1
|
Dongmo Zeukang R, Kalinski JC, Tembeni B, Goosen ED, Tembu J, Tabopda Kuiate T, Ngono Bikobo DS, Tagatsing Fotsing M, Atchadé ADT, Siwe-Noundou X. Quinones from Cordia species from 1972 to 2023: isolation, structural diversity and pharmacological activities. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:52. [PMID: 37996570 PMCID: PMC10667191 DOI: 10.1007/s13659-023-00414-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
Plants of the genus Cordia (Boraginaceae family) are widely distributed in the tropical regions of America, Africa, and Asia. They are extensively used in folk medicine due to their rich medicinal properties. This review presents a comprehensive analysis of the isolation, structure, biogenesis, and biological properties of quinones from Cordia species reported from 1972 to 2023. Meroterpenoids were identified as the major quinones in most Cordia species and are reported as a chemotaxonomic markers of the Cordia. In addition to this property, quinones are reported to display a wider and broader spectrum of activities, are efficient scaffold in biological activity, compared to other classes of compounds reported in Cordia, hence our focus on the study of quinones reported from Cordia species. About 70 types of quinones have been isolated, while others have been identified by phytochemical screening or gas chromatography. Although the biosynthesis of quinones from Cordia species is not yet fully understood, previous reports suggest that they may be derived from geranyl pyrophosphate and an aromatic precursor unit, followed by oxidative cyclization of the allylic methyl group. Studies have demonstrated that quinones from this genus exhibit antifungal, larvicidal, antileishmanial, anti-inflammatory, antibiofilm, antimycobacterial, antioxidant, antimalarial, neuroinhibitory, and hemolytic activities. In addition, they have been shown to exhibit remarkable cytotoxic effects against several cancer cell lines which is likely related to their ability to inhibit electron transport as well as oxidative phosphorylation, and generate reactive oxygen species (ROS). Their biological activities indicate potential utility in the development of new drugs, especially as active components in drug-carrier systems, against a broad spectrum of pathogens and ailments.
Collapse
Affiliation(s)
- Rostanie Dongmo Zeukang
- Department of Organic Chemistry, Faculty of Science, University of Yaounde I, PO Box 812, Yaounde, Cameroon.
| | - Jarmo-Charles Kalinski
- Department of Biochemistry and Microbiology, Faculty of Science, Rhodes University, PO Box 94, Makhanda, 6140, South Africa
| | - Babalwa Tembeni
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Medunsa, PO Box 218, Pretoria, 0204, South Africa
| | - Eleonora D Goosen
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Rhodes University, PO Box 94, Makhanda, 6140, South Africa
| | - Jacqueline Tembu
- Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Turibio Tabopda Kuiate
- Department of Organic Chemistry, Faculty of Science, University of Yaounde I, PO Box 812, Yaounde, Cameroon
| | | | - Maurice Tagatsing Fotsing
- Department of Organic Chemistry, Faculty of Science, University of Yaounde I, PO Box 812, Yaounde, Cameroon
| | - Alex de Théodore Atchadé
- Department of Organic Chemistry, Faculty of Science, University of Yaounde I, PO Box 812, Yaounde, Cameroon
| | - Xavier Siwe-Noundou
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Medunsa, PO Box 218, Pretoria, 0204, South Africa.
| |
Collapse
|
2
|
Structure-Activity Relationship Studies of 9-Alkylamino-1,2,3,4-tetrahydroacridines against Leishmania ( Leishmania) infantum Promastigotes. Pharmaceutics 2023; 15:pharmaceutics15020669. [PMID: 36839991 PMCID: PMC9965875 DOI: 10.3390/pharmaceutics15020669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023] Open
Abstract
Leishmaniasis is one of the most neglected diseases in modern times, mainly affecting people from developing countries of the tropics, subtropics and the Mediterranean basin, with approximately 350 million people considered at risk of developing this disease. The incidence of human leishmaniasis has increased over the past decades due to failing prevention and therapeutic measures-there are no vaccines and chemotherapy, which is problematic. Acridine derivatives constitute an interesting group of nitrogen-containing heterocyclic compounds associated with numerous bioactivities, with emphasis to their antileishmanial potential. The present work builds on computational studies focusing on a specific enzyme of the parasite, S-adenosylmethionine decarboxylase (AdoMet DC), with several 1,2,3,4-tetrahydro-acridines emerging as potential inhibitors, evidencing this scaffold as a promising building block for novel antileishmanial pharmaceuticals. Thus, several 1,2,3,4-tetrahydroacridine derivatives have been synthesized, their activity against Leishmania (Leishmania) infantum promastigotes evaluated and a structure-activity relationship (SAR) study was developed based on the results obtained. Even though the majority of the 1,2,3,4-tetrahydroacridines evaluated presented high levels of toxicity, the structural information gathered in this work allowed its application with another scaffold (quinoline), leading to the obtention of N1,N12-bis(7-chloroquinolin-4-yl)dodecane-1,12-diamine (12) as a promising novel antileishmanial agent (IC50 = 0.60 ± 0.11 μM, EC50 = 11.69 ± 3.96 μM and TI = 19.48).
Collapse
|
3
|
Sakyi PO, Amewu RK, Devine RNOA, Ismaila E, Miller WA, Kwofie SK. The Search for Putative Hits in Combating Leishmaniasis: The Contributions of Natural Products Over the Last Decade. NATURAL PRODUCTS AND BIOPROSPECTING 2021; 11:489-544. [PMID: 34260050 PMCID: PMC8279035 DOI: 10.1007/s13659-021-00311-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/07/2021] [Indexed: 05/12/2023]
Abstract
Despite advancements in the areas of omics and chemoinformatics, potent novel biotherapeutic molecules with new modes of actions are needed for leishmaniasis. The socioeconomic burden of leishmaniasis remains alarming in endemic regions. Currently, reports from existing endemic areas such as Nepal, Iran, Brazil, India, Sudan and Afghanistan, as well as newly affected countries such as Peru, Bolivia and Somalia indicate concerns of chemoresistance to the classical antimonial treatment. As a result, effective antileishmanial agents which are safe and affordable are urgently needed. Natural products from both flora and fauna have contributed immensely to chemotherapeutics and serve as vital sources of new chemical agents. This review focuses on a systematic cross-sectional view of all characterized anti-leishmanial compounds from natural sources over the last decade. Furthermore, IC50/EC50, cytotoxicity and suggested mechanisms of action of some of these natural products are provided. The natural product classification includes alkaloids, terpenes, terpenoids, and phenolics. The plethora of reported mechanisms involve calcium channel inhibition, immunomodulation and apoptosis. Making available enriched data pertaining to bioactivity and mechanisms of natural products complement current efforts geared towards unraveling potent leishmanicides of therapeutic relevance.
Collapse
Affiliation(s)
- Patrick O. Sakyi
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, P. O. BOX LG 56, Legon, Accra, Ghana
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Box 214, Sunyani, Ghana
| | - Richard K. Amewu
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, P. O. BOX LG 56, Legon, Accra, Ghana
| | - Robert N. O. A. Devine
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Box 214, Sunyani, Ghana
| | - Emahi Ismaila
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Box 214, Sunyani, Ghana
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153 USA
- Department of Molecular Pharmacology and Neuroscience, Loyola University Medical Center, Maywood, IL 60153 USA
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Samuel K. Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, P.O. Box LG 54, Accra, Ghana
| |
Collapse
|
4
|
Davies-Bolorunduro O, Osuolale O, Saibu S, Adeleye I, Aminah N. Bioprospecting marine actinomycetes for antileishmanial drugs: current perspectives and future prospects. Heliyon 2021; 7:e07710. [PMID: 34409179 PMCID: PMC8361068 DOI: 10.1016/j.heliyon.2021.e07710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/25/2021] [Accepted: 07/30/2021] [Indexed: 01/01/2023] Open
Abstract
Revived analysis interests in natural products in the hope of discovering new and novel antileishmanial drug leads have been driven partially by the increasing incidence of drug resistance. However, the search for novel chemotherapeutics to combat drug resistance had previously concentrated on the terrestrial environment. As a result, the marine environment was often overlooked. For example, actinomycetes are an immensely important group of bacteria for antibiotic production, producing two-thirds of the known antibiotics. However, these bacteria have been isolated primarily from terrestrial sources. Consequently, there have been revived efforts to discover new compounds from uncharted or uncommon environments like the marine ecosystem. Isolation, purification and structure elucidation of target compounds from complex metabolic extract are major challenges in natural products chemistry. As a result, marine-derived natural products from actinomycetes that have antileishmanial bioactivity potentials have been understudied. This review highlights metagenomic and bioassay approaches which could help streamline the drug discovery process thereby greatly reducing time and cost of dereplication to identify suitable antileishmanial drug candidates.
Collapse
Affiliation(s)
- O.F. Davies-Bolorunduro
- Microbiology Department, Nigerian Institute of Medical Research, Lagos, Nigeria
- Postdoc Fellow Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Komplek Kampus C, Jl. Mulyorejo, Surabaya, 60115, Indonesia
| | - O. Osuolale
- Applied Environmental Metagenomics and Infectious Diseases Research Group (AEMIDR), Department of Biological Sciences, Elizade University, Ilara Mokin, Nigeria
| | - S. Saibu
- Department of Microbiology, University of Lagos, Akoka, Lagos, Nigeria
| | - I.A. Adeleye
- Department of Microbiology, University of Lagos, Akoka, Lagos, Nigeria
| | - N.S. Aminah
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Komplek Kampus C UNAIR, Jl. Mulyorejo, Surabaya, 60115, Indonesia
- Biotechnology of Tropical Medicinal Plants Research Group, Universitas Airlangga, Indonesia
| |
Collapse
|
5
|
Silva CFM, Pinto DCGA, Fernandes PA, Silva AMS. Evolution of chromone-like compounds as potential antileishmanial agents, through the 21 st century. Expert Opin Drug Discov 2020; 15:1425-1439. [PMID: 32783762 DOI: 10.1080/17460441.2020.1801630] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Leishmaniasis is one of the most neglected diseases of modern times that mainly affects people from developing countries, with approximately 350 million people considered at risk of developing leishmaniasis. Therefore, the development of novel antileishmanial treatments is becoming the focus of numerous research groups, with the support of the World Health Organization, which hopes to eradicate this disease in the near future. AREAS COVERED This review focuses on the interest of chromones for the development of future treatments against leishmaniasis. In addition to plant-based chromone derivatives, structure-activity relationship studies that aim to identify the optimal structural features of the chromones' antileishmanial activity are also described and discussed. EXPERT OPINION The numerous examples of chromones depicted in this paper, allied with the SAR studies presented herein, suggest that the chromone scaffold is a privileged core for the design and development of novel antileishmanial agents. However, some concerns have been raised concerning the considerable variability observed in the results throughout the scientific bibliography. These inconsistencies may explain the absence of pharmacodynamic and pharmacokinetic studies as well as clinical trials.
Collapse
Affiliation(s)
| | | | - Pedro A Fernandes
- UCIBIO, REQUIMTE, Departamento De Química E Bioquímica, Faculdade De Ciências, Universidade Do Porto , Porto, Portugal
| | | |
Collapse
|
6
|
Paik D, Pramanik PK, Chakraborti T. Curative efficacy of purified serine protease inhibitor PTF3 from potato tuber in experimental visceral leishmaniasis. Int Immunopharmacol 2020; 85:106623. [PMID: 32504996 DOI: 10.1016/j.intimp.2020.106623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/04/2020] [Accepted: 05/18/2020] [Indexed: 10/24/2022]
Abstract
To overcome the drug toxicity and frequent resistance of parasites against the conventional drugs for the healing of human visceral leishmaniasis, innovative plant derived antileishmanial components are very imperative. Fuelled by the complications of clinically available antileishmanial drugs, a novel potato serine protease inhibitor was identified with its efficacy on experimental visceral leishmaniasis (VL). The serine protease inhibitors from potato tuber extract (PTEx) bearing molecular mass of 39 kDa (PTF1), 23 kDa (PTF2) and 17 kDa (PTF3) were purified and identified. Among them, PTF3 was selected as the most active inhibitor (IC50 143.5 ± 2.4 µg/ml) regarding its antileishmanial property. Again, intracellular amastigote load was reduced upto 83.1 ± 1.7% in pre-treated parasite and 88.5 ± 0.5% in in vivo model with effective dose of PTF3. Protective immune response by PTF3 was noted with increased production of antimicrobial substances and up-regulation of pro-inflammatory cytokines. Therapeutic potency of PTF3 is also followed by 80% survival in infected hamster. The peptide mass fingerprint (MALDI-TOF) results showed similarity of PTF3 with serine protease inhibitors database. Altogether, these results strongly propose the effectiveness of PTF3 as potent immunomodulatory therapeutics for controlling VL.
Collapse
Affiliation(s)
- Dibyendu Paik
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Pijush Kanti Pramanik
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Tapati Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India.
| |
Collapse
|
7
|
Jihene A, Rym E, Ines KJ, Majdi H, Olfa T, Abderrabba M. Antileishmanial Potential of Propolis Essential Oil and Its Synergistic Combination With Amphotericin B. Nat Prod Commun 2020. [DOI: 10.1177/1934578x19899566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The antileishmanial activity of Tunisian propolis essential oil (EO) and its combination with amphotericin B was investigated against 2 local clinical strains of Leishmania: Leishmania major and Leishmania infantum. The cytotoxic potential of this EO was evaluated against macrophage Raw264.7. Combination of propolis EO and amphotericin B was investigated using the checkerboard method. The propolis sample was collected from the region of Beni Khalled, a Tunisian city located west of Cape Bon (Nabeul). Its location is particular since it is near to sea with a steppe climate and the predominance of citrus trees. The EO was obtained by Clevenger-type apparatus. Its chemical composition was identified using gas chromatography with flame ionization detector and gas chromatography-mass spectrometry analysis. Our results demonstrate that Tunisian propolis EO exhibit good antileishmanial activity against L. major and L. infantum promastigotes (IC50 = 5.29 ± 0.31 and 3.67 ± 0.52 µg/mL, respectively) and amastigotes (IC50 = 7.38 ± 0.45 and 4.96 ± 0.24 µg/mL, respectively). Moreover, it reduced significantly the parasite proliferation on a dose-dependent response (95%) with low cytotoxicity (selectivity index = 16.18 and 23.33, respectively). Its combination with amphotericin B showed a synergistic potential (fractional inhibitory concentration = 0.37). Interestingly, the data suggest that propolis EO was involved in macrophage activation by hyperproduction of NO. A total of 51 compounds were identified in the propolis EO. The major compound identified was α-pinene (36.7% ± 2.36%) followed by α-cedrol (6.7% ± 0.10%), totarol (6.6% ± 0.09%), and dehydroabietane (5.2% ± 0.10%). Our findings suggest that Tunisian propolis might constitute a promising source for antileishmanial molecules.
Collapse
Affiliation(s)
- Ayari Jihene
- Laboratoire Matériaux Molécules et Applications, Institut Préparatoire des Etudes Scientifiques et Techniques, IPEST, La Marsa, Tunisia
| | - Essid Rym
- Laboratoire des Substances Bioactives, Centre de Biotechnologie `a la Technopole de Borj-Cedria (CBBC), Hammam-Lif, Tunisia
| | - Karoui Jabri Ines
- Laboratoire Matériaux Molécules et Applications, Institut Préparatoire des Etudes Scientifiques et Techniques, IPEST, La Marsa, Tunisia
| | - Hammami Majdi
- Laboratoire des Substances Bioactives, Centre de Biotechnologie `a la Technopole de Borj-Cedria (CBBC), Hammam-Lif, Tunisia
| | - Tabbene Olfa
- Laboratoire des Substances Bioactives, Centre de Biotechnologie `a la Technopole de Borj-Cedria (CBBC), Hammam-Lif, Tunisia
| | - Manef Abderrabba
- Laboratoire Matériaux Molécules et Applications, Institut Préparatoire des Etudes Scientifiques et Techniques, IPEST, La Marsa, Tunisia
| |
Collapse
|
8
|
Machín L, Tamargo B, Piñón A, Atíes RC, Scull R, Setzer WN, Monzote L. Bixa orellana L. (Bixaceae) and Dysphania ambrosioides (L.) Mosyakin & Clemants (Amaranthaceae) Essential Oils Formulated in Nanocochleates against Leishmania amazonensis. Molecules 2019; 24:E4222. [PMID: 31757083 PMCID: PMC6930544 DOI: 10.3390/molecules24234222] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/01/2019] [Accepted: 11/06/2019] [Indexed: 01/19/2023] Open
Abstract
Leishmaniasis is a group of neglected tropical diseases caused by protozoan parasites of the Leishmania genus. The absence of effective vaccines and the limitations of current treatments make the search for effective therapies a real need. Different plant-derived essential oils (EOs) have shown antileishmanial effects, in particular from Bixa orellana L. (EO-Bo) and Dysphania ambrosioides (L.) Mosyakin & Clemants (EO-Da). In the present study, the EO-Bo and EO-Da, formulated in nanocochleates (EO-Bo-NC and EO-Da-NC, respectively), were evaluated in vitro and in vivo against L. amazonensis. The EO-Bo-NC and EO-Da-NC did not increase the in vitro inhibitory activity of the EOs, although the EO-Bo-NC showed reduced cytotoxic effects. In the animal model, both formulations (30 mg/kg/intralesional route/every 4 days/4 times) showed no deaths or weight loss greater than 10%. In the animal (mouse) model, EO-Bo-NC contributed to the control of infection (p < 0.05) in comparison with EO-Bo treatment, while the mice treated with EO-Da-NC exhibited larger lesions (p < 0.05) compared to those treated with EO-Da. The enhanced in vivo activity observed for EO-Bo-NC suggests that lipid-based nanoformulations like nanocochleates should be explored for their potential in the proper delivery of drugs, and in particular, the delivery of hydrophobic materials for effective cutaneous leishmaniasis treatment.
Collapse
Affiliation(s)
- Laura Machín
- Department of Pharmacy, Institute of Pharmacy and Food, Havana University, Havana 17100, Cuba; (L.M.); (R.C.A.); (R.S.)
| | - Beatriz Tamargo
- Department of Physiological Science, Latin American School of Medical Sciences, Havana 11300, Cuba;
| | - Abel Piñón
- Department of Parasitology, Institute of Tropical Medicine Pedro Kourí, Havana 17100, Cuba;
| | - Regla C. Atíes
- Department of Pharmacy, Institute of Pharmacy and Food, Havana University, Havana 17100, Cuba; (L.M.); (R.C.A.); (R.S.)
| | - Ramón Scull
- Department of Pharmacy, Institute of Pharmacy and Food, Havana University, Havana 17100, Cuba; (L.M.); (R.C.A.); (R.S.)
| | - William N. Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA
- Research Network: Natural Products against Neglected Diseases (ResNet NPND)
| | - Lianet Monzote
- Department of Parasitology, Institute of Tropical Medicine Pedro Kourí, Havana 17100, Cuba;
- Research Network: Natural Products against Neglected Diseases (ResNet NPND)
| |
Collapse
|
9
|
The Role of Natural Products in Drug Discovery and Development against Neglected Tropical Diseases. Molecules 2016; 22:molecules22010058. [PMID: 28042865 PMCID: PMC6155950 DOI: 10.3390/molecules22010058] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 12/23/2016] [Accepted: 12/27/2016] [Indexed: 12/20/2022] Open
Abstract
Endemic in 149 tropical and subtropical countries, neglected tropical diseases (NTDs) affect more than 1 billion people annually, including 875 million children in developing economies. These diseases are also responsible for over 500,000 deaths per year and are characterized by long-term disability and severe pain. The impact of the combined NTDs closely rivals that of malaria and tuberculosis. Current treatment options are associated with various limitations including widespread drug resistance, severe adverse effects, lengthy treatment duration, unfavorable toxicity profiles, and complicated drug administration procedures. Natural products have been a valuable source of drug regimens that form the cornerstone of modern pharmaceutical care. In this review, we highlight the potential that remains untapped in natural products as drug leads for NTDs. We cover natural products from plant, marine, and microbial sources including natural-product-inspired semi-synthetic derivatives which have been evaluated against the various causative agents of NTDs. Our coverage is limited to four major NTDs which include human African trypanosomiasis (sleeping sickness), leishmaniasis, schistosomiasis and lymphatic filariasis.
Collapse
|
10
|
Paik D, Das P, Naskar K, Pramanik PK, Chakraborti T. Protective inflammatory response against visceral leishmaniasis with potato tuber extract: A new approach of successful therapy. Biomed Pharmacother 2016; 83:1295-1302. [PMID: 27567589 DOI: 10.1016/j.biopha.2016.08.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/18/2016] [Accepted: 08/05/2016] [Indexed: 10/21/2022] Open
Abstract
The increasing number of drug resistance issue of Leishmania donovani strain to common drugs compels to develop new therapeutics against leishmaniasis with minimal toxicity. In this regard, bioactive phytocomponents may lead to the discovery of new medicines with appropriate efficiency. The important roles of Leishmania proteases in the virulence of Leishmania parasite make them very hopeful targets for the improvement of current remedial of leishmaniasis. As part of a hunt for new drugs, we have evaluated in vivo anti-leishmanial activity of serine protease inhibitor rich fraction (PTEx), isolated by sodium bisulfite extraction from potato tuber. The amastigote load of 25mg/kg body weight/day treated BALB/c mice showed 86.9% decrease in liver and 88.7% in case of spleen. This anti-leishmanial effect was also supported by PTEx induced immunomodulatory activity like acute formation of ROS and prolonged NO generation. The Th1/Th2 cytokine balance in splenocytes of PTEx treated animals was estimated and evaluated by ELISA assay as well as by mRNA expression using RT-PCR. Furthermore, significant survival rate (80%) was observed in PTEx treated hamsters. Thus, from the present observations we could accentuate the potential of PTEx to be employed as a new therapeutics from natural source against L. donovani. This might also provide a novel perception of natural serine protease inhibitor from potato tuber as an alternate approach for the treatment of visceral leishmaniasis.
Collapse
Affiliation(s)
- Dibyendu Paik
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Partha Das
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Kshudiram Naskar
- Infectious Disease and Immunology Division, Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Pijush Kanti Pramanik
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Tapati Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India.
| |
Collapse
|
11
|
Pulivarthi D, Steinberg KM, Monzote L, Piñón A, Setzer WN. Antileishmanial Activity of Compounds Isolated from Sassafras albidum. Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501000723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Leishmaniasis is a neglected tropical disease caused by Leishmania parasitic protozoa, which currently lacks efficient treatment. Natural products have shown promise as a potential source for antiprotozoal drugs. This work focuses on the antileishmanial potential of Sassafras albidum (Lauraceae) bark extract. The crude bark extract of S. albidum showed excellent antileishmanial activity with an IC50 value less than 12.5 μg/mL against promastigotes of L. amazonensis. The chloroform stem bark extract of S. albidum was subjected to preparative column chromatography. Five compounds were isolated, purified by recrystallization, and identified as sesamin, spinescin, β-sitosterol, hexatriacontanal, and 1-triacontanol. Antileishmanial and cytotoxic screening were performed on these compounds. Sesamin exhibited the best activity against L. amazonensis with an IC50 of 15.8 μg/mL and was not cytotoxic to mouse macrophage cells ( CC50 > 100 μg/mL).
Collapse
Affiliation(s)
- Divya Pulivarthi
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Kelly Marie Steinberg
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Lianet Monzote
- Parasitology Department, Institute of Tropical Medicine “Pedro Kouri”, 10400 Havana, Cuba
| | - Abel Piñón
- Parasitology Department, Institute of Tropical Medicine “Pedro Kouri”, 10400 Havana, Cuba
| | - William N. Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| |
Collapse
|
12
|
Monzote L, Piñón A, Setzer WN. Antileishmanial Potential of Tropical Rainforest Plant Extracts. MEDICINES (BASEL, SWITZERLAND) 2014; 1:32-55. [PMID: 28933376 PMCID: PMC5532977 DOI: 10.3390/medicines1010032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/11/2014] [Accepted: 11/12/2014] [Indexed: 05/02/2023]
Abstract
A total of 115 different plant extracts from our collection, representing 96 plant species, have been evaluated for in vitro antileishmanial activity against L. amazonensis promastigotes. In addition, the extracts were screened for cytotoxic activity against BALB/c mouse macrophages in order to assess a selectivity index. Crude extracts that showed a selectivity index (CC50 for macrophage / IC50 for promastigotes) ³ 5 or with IC50 < 12.5 μg/mL against promastigotes, a total of 28 extracts, were further screened for anti-amastigote activity. A total of 25 extracts showed promising activity against L. amazonensis promastigotes with low cytotoxic activity. Ten of these extracts showed selectivity indices, (CC50 for macrophages / IC50 for amastigotes) greater than 10 and are considered "hits", worthy candidates for further phytochemical exploration: Conostegia xalapensis methanol bark extract, Endiandra palmerstonii bark extract, Eugenia monteverdensis acetone bark extract, Eugenia sp. "fine leaf" acetone bark extract, Exothea paniculata chloroform bark extract, Mallotus paniculatus ethanol bark extract, Matelea pseudobarbata ethanol extract, Quercus insignis ethanol bark extract, Sassafras albidum dichloromethane bark extract, and Stemmadenia donnell-smithii acetone bark extract.
Collapse
Affiliation(s)
- Lianet Monzote
- Parasitology Department, Institute of Tropical Medicine "Pedro Kouri", 10400 Havana, Cuba.
| | - Abel Piñón
- Parasitology Department, Institute of Tropical Medicine "Pedro Kouri", 10400 Havana, Cuba.
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| |
Collapse
|
13
|
Ogungbe IV, Erwin WR, Setzer WN. Antileishmanial phytochemical phenolics: molecular docking to potential protein targets. J Mol Graph Model 2014; 48:105-17. [PMID: 24463105 DOI: 10.1016/j.jmgm.2013.12.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 12/21/2013] [Accepted: 12/30/2013] [Indexed: 11/25/2022]
Abstract
A molecular docking analysis has been carried out to examine potential Leishmania protein targets of antiprotozoal plant-derived polyphenolic compounds. A total of 352 phenolic phytochemicals, including 10 aurones, six cannabinoids, 34 chalcones, 20 chromenes, 52 coumarins, 92 flavonoids, 41 isoflavonoids, 52 lignans, 25 quinones, eight stilbenoids, nine xanthones, and three miscellaneous phenolic compounds, were used in the virtual screening study using 24 Leishmania enzymes (52 different protein structures from the Protein Data Bank). Noteworthy protein targets were Leishmania dihydroorotate dehydrogenase, N-myristoyl transferase, phosphodiesterase B1, pteridine reductase, methionyl-tRNA synthetase, tyrosyl-tRNA synthetase, uridine diphosphate-glucose pyrophosphorylase, nicotinamidase, and glycerol-3-phosphate dehydrogenase. Based on in-silico analysis of antiparasitic polyphenolics in this study, two aurones, one chalcone, five coumarins, six flavonoids, one isoflavonoid, three lignans, and one stilbenoid, can be considered to be promising drug leads worthy of further investigation.
Collapse
Affiliation(s)
- Ifedayo Victor Ogungbe
- Department of Chemistry & Biochemistry, Jackson State University, Jackson, MS 39217, USA.
| | - William R Erwin
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| |
Collapse
|
14
|
Interactions of antiparasitic alkaloids with Leishmania protein targets: a molecular docking analysis. Future Med Chem 2013; 5:1777-99. [DOI: 10.4155/fmc.13.114] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Background: Leishmaniasis is a collection of chronic diseases caused by protozoa of the genus Leishmania. Current antileishmanial chemotherapeutics have demonstrated adverse side effects and therefore R&D into new safer alternative treatments are needed. Methods: A molecular docking analysis has been carried out to assess possible Leishmania biochemical targets of antiparasitic alkaloids. A total of 209 antiparasitic alkaloids were docked with 24 Leishmania protein targets. Results: The strongest docking alkaloid ligands were flinderoles A and B and juliflorine with Leishmania major methionyl-tRNA synthetase; juliflorine, juliprosine, prosopilosidine and prosopilosine with Leishmania mexicana glycerol-3-phosphate dehydrogenase; and ancistrogriffithine A with L. major N-myristoyl transferase. Conclusion: This molecular docking study has provided evidence for what classes and structural types of alkaloids may be targeting specific Leishmania protein targets.
Collapse
|
15
|
In-silico Leishmania target selectivity of antiparasitic terpenoids. Molecules 2013; 18:7761-847. [PMID: 23823876 PMCID: PMC6270436 DOI: 10.3390/molecules18077761] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 06/23/2013] [Accepted: 06/26/2013] [Indexed: 01/21/2023] Open
Abstract
Neglected Tropical Diseases (NTDs), like leishmaniasis, are major causes of mortality in resource-limited countries. The mortality associated with these diseases is largely due to fragile healthcare systems, lack of access to medicines, and resistance by the parasites to the few available drugs. Many antiparasitic plant-derived isoprenoids have been reported, and many of them have good in vitro activity against various forms of Leishmania spp. In this work, potential Leishmania biochemical targets of antiparasitic isoprenoids were studied in silico. Antiparasitic monoterpenoids selectively docked to L. infantum nicotinamidase, L. major uridine diphosphate-glucose pyrophosphorylase and methionyl t-RNA synthetase. The two protein targets selectively targeted by germacranolide sesquiterpenoids were L. major methionyl t-RNA synthetase and dihydroorotate dehydrogenase. Diterpenoids generally favored docking to L. mexicana glycerol-3-phosphate dehydrogenase. Limonoids also showed some selectivity for L. mexicana glycerol-3-phosphate dehydrogenase and L. major dihydroorotate dehydrogenase while withanolides docked more selectively with L. major uridine diphosphate-glucose pyrophosphorylase. The selectivity of the different classes of antiparasitic compounds for the protein targets considered in this work can be explored in fragment- and/or structure-based drug design towards the development of leads for new antileishmanial drugs.
Collapse
|