1
|
Jin J, Doan J, Fernandez C, Nguyen S, Spencer C, Kleschevnikov AM. Early postnatal GABAB antagonist treatment normalizes inhibitory/excitatory balance in neonatal Ts65Dn mice, a genetic model of down syndrome. Exp Neurol 2025; 386:115171. [PMID: 39889878 DOI: 10.1016/j.expneurol.2025.115171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Brain abnormalities in Down syndrome (DS) most rapidly accumulate during the third trimester, a critical period for the formation of neural circuits in the hippocampus and neocortex. In mice, this stage roughly corresponds to the first 2.5 weeks after birth. We hypothesized that enhanced Girk2 channel signaling during this critical period profoundly contributes to the formation of faulty neural circuits in mouse genetic models of DS, with a key feature being an imbalance of excitatory and inhibitory neurotransmission favoring inhibition. Major predictions of this hypothesis were tested. We observed that hippocampal Girk2 levels are enhanced, GABAB/Girk2 signaling efficiency is increased, and intrinsic neuronal excitability of dentate gyrus (DG) granule cells is reduced in neonatal Ts65Dn mice. Given this, we tested if suppressing the enhanced GABAB/Girk2 signaling in the early postnatal period would affect the inhibitory/excitatory (I/E) balance in Ts65Dn mice. Remarkably, GABAB antagonist treatment from postnatal day 2 (P2) to P17 normalized the exaggerated IPSC/EPSC ratio in DG granule cells in Ts65Dn mice. Our findings show that GABAB/Girk2 signaling is increased in neonatal Ts65Dn mice, and that pharmacological suppression of GABAB receptors during the early postnatal period normalizes the I/E balance. These results suggest that early intervention targeting GABAB/Girk2 signaling could be a promising therapeutic approach to mitigate cognitive impairment in DS.
Collapse
Affiliation(s)
- Joshua Jin
- University of California San Diego, La Jolla, CA, United States
| | - James Doan
- University of California San Diego, La Jolla, CA, United States
| | | | - Samuel Nguyen
- University of California San Diego, La Jolla, CA, United States
| | - Cole Spencer
- University of California San Diego, La Jolla, CA, United States
| | | |
Collapse
|
2
|
Kleschevnikov AM. Enhanced GIRK2 channel signaling in Down syndrome: A feasible role in the development of abnormal nascent neural circuits. Front Genet 2022; 13:1006068. [PMID: 36171878 PMCID: PMC9510977 DOI: 10.3389/fgene.2022.1006068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
The most distinctive feature of Down syndrome (DS) is moderate to severe cognitive impairment. Genetic, molecular, and neuronal mechanisms of this complex DS phenotype are currently under intensive investigation. It is becoming increasingly clear that the abnormalities arise from a combination of initial changes caused by triplication of genes on human chromosome 21 (HSA21) and later compensatory adaptations affecting multiple brain systems. Consequently, relatively mild initial cognitive deficits become pronounced with age. This pattern of changes suggests that one approach to improving cognitive function in DS is to target the earliest critical changes, the prevention of which can change the ‘trajectory’ of the brain development and reduce the destructive effects of the secondary alterations. Here, we review the experimental data on the role of KCNJ6 in DS-specific brain abnormalities, focusing on a putative role of this gene in the development of abnormal neural circuits in the hippocampus of genetic mouse models of DS. It is suggested that the prevention of these early abnormalities with pharmacological or genetic means can ameliorate cognitive impairment in DS.
Collapse
|
3
|
Di Franco N, Drutel G, Roullot-Lacarrière V, Julio-Kalajzic F, Lalanne V, Grel A, Leste-Lasserre T, Matias I, Cannich A, Gonzales D, Simon V, Cota D, Marsicano G, Piazza PV, Vallée M, Revest JM. Differential expression of the neuronal CB1 cannabinoid receptor in the hippocampus of male Ts65Dn Down syndrome mouse model. Mol Cell Neurosci 2022; 119:103705. [PMID: 35158060 DOI: 10.1016/j.mcn.2022.103705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/27/2022] [Accepted: 02/08/2022] [Indexed: 10/19/2022] Open
Abstract
Down syndrome (DS) or Trisomy 21 is the most common genetic cause of mental retardation with severe learning and memory deficits. DS is due to the complete or partial triplication of human chromosome 21 (HSA21) triggering gene overexpression and protein synthesis alterations responsible for a plethora of mental and physical phenotypes. Among the diverse brain target systems that affect hippocampal-dependent learning and memory deficit impairments in DS, the upregulation of the endocannabinoid system (ECS), and notably the overexpression of the cannabinoid type-1 receptor (CB1), seems to play a major role. Combining various protein and gene expression targeted approaches using western blot, qRT-PCR and FISH techniques, we investigated the expression pattern of ECS components in the hippocampus (HPC) of male Ts65Dn mice. Among all the molecules that constitute the ECS, we found that the expression of the CB1 is altered in the HPC of Ts65Dn mice. CB1 distribution is differentially segregated between the dorsal and ventral part of the HPC and within the different cell populations that compose the HPC. CB1 expression is upregulated in GABAergic neurons of Ts65Dn mice whereas it is downregulated in glutamatergic neurons. These results highlight a complex regulation of the CB1 encoding gene (Cnr1) in Ts65Dn mice that could open new therapeutic solutions for this syndrome.
Collapse
Affiliation(s)
- Nadia Di Franco
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Guillaume Drutel
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | | | | | - Valérie Lalanne
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Agnès Grel
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | | | - Isabelle Matias
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Astrid Cannich
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Delphine Gonzales
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Vincent Simon
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Daniela Cota
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Giovanni Marsicano
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | | | - Monique Vallée
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Jean-Michel Revest
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France.
| |
Collapse
|
4
|
Kleschevnikov A. GIRK2 Channels in Down Syndrome and Alzheimer's Disease. Curr Alzheimer Res 2022; 19:819-829. [PMID: 36567290 DOI: 10.2174/1567205020666221223122110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/27/2022]
Abstract
Cognitive impairment in Down syndrome (DS) results from the abnormal expression of hundreds of genes. However, the impact of KCNJ6, a gene located in the middle of the 'Down syndrome critical region' of chromosome 21, seems to stand out. KCNJ6 encodes GIRK2 (KIR3.2) subunits of G protein-gated inwardly rectifying potassium channels, which serve as effectors for GABAB, m2, 5HT1A, A1, and many other postsynaptic metabotropic receptors. GIRK2 subunits are heavily expressed in neocortex, cerebellum, and hippocampus. By controlling resting membrane potential and neuronal excitability, GIRK2 channels may thus affect both synaptic plasticity and stability of neural circuits in the brain regions important for learning and memory. Here, we discuss recent experimental data regarding the role of KCNJ6/GIRK2 in neuronal abnormalities and cognitive impairment in models of DS and Alzheimer's disease (AD). The results compellingly show that signaling through GIRK2 channels is abnormally enhanced in mouse genetic models of Down syndrome and that partial suppression of GIRK2 channels with pharmacological or genetic means can restore synaptic plasticity and improve impaired cognitive functions. On the other hand, signaling through GIRK2 channels is downregulated in AD models, such as models of early amyloidopathy. In these models, reduced GIRK2 channel signaling promotes neuronal hyperactivity, causing excitatory-inhibitory imbalance and neuronal death. Accordingly, activation of GABAB/GIRK2 signaling by GIRK channel activators or GABAB receptor agonists may reduce Aβ-induced hyperactivity and subsequent neuronal death, thereby exerting a neuroprotective effect in models of AD.
Collapse
|
5
|
Minter R, Gardiner KJ. Trisomy of Human Chromosome 21 Orthologs Mapping to Mouse Chromosome 10 Cause Age and Sex-Specific Learning Differences: Relevance to Down Syndrome. Genes (Basel) 2021; 12:1697. [PMID: 34828303 PMCID: PMC8618694 DOI: 10.3390/genes12111697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 02/08/2023] Open
Abstract
Down syndrome (DS), trisomy of human chromosome 21 (Hsa21), is the most common genetic cause of intellectual disability. The Dp10(1)Yey (Dp10) is a mouse model of DS that is trisomic for orthologs of 25% of the Hsa21 protein-coding genes, the entirety of the Hsa21 syntenic region on mouse chromosome 10. Trisomic genes include several involved in brain development and function, two that modify and regulate the activities of sex hormones, and two that produce sex-specific phenotypes as null mutants. These last four are the only Hsa21 genes with known sexually dimorphic properties. Relatively little is known about the potential contributions to the DS phenotype of segmental trisomy of Mmu10 orthologs. Here, we have tested separate cohorts of female and male Dp10 mice, at 3 and 9 months of age, in an open field elevated zero maze, rotarod, and balance beam, plus the learning and memory tasks, spontaneous alternation, puzzle box, double-H maze, context fear conditioning, and acoustic startle/prepulse inhibition, that depend upon the function of the prefrontal cortex, striatum, hippocampus, and cerebellum. We show that there are age and sex-specific differences in strengths and weaknesses, suggesting that genes within the telomere proximal region of Hsa21 influence the DS phenotype.
Collapse
Affiliation(s)
- Ross Minter
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Katheleen J. Gardiner
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
6
|
Li Y, Xing Z, Yu T, Pao A, Daadi M, Yu YE. Coat Color-Facilitated Efficient Generation and Analysis of a Mouse Model of Down Syndrome Triplicated for All Human Chromosome 21 Orthologous Regions. Genes (Basel) 2021; 12:genes12081215. [PMID: 34440389 PMCID: PMC8393392 DOI: 10.3390/genes12081215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/31/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
Down syndrome (DS) is one of the most complex genetic disorders in humans and a leading genetic cause of developmental delays and intellectual disabilities. The mouse remains an essential model organism in DS research because human chromosome 21 (Hsa21) is orthologously conserved with three regions in the mouse genome. Recent studies have revealed complex interactions among different triplicated genomic regions and Hsa21 gene orthologs that underlie major DS phenotypes. Because we do not know conclusively which triplicated genes are indispensable in such interactions for a specific phenotype, it is desirable that all evolutionarily conserved Hsa21 gene orthologs are triplicated in a complete model. For this reason, the Dp(10)1Yey/+;Dp(16)1Yey/+;Dp(17)1Yey/+ mouse is the most complete model of DS to reflect gene dosage effects because it is the only mutant triplicated for all Hsa21 orthologous regions. Recently, several groups have expressed concerns that efforts needed to generate the triple compound model would be so overwhelming that it may be impractical to take advantage of its unique strength. To alleviate these concerns, we developed a strategy to drastically improve the efficiency of generating the triple compound model with the aid of a targeted coat color, and the results confirmed that the mutant mice generated via this approach exhibited cognitive deficits.
Collapse
Affiliation(s)
- Yichen Li
- The Children’s Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program and Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (Y.L.); (Z.X.); (T.Y.); (A.P.)
| | - Zhuo Xing
- The Children’s Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program and Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (Y.L.); (Z.X.); (T.Y.); (A.P.)
| | - Tao Yu
- The Children’s Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program and Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (Y.L.); (Z.X.); (T.Y.); (A.P.)
| | - Annie Pao
- The Children’s Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program and Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (Y.L.); (Z.X.); (T.Y.); (A.P.)
| | - Marcel Daadi
- Regenerative Medicine and Aging Unit, Texas Biomedical Research Institute, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA;
| | - Y. Eugene Yu
- The Children’s Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program and Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (Y.L.); (Z.X.); (T.Y.); (A.P.)
- Genetics, Genomics and Bioinformatics Program, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Correspondence:
| |
Collapse
|
7
|
Kida E, Walus M, Albertini G, Golabek AA. Long-term voluntary running modifies the levels of proteins of the excitatory/inhibitory system and reduces reactive astrogliosis in the brain of Ts65Dn mouse model for Down syndrome. Brain Res 2021; 1766:147535. [PMID: 34043998 DOI: 10.1016/j.brainres.2021.147535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 09/30/2022]
Abstract
We showed previously that voluntary long-term running improved cognition and motor skills, but in an age-dependent manner, in the Ts65Dn mouse model for Down syndrome (DS). Presently, we investigated the effect of running on the levels of some key proteins of the excitatory/inhibitory system, which is impaired in the trisomic brain, and on astroglia, a vital component of this system. Ts65Dn mice had free access to a running wheel for 9-13 months either from weaning or from the age of 7 months. Sedentary Ts65Dn mice served as controls. We found that running modified the levels of four of the seven proteins we tested that are associated with the glutamatergic/GABA-ergic system. Thus, Ts65Dn runners demonstrated increased levels of glutamine synthetase and metabotropic glutamate receptor 1 and decreased levels of glutamate transporter 1 and glutamic acid decarboxylase 65 (GAD65) versus sedentary mice, but of metabotropic glutamate receptor 1 and GAD65 only in the post-weaning cohort. GAD67, ionotropic N-methyl-D-aspartate type receptor subunit 1, and GABAAα5 receptors' levels were similar in runners and sedentary animals. The number of glial fibrillary acidic protein (GFAP)-positive astrocytes and the levels of GFAP were significantly reduced in runners relative to sedentary mice. Our study provides new insight into the mechanisms underlying the beneficial effect of voluntary, sustained running on function of the trisomic brain by identifying the involvement of proteins associated with glutamatergic and GABAergic systems and reduction in reactive astrogliosis.
Collapse
Affiliation(s)
- Elizabeth Kida
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Marius Walus
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Giorgio Albertini
- Child Development Department, IRCCS San Raffaele Pisana, Rome and San Raffaele Cassino, Italy
| | - Adam A Golabek
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA.
| |
Collapse
|
8
|
Abstract
Experimental work regarding corrective actions on chromosomes and genes, and control of gene products is yielding promising results. It opens the way to advances in dealing with the etiological aspects of Down syndrome and may lead to important changes in the life of individuals affected with this condition. A small number of molecules are being investigated in pharmacological research that may have positive effects on intellectual functioning. Studies of the pathological consequences of the amyloid cascade and the TAU pathology in the etiology of Alzheimer disease (AD), which is more frequent and occuring earlier in life in persons with Down syndrome (DS), are presented. The search for biological markers of AD and ways for constrasting its early manifestations are also discussed.
Collapse
Affiliation(s)
- Jean A. Rondal
- University of Liège, Cognitive Sciences, Building 32, Sart Tilman, Liège 4000, Belgium
| |
Collapse
|
9
|
Lee HC, Md Yusof HH, Leong MPY, Zainal Abidin S, Seth EA, Hewitt CA, Vidyadaran S, Nordin N, Scott HS, Cheah PS, Ling KH. Gene and protein expression profiles of JAK-STAT signalling pathway in the developing brain of the Ts1Cje down syndrome mouse model. Int J Neurosci 2019; 129:871-881. [DOI: 10.1080/00207454.2019.1580280] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Han-Chung Lee
- Genetics and Regenerative Medicine Research Centre (GRMRC), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Hadri Hadi Md Yusof
- Genetics and Regenerative Medicine Research Centre (GRMRC), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Melody Pui-Yee Leong
- Genetics and Regenerative Medicine Research Centre (GRMRC), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Shahidee Zainal Abidin
- Genetics and Regenerative Medicine Research Centre (GRMRC), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Eryse Amira Seth
- Genetics and Regenerative Medicine Research Centre (GRMRC), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Chelsee A. Hewitt
- Department of Pathology, The Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Sharmili Vidyadaran
- Genetics and Regenerative Medicine Research Centre (GRMRC), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Pathology, Immunology Unit, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Norshariza Nordin
- Genetics and Regenerative Medicine Research Centre (GRMRC), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Hamish S. Scott
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, SA Pathology, Adelaide, Australia
- School of Pharmacy and Medical Science, University of South Australia, Adelaide, Australia
- School of Medicine, School of Biological Sciences, University of Adelaide, Adelaide, South Australia
- Centre for Cancer Biology, SA Pathology, Australian Cancer Research Foundation Genomics Facility, Adelaide, Australia
| | - Pike-See Cheah
- Genetics and Regenerative Medicine Research Centre (GRMRC), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - King-Hwa Ling
- Genetics and Regenerative Medicine Research Centre (GRMRC), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
10
|
Pelleri MC, Cattani C, Vitale L, Antonaros F, Strippoli P, Locatelli C, Cocchi G, Piovesan A, Caracausi M. Integrated Quantitative Transcriptome Maps of Human Trisomy 21 Tissues and Cells. Front Genet 2018; 9:125. [PMID: 29740474 PMCID: PMC5928158 DOI: 10.3389/fgene.2018.00125] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 03/27/2018] [Indexed: 12/17/2022] Open
Abstract
Down syndrome (DS) is due to the presence of an extra full or partial chromosome 21 (Hsa21). The identification of genes contributing to DS pathogenesis could be the key to any rational therapy of the associated intellectual disability. We aim at generating quantitative transcriptome maps in DS integrating all gene expression profile datasets available for any cell type or tissue, to obtain a complete model of the transcriptome in terms of both expression values for each gene and segmental trend of gene expression along each chromosome. We used the TRAM (Transcriptome Mapper) software for this meta-analysis, comparing transcript expression levels and profiles between DS and normal brain, lymphoblastoid cell lines, blood cells, fibroblasts, thymus and induced pluripotent stem cells, respectively. TRAM combined, normalized, and integrated datasets from different sources and across diverse experimental platforms. The main output was a linear expression value that may be used as a reference for each of up to 37,181 mapped transcripts analyzed, related to both known genes and expression sequence tag (EST) clusters. An independent example in vitro validation of fibroblast transcriptome map data was performed through “Real-Time” reverse transcription polymerase chain reaction showing an excellent correlation coefficient (r = 0.93, p < 0.0001) with data obtained in silico. The availability of linear expression values for each gene allowed the testing of the gene dosage hypothesis of the expected 3:2 DS/normal ratio for Hsa21 as well as other human genes in DS, in addition to listing genes differentially expressed with statistical significance. Although a fraction of Hsa21 genes escapes dosage effects, Hsa21 genes are selectively over-expressed in DS samples compared to genes from other chromosomes, reflecting a decisive role in the pathogenesis of the syndrome. Finally, the analysis of chromosomal segments reveals a high prevalence of Hsa21 over-expressed segments over the other genomic regions, suggesting, in particular, a specific region on Hsa21 that appears to be frequently over-expressed (21q22). Our complete datasets are released as a new framework to investigate transcription in DS for individual genes as well as chromosomal segments in different cell types and tissues.
Collapse
Affiliation(s)
- Maria Chiara Pelleri
- Department of Experimental, Diagnostic and Specialty Medicine, Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | - Chiara Cattani
- Department of Experimental, Diagnostic and Specialty Medicine, Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | - Lorenza Vitale
- Department of Experimental, Diagnostic and Specialty Medicine, Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | - Francesca Antonaros
- Department of Experimental, Diagnostic and Specialty Medicine, Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | - Pierluigi Strippoli
- Department of Experimental, Diagnostic and Specialty Medicine, Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | - Chiara Locatelli
- Neonatology Unit, Sant'Orsola-Malpighi Polyclinic, Bologna, Italy
| | - Guido Cocchi
- Neonatology Unit, Sant'Orsola-Malpighi Polyclinic, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Allison Piovesan
- Department of Experimental, Diagnostic and Specialty Medicine, Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | - Maria Caracausi
- Department of Experimental, Diagnostic and Specialty Medicine, Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| |
Collapse
|
11
|
Systematic Functional Characterization of Human 21st Chromosome Orthologs in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2018; 8:967-979. [PMID: 29367452 PMCID: PMC5844316 DOI: 10.1534/g3.118.200019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Individuals with Down syndrome have neurological and muscle impairments due to an additional copy of the human 21st chromosome (HSA21). Only a few of ∼200 HSA21 genes encoding proteins have been linked to specific Down syndrome phenotypes, while the remainder are understudied. To identify poorly characterized HSA21 genes required for nervous system function, we studied behavioral phenotypes caused by loss-of-function mutations in conserved HSA21 orthologs in the nematode Caenorhabditis elegans. We identified 10 HSA21 orthologs that are required for neuromuscular behaviors: cle-1 (COL18A1), cysl-2 (CBS), dnsn-1 (DONSON), eva-1 (EVA1C), mtq-2 (N6ATM1), ncam-1 (NCAM2), pad-2 (POFUT2), pdxk-1 (PDXK), rnt-1 (RUNX1), and unc-26 (SYNJ1). We also found that three of these genes are required for normal release of the neurotransmitter acetylcholine. This includes a known synaptic gene unc-26 (SYNJ1), as well as uncharacterized genes pdxk-1 (PDXK) and mtq-2 (N6ATM1). As the first systematic functional analysis of HSA21 orthologs, this study may serve as a platform to understand genes that underlie phenotypes associated with Down syndrome.
Collapse
|
12
|
Can EGCG Alleviate Symptoms of Down Syndrome by Altering Proteolytic Activity? Int J Mol Sci 2018; 19:ijms19010248. [PMID: 29342922 PMCID: PMC5796196 DOI: 10.3390/ijms19010248] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 12/12/2022] Open
Abstract
Down syndrome (DS), also known as "trisomy 21", is a genetic disorder caused by the presence of all or part of a third copy of chromosome 21. Silencing these extra genes is beyond existing technology and seems to be impractical. A number of pharmacologic options have been proposed to change the quality of life and lifespan of individuals with DS. It was reported that treatment with epigallocatechin gallate (EGCG) improves cognitive performance in animal models and in humans, suggesting that EGCG may alleviate symptoms of DS. Traditionally, EGCG has been associated with the ability to reduce dual specificity tyrosine phosphorylation regulated kinase 1A activity, which is overexpressed in trisomy 21. Based on the data available in the literature, we propose an additional way in which EGCG might affect trisomy 21-namely by modifying the proteolytic activity of the enzymes involved. It is known that, in Down syndrome, the nerve growth factor (NGF) metabolic pathway is altered: first by downregulating tissue plasminogen activator (tPA) that activates plasminogen to plasmin, an enzyme converting proNGF to mature NGF; secondly, overexpression of metalloproteinase 9 (MMP-9) further degrades NGF, lowering the amount of mature NGF. EGCG inhibits MMP-9, thus protecting NGF. Urokinase (uPA) and tPA are activators of plasminogen, and uPA is inhibited by EGCG, but regardless of their structural similarity tPA is not inhibited. In this review, we describe mechanisms of proteolytic enzymes (MMP-9 and plasminogen activation system), their role in Down syndrome, their inhibition by EGCG, possible degradation of this polyphenol and the ability of EGCG and its degradation products to cross the blood-brain barrier. We conclude that known data accumulated so far provide promising evidence of MMP-9 inhibition by EGCG in the brain, which could slow down the abnormal degradation of NGF.
Collapse
|
13
|
Ahmed MM, Block A, Tong S, Davisson MT, Gardiner KJ. Age exacerbates abnormal protein expression in a mouse model of Down syndrome. Neurobiol Aging 2017. [PMID: 28641136 DOI: 10.1016/j.neurobiolaging.2017.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Ts65Dn is a popular mouse model of Down syndrome (DS). It displays DS-relevant features of learning/memory deficits and age-related loss of functional markers in basal forebrain cholinergic neurons. Here we describe protein expression abnormalities in brain regions of 12-month-old male Ts65Dn mice. We show that the magnitudes of abnormalities of human chromosome 21 and non-human chromosome 21 orthologous proteins are greater at 12 months than at ∼6 months. Age-related exacerbations involve the number of components affected in the mechanistic target of rapamycin pathway, the levels of components of the mitogen-activated protein kinase pathway, and proteins associated with Alzheimer's disease. Among brain regions, the number of abnormalities in cerebellum decreased while the number in cortex greatly increased with age. The Ts65Dn is being used in preclinical evaluations of drugs for cognition in DS. Most commonly, drug evaluations are tested in ∼4- to 6-month-old mice. Data on age-related changes in magnitude and specificity of protein perturbations can be used to understand the molecular basis of changes in cognitive ability and to predict potential age-related specificities in drug efficacies.
Collapse
Affiliation(s)
| | - Aaron Block
- Linda Crnic Institute for Down Syndrome, Aurora, CO, USA
| | - Suhong Tong
- School of Public Health, University of Colorado Denver School of Medicine, Aurora, CO, USA
| | | | - Katheleen J Gardiner
- Linda Crnic Institute for Down Syndrome, Aurora, CO, USA; Department of Pediatrics, University of Colorado Denver School of Medicine, Aurora, CO, USA; Human Medical Genetics and Genomics, and Neuroscience Programs, University of Colorado Denver School of Medicine, Aurora, CO, USA.
| |
Collapse
|
14
|
Rachubinski AL, Hepburn S, Elias ER, Gardiner K, Shaikh TH. The co-occurrence of Down syndrome and autism spectrum disorder: is it because of additional genetic variations? Prenat Diagn 2017; 37:31-36. [PMID: 27859447 DOI: 10.1002/pd.4957] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/23/2016] [Accepted: 10/26/2016] [Indexed: 12/12/2022]
Abstract
Individuals with Down syndrome (DS) are diagnosed with autism spectrum disorder (ASD) at a significantly higher frequency than the typical population. The differentiation of ASD symptoms from those of severe intellectual disability presents diagnostic challenges, which have led to more refined methods in the clinical evaluation of ASD in DS. These improved phenotypic characterization methods not only provide better diagnosis of ASD in DS, but may also be useful in elucidating the etiology of the increased prevalence of ASD in DS. Because all individuals with the classic presentation of DS have trisomy 21, it is possible that those with co-occurring DS and ASD may have additional genetic variants which can act as modifiers of the phenotype, leading to the development of ASD. © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Angela L Rachubinski
- JFK Partners, Section of Developmental Pediatrics, Department of Pediatrics, University of Colorado Denver School of Medicine, Aurora, CO, USA
| | - Susan Hepburn
- Department of Human Development and Family Studies, Colorado State University, Fort Collins, CO, USA
| | - Ellen R Elias
- Section of Genetics and Metabolism, Department of Pediatrics, University of Colorado Denver School of Medicine, Aurora, CO, USA
- Special Care Clinic, Children's Hospital Colorado, Aurora, CO, USA
| | - Katheleen Gardiner
- Section of Genetics and Metabolism, Department of Pediatrics, University of Colorado Denver School of Medicine, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Denver School of Medicine, Aurora, CO, USA
| | - Tamim H Shaikh
- Section of Genetics and Metabolism, Department of Pediatrics, University of Colorado Denver School of Medicine, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Denver School of Medicine, Aurora, CO, USA
| |
Collapse
|
15
|
Mouse models of Down syndrome: gene content and consequences. Mamm Genome 2016; 27:538-555. [PMID: 27538963 DOI: 10.1007/s00335-016-9661-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/27/2016] [Indexed: 12/25/2022]
Abstract
Down syndrome (DS), trisomy of human chromosome 21 (Hsa21), is challenging to model in mice. Not only is it a contiguous gene syndrome spanning 35 Mb of the long arm of Hsa21, but orthologs of Hsa21 genes map to segments of three mouse chromosomes, Mmu16, Mmu17, and Mmu10. The Ts65Dn was the first viable segmental trisomy mouse model for DS; it is a partial trisomy currently popular in preclinical evaluations of drugs for cognition in DS. Limitations of the Ts65Dn are as follows: (i) it is trisomic for 125 human protein-coding orthologs, but only 90 of these are Hsa21 orthologs and (ii) it lacks trisomy for ~75 Hsa21 orthologs. In recent years, several additional mouse models of DS have been generated, each trisomic for a different subset of Hsa21 genes or their orthologs. To best exploit these models and interpret the results obtained with them, prior to proposing clinical trials, an understanding of their trisomic gene content, relative to full trisomy 21, is necessary. Here we first review the functional information on Hsa21 protein-coding genes and the more recent annotation of a large number of functional RNA genes. We then discuss the conservation and genomic distribution of Hsa21 orthologs in the mouse genome and the distribution of mouse-specific genes. Lastly, we consider the strengths and weaknesses of mouse models of DS based on the number and nature of the Hsa21 orthologs that are, and are not, trisomic in each, and discuss their validity for use in preclinical evaluations of drug responses.
Collapse
|
16
|
Pelleri MC, Cicchini E, Locatelli C, Vitale L, Caracausi M, Piovesan A, Rocca A, Poletti G, Seri M, Strippoli P, Cocchi G. Systematic reanalysis of partial trisomy 21 cases with or without Down syndrome suggests a small region on 21q22.13 as critical to the phenotype. Hum Mol Genet 2016; 25:2525-2538. [PMID: 27106104 PMCID: PMC5181629 DOI: 10.1093/hmg/ddw116] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/12/2016] [Accepted: 04/12/2016] [Indexed: 01/13/2023] Open
Abstract
A 'Down Syndrome critical region' (DSCR) sufficient to induce the most constant phenotypes of Down syndrome (DS) had been identified by studying partial (segmental) trisomy 21 (PT21) as an interval of 0.6-8.3 Mb within human chromosome 21 (Hsa21), although its existence was later questioned. We propose an innovative, systematic reanalysis of all described PT21 cases (from 1973 to 2015). In particular, we built an integrated, comparative map from 125 cases with or without DS fulfilling stringent cytogenetic and clinical criteria. The map allowed to define or exclude as candidates for DS fine Hsa21 sequence intervals, also integrating duplication copy number variants (CNVs) data. A highly restricted DSCR (HR-DSCR) of only 34 kb on distal 21q22.13 has been identified as the minimal region whose duplication is shared by all DS subjects and is absent in all non-DS subjects. Also being spared by any duplication CNV in healthy subjects, HR-DSCR is proposed as a candidate for the typical DS features, the intellectual disability and some facial phenotypes. HR-DSCR contains no known gene and has relevant homology only to the chimpanzee genome. Searching for HR-DSCR functional loci might become a priority for understanding the fundamental genotype-phenotype relationships in DS.
Collapse
Affiliation(s)
- Maria Chiara Pelleri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126 Bologna, BO, Italy
| | - Elena Cicchini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126 Bologna, BO, Italy
| | - Chiara Locatelli
- Neonatology Unit, St. Orsola-Malpighi Polyclinic, Via Massarenti 9, 40138 Bologna, BO, Italy
| | - Lorenza Vitale
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126 Bologna, BO, Italy
| | - Maria Caracausi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126 Bologna, BO, Italy
| | - Allison Piovesan
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126 Bologna, BO, Italy
| | - Alessandro Rocca
- Neonatology Unit, St. Orsola-Malpighi Polyclinic, Via Massarenti 9, 40138 Bologna, BO, Italy
| | - Giulia Poletti
- Neonatology Unit, St. Orsola-Malpighi Polyclinic, Via Massarenti 9, 40138 Bologna, BO, Italy
| | | | - Pierluigi Strippoli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126 Bologna, BO, Italy
| | - Guido Cocchi
- Neonatology Unit, St. Orsola-Malpighi Polyclinic, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, BO, Italy
| |
Collapse
|
17
|
Potential Role of JAK-STAT Signaling Pathway in the Neurogenic-to-Gliogenic Shift in Down Syndrome Brain. Neural Plast 2016; 2016:7434191. [PMID: 26881131 PMCID: PMC4737457 DOI: 10.1155/2016/7434191] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/15/2015] [Accepted: 11/17/2015] [Indexed: 01/09/2023] Open
Abstract
Trisomy of human chromosome 21 in Down syndrome (DS) leads to several phenotypes, such as mild-to-severe intellectual disability, hypotonia, and craniofacial dysmorphisms. These are fundamental hallmarks of the disorder that affect the quality of life of most individuals with DS. Proper brain development involves meticulous regulation of various signaling pathways, and dysregulation may result in abnormal neurodevelopment. DS brain is characterized by an increased number of astrocytes with reduced number of neurons. In mouse models for DS, the pool of neural progenitor cells commits to glia rather than neuronal cell fate in the DS brain. However, the mechanism(s) and consequences of this slight neurogenic-to-gliogenic shift in DS brain are still poorly understood. To date, Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling has been proposed to be crucial in various developmental pathways, especially in promoting astrogliogenesis. Since both human and mouse models of DS brain exhibit less neurons and a higher percentage of cells with astrocytic phenotypes, understanding the role of JAK-STAT signaling in DS brain development will provide novel insight into its role in the pathogenesis of DS brain and may serve as a potential target for the development of effective therapy to improve DS cognition.
Collapse
|
18
|
Widespread cerebellar transcriptome changes in Ts65Dn Down syndrome mouse model after lifelong running. Behav Brain Res 2016; 296:35-46. [DOI: 10.1016/j.bbr.2015.08.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/28/2015] [Accepted: 08/17/2015] [Indexed: 12/22/2022]
|
19
|
Block A, Ahmed MM, Dhanasekaran AR, Tong S, Gardiner KJ. Sex differences in protein expression in the mouse brain and their perturbations in a model of Down syndrome. Biol Sex Differ 2015; 6:24. [PMID: 26557979 PMCID: PMC4640233 DOI: 10.1186/s13293-015-0043-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/01/2015] [Indexed: 01/08/2023] Open
Abstract
Background While many sex differences in structure and function of the mammalian brain have been described, the molecular correlates of these differences are not broadly known. Also unknown is how sex differences at the protein level are perturbed by mutations that lead to intellectual disability (ID). Down syndrome (DS) is the most common genetic cause of ID and is due to trisomy of human chromosome 21 (Hsa21) and the resulting increased expression of Hsa21-encoded genes. The Dp(10)1Yey mouse model (Dp10) of DS is trisomic for orthologs of 39 Hsa21 protein-coding genes that map to mouse chromosome 10 (Mmu10), including four genes with known sex differences in functional properties. How these genes contribute to the DS cognitive phenotype is not known. Methods Using reverse phase protein arrays, levels of ~100 proteins/protein modifications were measured in the hippocampus, cerebellum, and cortex of female and male controls and their trisomic Dp10 littermates. Proteins were chosen for their known roles in learning/memory and synaptic plasticity and include components of the MAPK, MTOR, and apoptosis pathways, immediate early genes, and subunits of ionotropic glutamate receptors. Protein levels were compared between genotypes, sexes, and brain regions using a three-level mixed effects model and the Benjamini-Hochberg correction for multiple testing. Results In control mice, levels of approximately one half of the proteins differ significantly between females and males in at least one brain region; in the hippocampus alone, levels of 40 % of the proteins are significantly higher in females. Trisomy of the Mmu10 segment differentially affects female and male profiles, perturbing protein levels most in the cerebellum of female Dp10 and most in the hippocampus of male Dp10. Cortex is minimally affected by sex and genotype. Diverse pathways and processes are implicated in both sex and genotype differences. Conclusions The extensive sex differences in control mice in levels of proteins involved in learning/memory illustrate the molecular complexity underlying sex differences in normal neurological processes. The sex-specific abnormalities in the Dp10 suggest the possibility of sex-specific phenotypic features in DS and reinforce the need to use female as well as male mice, in particular in preclinical evaluations of drug responses. Electronic supplementary material The online version of this article (doi:10.1186/s13293-015-0043-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aaron Block
- Department of Pediatrics, Linda Crnic Institute for Down Syndrome, Aurora, USA
| | - Md Mahiuddin Ahmed
- Department of Pediatrics, Linda Crnic Institute for Down Syndrome, Aurora, USA
| | | | - Suhong Tong
- Colorado School of Public Health, Aurora, USA
| | - Katheleen J Gardiner
- Department of Pediatrics, Linda Crnic Institute for Down Syndrome, Aurora, USA ; Human Medical Genetics and Genomics, and Neuroscience Programs, University of Colorado Denver School of Medicine, 12700 E 19th Avenue, Mail Stop 8608, Aurora, CO 80045 USA
| |
Collapse
|
20
|
Higuera C, Gardiner KJ, Cios KJ. Self-Organizing Feature Maps Identify Proteins Critical to Learning in a Mouse Model of Down Syndrome. PLoS One 2015; 10:e0129126. [PMID: 26111164 PMCID: PMC4482027 DOI: 10.1371/journal.pone.0129126] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 05/05/2015] [Indexed: 12/22/2022] Open
Abstract
Down syndrome (DS) is a chromosomal abnormality (trisomy of human chromosome 21) associated with intellectual disability and affecting approximately one in 1000 live births worldwide. The overexpression of genes encoded by the extra copy of a normal chromosome in DS is believed to be sufficient to perturb normal pathways and normal responses to stimulation, causing learning and memory deficits. In this work, we have designed a strategy based on the unsupervised clustering method, Self Organizing Maps (SOM), to identify biologically important differences in protein levels in mice exposed to context fear conditioning (CFC). We analyzed expression levels of 77 proteins obtained from normal genotype control mice and from their trisomic littermates (Ts65Dn) both with and without treatment with the drug memantine. Control mice learn successfully while the trisomic mice fail, unless they are first treated with the drug, which rescues their learning ability. The SOM approach identified reduced subsets of proteins predicted to make the most critical contributions to normal learning, to failed learning and rescued learning, and provides a visual representation of the data that allows the user to extract patterns that may underlie novel biological responses to the different kinds of learning and the response to memantine. Results suggest that the application of SOM to new experimental data sets of complex protein profiles can be used to identify common critical protein responses, which in turn may aid in identifying potentially more effective drug targets.
Collapse
Affiliation(s)
- Clara Higuera
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense, Madrid, Spain; Departamento de Inteligencia Artificial e Ingeniería del Software, Facultad de Informática, Universidad Complutense, Madrid, Spain
| | - Katheleen J Gardiner
- Linda Crnic Institute for Down Syndrome, Department of Pediatrics, Department of Biochemistry and Molecular Genetics, Human Medical Genetics and Genomics, and Neuroscience Programs, University of Colorado, School of Medicine, Aurora, Colorado, United States of America
| | - Krzysztof J Cios
- Department of Computer Science, Virginia Commonwealth University, Richmond, Virginia, United States of America; IITiS, Polish Academy of Sciences, Gliwice, Poland
| |
Collapse
|
21
|
Telias M, Ben-Yosef D. Modeling neurodevelopmental disorders using human pluripotent stem cells. Stem Cell Rev Rep 2015; 10:494-511. [PMID: 24728983 DOI: 10.1007/s12015-014-9507-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neurodevelopmental disorders (NDs) are impairments that affect the development and growth of the brain and the central nervous system during embryonic and early postnatal life. Genetically manipulated animals have contributed greatly to the advancement of ND research, but many of them differ considerably from the human phenotype. Cellular in vitro models are also valuable, but the availability of human neuronal cells is limited and their lifespan in culture is short. Human pluripotent stem cells (hPSCs), including embryonic stem cells and induced pluripotent stem cells, comprise a powerful tool for studying developmentally regulated diseases, including NDs. We reviewed all recent studies in which hPSCs were used as in vitro models for diseases and syndromes characterized by impairment of neurogenesis or synaptogenesis leading to intellectual disability and delayed neurodevelopment. We analyzed their methodology and results, focusing on the data obtained following in vitro neural differentiation and gene expression and profiling of the derived neurons. Electrophysiological recording of action potentials, synaptic currents and response to neurotransmitters is pivotal for validation of the neuronal fate as well as for assessing phenotypic dysfunctions linked to the disease in question. We therefore focused on the studies which included electrophysiological recordings on the in vitro-derived neurons. Finally, we addressed specific issues that are critical for the advancement of this area of research, specifically in providing a reliable human pre-clinical research model and drug screening platform.
Collapse
Affiliation(s)
- Michael Telias
- The Wolfe PGD-Stem Cell Lab, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | |
Collapse
|
22
|
Ahmed MM, Dhanasekaran AR, Block A, Tong S, Costa ACS, Stasko M, Gardiner KJ. Protein dynamics associated with failed and rescued learning in the Ts65Dn mouse model of Down syndrome. PLoS One 2015; 10:e0119491. [PMID: 25793384 PMCID: PMC4368539 DOI: 10.1371/journal.pone.0119491] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/14/2015] [Indexed: 02/08/2023] Open
Abstract
Down syndrome (DS) is caused by an extra copy of human chromosome 21 (Hsa21). Although it is the most common genetic cause of intellectual disability (ID), there are, as yet, no effective pharmacotherapies. The Ts65Dn mouse model of DS is trisomic for orthologs of ∼55% of Hsa21 classical protein coding genes. These mice display many features relevant to those seen in DS, including deficits in learning and memory (L/M) tasks requiring a functional hippocampus. Recently, the N-methyl-D-aspartate (NMDA) receptor antagonist, memantine, was shown to rescue performance of the Ts65Dn in several L/M tasks. These studies, however, have not been accompanied by molecular analyses. In previous work, we described changes in protein expression induced in hippocampus and cortex in control mice after exposure to context fear conditioning (CFC), with and without memantine treatment. Here, we extend this analysis to Ts65Dn mice, measuring levels of 85 proteins/protein modifications, including components of MAP kinase and MTOR pathways, and subunits of NMDA receptors, in cortex and hippocampus of Ts65Dn mice after failed learning in CFC and after learning was rescued by memantine. We show that, compared with wild type littermate controls, (i) of the dynamic responses seen in control mice in normal learning, >40% also occur in Ts65Dn in failed learning or are compensated by baseline abnormalities, and thus are considered necessary but not sufficient for successful learning, and (ii) treatment with memantine does not in general normalize the initial protein levels but instead induces direct and indirect responses in approximately half the proteins measured and results in normalization of the endpoint protein levels. Together, these datasets provide a first view of the complexities associated with pharmacological rescue of learning in the Ts65Dn. Extending such studies to additional drugs and mouse models of DS will aid in identifying pharmacotherapies for effective clinical trials.
Collapse
Affiliation(s)
- Md. Mahiuddin Ahmed
- Linda Crnic Institute for Down Syndrome, Department of Pediatrics, University of Colorado Denver, Mail Stop 8608, 12700 E 19th Avenue, Aurora, Colorado 80045, United States of America
| | - A. Ranjitha Dhanasekaran
- Linda Crnic Institute for Down Syndrome, Department of Pediatrics, University of Colorado Denver, Mail Stop 8608, 12700 E 19th Avenue, Aurora, Colorado 80045, United States of America
| | - Aaron Block
- Linda Crnic Institute for Down Syndrome, Department of Pediatrics, University of Colorado Denver, Mail Stop 8608, 12700 E 19th Avenue, Aurora, Colorado 80045, United States of America
| | - Suhong Tong
- Colorado School of Public Health, University of Colorado Denver, Mail Stop A036-B065 TCH, 12700 E 19th Avenue, Aurora, Colorado 80045, United States of America
| | - Alberto C. S. Costa
- Division of Pediatric Neurology, Mail Stop RBC 6090, Department of Pediatrics, Case Western Reserve School of Medicine, Rainbow Babies & Children's Hospital, 11100 Euclid Avenue, Cleveland, OH 44106–6090, United States of America
| | - Melissa Stasko
- Division of Pediatric Neurology, Mail Stop RBC 6090, Department of Pediatrics, Case Western Reserve School of Medicine, Rainbow Babies & Children's Hospital, 11100 Euclid Avenue, Cleveland, OH 44106–6090, United States of America
| | - Katheleen J. Gardiner
- Linda Crnic Institute for Down Syndrome, Department of Pediatrics, University of Colorado Denver, Mail Stop 8608, 12700 E 19th Avenue, Aurora, Colorado 80045, United States of America
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Mail Stop 8608, 12700 E 19th Avenue, Aurora, Colorado 80045, United States of America
- Human Medical Genetics and Genomics, and Neuroscience Programs, University of Colorado Denver, Mail Stop 8608, 12700 E 19th Avenue, Aurora, Colorado 80045, United States of America
| |
Collapse
|
23
|
Gardiner KJ. Pharmacological approaches to improving cognitive function in Down syndrome: current status and considerations. Drug Des Devel Ther 2014; 9:103-25. [PMID: 25552901 PMCID: PMC4277121 DOI: 10.2147/dddt.s51476] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Down syndrome (DS), also known as trisomy 21, is the most common genetic cause of intellectual disability (ID). Although ID can be mild, the average intelligence quotient is in the range of 40-50. All individuals with DS will also develop the neuropathology of Alzheimer's disease (AD) by the age of 30-40 years, and approximately half will display an AD-like dementia by the age of 60 years. DS is caused by an extra copy of the long arm of human chromosome 21 (Hsa21) and the consequent elevated levels of expression, due to dosage, of trisomic genes. Despite a worldwide incidence of one in 700-1,000 live births, there are currently no pharmacological treatments available for ID or AD in DS. However, over the last several years, very promising results have been obtained with a mouse model of DS, the Ts65Dn. A diverse array of drugs has been shown to rescue, or partially rescue, DS-relevant deficits in learning and memory and abnormalities in cellular and electrophysiological features seen in the Ts65Dn. These results suggest that some level of amelioration or prevention of cognitive deficits in people with DS may be possible. Here, we review information from the preclinical evaluations in the Ts65Dn, how drugs were selected, how efficacy was judged, and how outcomes differ, or not, among studies. We also summarize the current state of human clinical trials for ID and AD in DS. Lastly, we describe the genetic limitations of the Ts65Dn as a model of DS, and in the preclinical testing of pharmacotherapeutics, and suggest additional targets to be considered for potential pharmacotherapies.
Collapse
Affiliation(s)
- Katheleen J Gardiner
- Linda Crnic Institute for Down Syndrome, Department of Pediatrics, Department of Biochemistry and Molecular Genetics, Human Medical Genetics and Genomics Program, Neuroscience Program, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
24
|
Hartley D, Blumenthal T, Carrillo M, DiPaolo G, Esralew L, Gardiner K, Granholm AC, Iqbal K, Krams M, Lemere C, Lott I, Mobley W, Ness S, Nixon R, Potter H, Reeves R, Sabbagh M, Silverman W, Tycko B, Whitten M, Wisniewski T. Down syndrome and Alzheimer's disease: Common pathways, common goals. Alzheimers Dement 2014; 11:700-9. [PMID: 25510383 DOI: 10.1016/j.jalz.2014.10.007] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 08/26/2014] [Accepted: 10/02/2014] [Indexed: 12/17/2022]
Abstract
In the United States, estimates indicate there are between 250,000 and 400,000 individuals with Down syndrome (DS), and nearly all will develop Alzheimer's disease (AD) pathology starting in their 30s. With the current lifespan being 55 to 60 years, approximately 70% will develop dementia, and if their life expectancy continues to increase, the number of individuals developing AD will concomitantly increase. Pathogenic and mechanistic links between DS and Alzheimer's prompted the Alzheimer's Association to partner with the Linda Crnic Institute for Down Syndrome and the Global Down Syndrome Foundation at a workshop of AD and DS experts to discuss similarities and differences, challenges, and future directions for this field. The workshop articulated a set of research priorities: (1) target identification and drug development, (2) clinical and pathological staging, (3) cognitive assessment and clinical trials, and (4) partnerships and collaborations with the ultimate goal to deliver effective disease-modifying treatments.
Collapse
Affiliation(s)
- Dean Hartley
- Medical and Scientific Relations, Alzheimer's Association, Chicago, IL, USA.
| | - Thomas Blumenthal
- Linda Crnic Institute for Down Syndrome, University of Colorado, Aurora, CO, USA; Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Maria Carrillo
- Medical and Scientific Relations, Alzheimer's Association, Chicago, IL, USA
| | - Gilbert DiPaolo
- Department of Pathology and Cell Biology, Columbia University Medical Center and The Taub Institute for Research on Alzheimer's Disease and The Aging Brain, New York, NY, USA
| | - Lucille Esralew
- Department of Behavioral Health, Trinitas Regional Medical Center, Elizabeth, NJ, USA
| | - Katheleen Gardiner
- Linda Crnic Institute for Down Syndrome, University of Colorado, Aurora, CO, USA; Department of Pediatrics, University of Colorado, Denver, CO, USA
| | - Ann-Charlotte Granholm
- Department of Neuroscience and the Center on Aging, Medical University of South Carolina, Columbia, SC, USA
| | - Khalid Iqbal
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, New York, NY, USA
| | | | - Cynthia Lemere
- Department of Neurology and the Anne Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ira Lott
- Department of Pediatrics, University of California, Irvine, CA, USA
| | - William Mobley
- Department of Neurosciences, University of California, San Diego, CA, USA
| | - Seth Ness
- Janssen Research & Development, Raritan, NJ, USA
| | - Ralph Nixon
- Department of Psychiatry and Cell Biology, New York University, Langone Medical Center, New York, NY, USA
| | - Huntington Potter
- Linda Crnic Institute for Down Syndrome, University of Colorado, Aurora, CO, USA; Department of Neurology, University of Colorado, Denver, CO, USA
| | - Roger Reeves
- Department of Physiology, McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marwan Sabbagh
- Banner Sun Health Research Institute, Banner Health, Sun City, AZ, USA
| | - Wayne Silverman
- Department of Behavioral Psychology, Kennedy Krieger Institute, Baltimore, MD, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Benjamin Tycko
- Department of Pathology and Cell Biology, Columbia University Medical Center and The Taub Institute for Research on Alzheimer's Disease and The Aging Brain, New York, NY, USA
| | | | - Thomas Wisniewski
- Department of Neurology, Pathology, and Psychiatry, New York University, Langone Medical Center, New York, NY, USA
| |
Collapse
|
25
|
Izzo A, Manco R, Bonfiglio F, Calì G, De Cristofaro T, Patergnani S, Cicatiello R, Scrima R, Zannini M, Pinton P, Conti A, Nitsch L. NRIP1/RIP140 siRNA-mediated attenuation counteracts mitochondrial dysfunction in Down syndrome. Hum Mol Genet 2014; 23:4406-19. [PMID: 24698981 DOI: 10.1093/hmg/ddu157] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mitochondrial dysfunction, which is consistently observed in Down syndrome (DS) cells and tissues, might contribute to the severity of the DS phenotype. Our recent studies on DS fetal hearts and fibroblasts have suggested that one of the possible causes of mitochondrial dysfunction is the downregulation of peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PGC-1α or PPARGC1A)--a key modulator of mitochondrial function--and of several nuclear-encoded mitochondrial genes (NEMGs). Re-analysis of publicly available expression data related to manipulation of chromosome 21 (Hsa21) genes suggested the nuclear receptor interacting protein 1 (NRIP1 or RIP140) as a good candidate Hsa21 gene for NEMG downregulation. Indeed, NRIP1 is known to affect oxidative metabolism and mitochondrial biogenesis by negatively controlling mitochondrial pathways regulated by PGC-1α. To establish whether NRIP1 overexpression in DS downregulates both PGC-1α and NEMGs, thereby causing mitochondrial dysfunction, we used siRNAs to decrease NRIP1 expression in trisomic human fetal fibroblasts. Levels of PGC-1α and NEMGs were increased and mitochondrial function was restored, as shown by reactive oxygen species decrease, adenosine 5'-triphosphate (ATP) production and mitochondrial activity increase. These findings indicate that the Hsa21 gene NRIP1 contributes to the mitochondrial dysfunction observed in DS. Furthermore, they suggest that the NRIP1-PGC-1α axe might represent a potential therapeutic target for restoring altered mitochondrial function in DS.
Collapse
Affiliation(s)
- Antonella Izzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, Naples 80131, Italy
| | - Rosanna Manco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, Naples 80131, Italy
| | - Ferdinando Bonfiglio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, Naples 80131, Italy
| | - Gaetano Calì
- Institute of Experimental Endocrinology and Oncology, National Research Council, Naples 80131, Italy
| | - Tiziana De Cristofaro
- Institute of Experimental Endocrinology and Oncology, National Research Council, Naples 80131, Italy
| | - Simone Patergnani
- Department of Experimental and Diagnostic Medicine, University of Ferrara, Ferrara 44100, Italy
| | - Rita Cicatiello
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, Naples 80131, Italy
| | - Rosella Scrima
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia 71100, Italy
| | - Mariastella Zannini
- Institute of Experimental Endocrinology and Oncology, National Research Council, Naples 80131, Italy
| | - Paolo Pinton
- Department of Experimental and Diagnostic Medicine, University of Ferrara, Ferrara 44100, Italy
| | - Anna Conti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, Naples 80131, Italy
| | - Lucio Nitsch
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, Naples 80131, Italy
| |
Collapse
|
26
|
Ahmed MM, Dhanasekaran AR, Block A, Tong S, Costa ACS, Gardiner KJ. Protein profiles associated with context fear conditioning and their modulation by memantine. Mol Cell Proteomics 2014; 13:919-37. [PMID: 24469516 DOI: 10.1074/mcp.m113.035568] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Analysis of the molecular basis of learning and memory has revealed details of the roles played by many genes and the proteins they encode. Because most individual studies focus on a small number of proteins, many complexities of the relationships among proteins and their dynamic responses to stimulation are not known. We have used the technique of reverse phase protein arrays (RPPA) to assess the levels of more than 80 proteins/protein modifications in subcellular fractions from hippocampus and cortex of mice trained in Context Fear Conditioning (CFC). Proteins include components of signaling pathways, several encoded by immediate early genes or involved in apoptosis and inflammation, and subunits of glutamate receptors. At one hour after training, levels of more than half the proteins had changed in one or more fractions, among them multiple components of the Mitogen-activated protein kinase, MAPK, and Mechanistic Target of Rapamycin, MTOR, pathways, subunits of glutamate receptors, and the NOTCH pathway modulator, NUMB homolog (Drosophila). Levels of 37 proteins changed in the nuclear fraction of hippocampus alone. Abnormalities in levels of thirteen proteins analyzed have been reported in brains of patients with Alzheimer's Disease. We therefore further investigated the protein profiles of mice treated with memantine, a drug approved for treatment of AD. In hippocampus, memantine alone induced many changes similar to those seen after CFC and altered the levels of seven proteins associated with Alzheimer's Disease abnormalities. Lastly, to further explore the relevance of these datasets, we superimposed responses to CFC and memantine onto components of the long term potentiation pathway, a process subserving learning and memory formation. Fourteen components of the long term potentiation pathway and 26 proteins interacting with components responded to CFC and/or memantine. Together, these datasets provide a novel view of the diversity and complexity in protein responses and interactions following normal learning.
Collapse
|
27
|
Szemes M, Davies RL, Garden CLP, Usowicz MM. Weaker control of the electrical properties of cerebellar granule cells by tonically active GABAA receptors in the Ts65Dn mouse model of Down's syndrome. Mol Brain 2013; 6:33. [PMID: 23870245 PMCID: PMC3723448 DOI: 10.1186/1756-6606-6-33] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/14/2013] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Down's syndrome (DS) is caused by triplication of all or part of human chromosome 21 and is characterized by a decrease in the overall size of the brain. One of the brain regions most affected is the cerebellum, in which the number of granule cells (GCs) is markedly decreased. GCs process sensory information entering the cerebellum via mossy fibres and pass it on to Purkinje cells and inhibitory interneurons. How GCs transform incoming signals depends on their input-output relationship, which is adjusted by tonically active GABA(A) receptor channels. RESULTS We report that in the Ts65Dn mouse model of DS, in which cerebellar volume and GC number are decreased as in DS, the tonic GABA(A) receptor current in GCs is smaller than in wild-type mice and is less effective in moderating input resistance and raising the minimum current required for action potential firing. We also find that tonically active GABA(A) receptors curb the height and broaden the width of action potentials in wild-type GCs but not in Ts65Dn GCs. Single-cell real-time quantitative PCR reveals that these electrical differences are accompanied by decreased expression of the gene encoding the GABA(A) receptor β3 subunit but not genes coding for some of the other GABA(A) receptor subunits expressed in GCs (α1, α6, β2 and δ). CONCLUSIONS Weaker moderation of excitability and action potential waveform in GCs of the Ts65Dn mouse by tonically active GABA(A) receptors is likely to contribute to atypical transfer of information through the cerebellum. Similar changes may occur in DS.
Collapse
Affiliation(s)
- Marianna Szemes
- Present address: School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Rachel L Davies
- Present address: Research & Enterprise Development, University of Bristol, Senate House, Tyndall Avenue, Bristol BS8 1TH, UK
| | - Claire LP Garden
- Present address: School of Life, Sport and Social Sciences, Edinburgh Napier University, Sighthill Court, Edinburgh EH11 4BN, UK
| | - Maria M Usowicz
- School of Physiology & Pharmacology, University of Bristol, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
28
|
Kida E, Rabe A, Walus M, Albertini G, Golabek AA. Long-term running alleviates some behavioral and molecular abnormalities in Down syndrome mouse model Ts65Dn. Exp Neurol 2013. [DOI: 10.1016/j.expneurol.2012.11.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Ahmed MM, Dhanasekaran AR, Tong S, Wiseman FK, Fisher EMC, Tybulewicz VLJ, Gardiner KJ. Protein profiles in Tc1 mice implicate novel pathway perturbations in the Down syndrome brain. Hum Mol Genet 2013; 22:1709-24. [PMID: 23349361 PMCID: PMC3613160 DOI: 10.1093/hmg/ddt017] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tc1 mouse model of Down syndrome (DS) is functionally trisomic for ∼120 human chromosome 21 (HSA21) classical protein-coding genes. Tc1 mice display features relevant to the DS phenotype, including abnormalities in learning and memory and synaptic plasticity. To determine the molecular basis for the phenotypic features, the levels of 90 phosphorylation-specific and phosphorylation-independent proteins were measured by Reverse Phase Protein Arrays in hippocampus and cortex, and 64 in cerebellum, of Tc1 mice and littermate controls. Abnormal levels of proteins involved in MAP kinase, mTOR, GSK3B and neuregulin signaling were identified in trisomic mice. In addition, altered correlations among the levels of N-methyl-D-aspartate (NMDA) receptor subunits and the HSA21 proteins amyloid beta (A4) precursor protein (APP) and TIAM1, and between immediate early gene (IEG) proteins and the HSA21 protein superoxide dismutase-1 (SOD1) were found in the hippocampus of Tc1 mice, suggesting altered stoichiometry among these sets of functionally interacting proteins. Protein abnormalities in Tc1 mice were compared with the results of a similar analysis of Ts65Dn mice, a DS mouse model that is trisomic for orthologs of 50 genes trisomic in the Tc1 plus an additional 38 HSA21 orthologs. While there are similarities, abnormalities unique to the Tc1 include increased levels of the S100B calcium-binding protein, mTOR proteins RAPTOR and P70S6, the AMP-kinase catalytic subunit AMPKA, the IEG proteins FBJ murine osteosarcoma viral oncogene homolog (CFOS) and activity-regulated cytoskeleton-associated protein (ARC), and the neuregulin 1 receptor ERBB4. These data identify novel perturbations, relevant to neurological function and to some seen in Alzheimer's disease, that may occur in the DS brain, potentially contributing to phenotypic features and influencing drug responses.
Collapse
Affiliation(s)
- Md Mahiuddin Ahmed
- Department of Pediatrics, Linda Crnic Institute for Down Syndrome, University of Colorado Denver School of Medicine, 12700 E 19th Avenue, Aurora, CO 80045, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Spellman C, Ahmed MM, Dubach D, Gardiner KJ. Expression of trisomic proteins in Down syndrome model systems. Gene 2012; 512:219-25. [PMID: 23103828 DOI: 10.1016/j.gene.2012.10.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 09/06/2012] [Accepted: 10/09/2012] [Indexed: 12/21/2022]
Abstract
Down syndrome (DS) is the most common genetic aberration leading to intellectual disability. DS results from an extra copy of the long arm of human chromosome 21 (HSA21) and the increased expression of trisomic genes due to gene dosage. While expression in DS and DS models has been studied extensively at the RNA level, much less is known about expression of trisomic genes at the protein level. We have used quantitative Western blotting with antibodies to 20 proteins encoded by HSA21 to assess trisomic protein expression in lymphoblastoid cell lines (LCLs) from patients with DS and in brains from two mouse models of DS. These antibodies have recently become available and the 20 proteins largely have not been investigated previously for their potential contributions to the phenotypic features of DS. Twelve proteins had detectable expression in LCLs and three, CCT8, MX1 and PWP2, showed elevated levels in LCLs derived from patients with DS compared with controls. Antibodies against 15 proteins detected bands of appropriate sizes in lysates from mouse brain cortex. Genes for 12 of these proteins are trisomic in the Tc1 mouse model of DS, but only SIM2 and ZNF295 showed elevated expression in Tc1 cortex when compared with controls. Genes for eight of the 15 proteins are trisomic in the Ts65Dn mouse model of DS, but only ZNF294 was over expressed in cortex. Comparison of trisomic gene expression at the protein level with previous reports at the mRNA level showed many inconsistencies. These may be caused by natural inter-individual variability, differences in the age of mice analyzed, or post-transcriptional regulation of gene dosage effects. These antibodies provide resources for further investigation of the molecular basis of intellectual disability in DS.
Collapse
Affiliation(s)
- Claire Spellman
- Department of Pediatrics, Linda Crnic Institute for Down Syndrome, Intellectual and Developmental Disabilities Research Center, University of Colorado Denver School of Medicine, 12700 E 19th Avenue, Mail Stop 8608, Aurora, CO 80045, USA.
| | | | | | | |
Collapse
|
31
|
Ahmed MM, Sturgeon X, Ellison M, Davisson MT, Gardiner KJ. Loss of correlations among proteins in brains of the Ts65Dn mouse model of down syndrome. J Proteome Res 2012; 11:1251-63. [PMID: 22214338 DOI: 10.1021/pr2011582] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Ts65Dn mouse model of Down syndrome (DS) is trisomic for orthologs of 88 of 161 classical protein coding genes present on human chromosome 21 (HSA21). Ts65Dn mice display learning and memory impairments and neuroanatomical, electrophysiological, and cellular abnormalities that are relevant to phenotypic features seen in DS; however, little is known about the molecular perturbations underlying the abnormalities. Here we have used reverse phase protein arrays to profile 64 proteins in the cortex, hippocampus, and cerebellum of Ts65Dn mice and littermate controls. Proteins were chosen to sample a variety of pathways and processes and include orthologs of HSA21 proteins and phosphorylation-dependent and -independent forms of non-HSA21 proteins. Protein profiles overall show remarkable stability to the effects of trisomy, with fewer than 30% of proteins altered in any brain region. However, phospho-proteins are less resistant to trisomy than their phospho-independent forms, and Ts65Dn display abnormalities in some key proteins. Importantly, we demonstrate that Ts65Dn mice have lost correlations seen in control mice among levels of functionally related proteins, including components of the MAP kinase pathway and subunits of the NMDA receptor. Loss of normal patterns of correlations may compromise molecular responses to stimulation and underlie deficits in learning and memory.
Collapse
Affiliation(s)
- Md Mahiuddin Ahmed
- Department of Pediatrics, University of Colorado Denver , Aurora, Colorado, United States
| | | | | | | | | |
Collapse
|
32
|
Currier DG, Polk RC, Reeves RH. A Sonic hedgehog (Shh) response deficit in trisomic cells may be a common denominator for multiple features of Down syndrome. PROGRESS IN BRAIN RESEARCH 2012; 197:223-36. [PMID: 22541295 PMCID: PMC4405118 DOI: 10.1016/b978-0-444-54299-1.00011-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The hedgehog (HH) family of growth factors is involved in many aspects of growth and development, from the establishment of left-right axes at gastrulation to the patterning and formation of multiple structures in essentially every tissue, to the maintenance and regulation of stem cell populations in adults. Sonic hedgehog (Shh) in particular acts as a mitogen, regulating proliferation of target cells, a growth factor that triggers differentiation in target populations, and a morphogen causing cells to respond differently based on their positions along a spatial and temporal concentration gradient. Given its very broad range of effects in development, it is not surprising that many of the structures affected by a disruption in Shh signaling are also affected in Down syndrome (DS). However, recent studies have shown that trisomic cerebellar granule cell precursors have a deficit, compared to their euploid counterparts, in their response to the mitogenic effects of Shh. This deficit substantially contributes to the hypocellular cerebellum in mouse models that parallels the human DS phenotype and can be corrected in early development by a single exposure to a small-molecule agonist of the Shh pathway. Here, we consider how an attenuated Shh response might affect several aspects of development to produce multiple phenotypic outcomes observed in DS.
Collapse
Affiliation(s)
- Duane G. Currier
- Department of Physiology and The McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Renita C. Polk
- Department of Physiology and The McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Roger H. Reeves
- Department of Physiology and The McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|