct diagnosis. Although advances in MRI hardware and technology have led to a faster, more accurate and advanced image acquisition allowing whole body examination in a feasible fashion, the standardization of image acquisition and interpretation remains a challenge. The aim of this review article is to address the important and clinically relevant issues concerning the role of imaging of neuromuscular diseases in order to facilitate a good interdisciplinary management for the diagnostics and monitoring of neuromuscular diseases.
Collapse
|
16
|
Swash M. Six issues in muscle disease. J Neurol Neurosurg Psychiatry 2017; 88:603-607. [PMID: 28501819 DOI: 10.1136/jnnp-2017-315771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/09/2017] [Accepted: 04/13/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Michael Swash
- Department of Neurology, Barts and the London School of Medicine, QMUL at the Royal London Hospital, London, UK.,Physiology, Institute of Neuroscience, University of Lisbon, Lisbon, Portugal
| |
Collapse
|