1
|
Tokdemir M, Erbak E, Tunçez FT, Elmali F, Yilmaz HE. Evaluation of leptin, insulin, orexin, neuropeptide y (NPY) levels in postmortem CSF samples in suicide deaths. J Affect Disord 2025; 381:303-309. [PMID: 40187429 DOI: 10.1016/j.jad.2025.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Suicide remains a significant global public health issue. According to the World Health Organization (WHO), suicide was the third leading cause of mortality among individuals aged 15-29 in 2021, with a total of approximately 726,000 cases reported annually. The etiology of suicide is complex, involving a combination of biological, genetic, and environmental factors, as well as family history, gender, age, personality traits, cultural background, geographic location, medical conditions, mental illnesses, addictions, and psychosocial stressors. Dysregulation of the Hypothalamic Pituitary Adrenal (HPA) axis and the effects of chronic stress play significant roles in the pathophysiology of mood disorders and suicidal behavior. OBJECTIVE This study aimed to investigate the levels of Neuropeptide Y (NPY), Orexin, Leptin, and Insulin in cerebrospinal fluid (CSF) samples of individuals who died by suicide compared to those who died from non-suicidal causes. METHOD The study examined 35 cases of suicide by hanging and 35 cases of non-suicidal deaths unrelated to head trauma. Levels of NPY, Orexin, Leptin, and Insulin in CSF samples collected during toxicological examinations were compared between suicide and control groups. RESULTS NPY levels were significantly higher in the suicide group than in the control group (p < 0.001). No statistically significant differences were found in Orexin (p = 0.194), Insulin (p = 0.892), or Leptin (p = 0.445) levels between the groups. CONCLUSIONS While no definitive biomarkers for diagnosing or predicting suicidal behavior exist, this panel of biomarkers could provide valuable insights for developing targeted treatments to manage patients at risk.
Collapse
Affiliation(s)
- Mehmet Tokdemir
- Izmir Katip Celebi University School of Medicine, Department of Forensic Medicine, Izmir, Turkey; Council of Forensic Medicine Chairmanship of Group, Izmir, Turkey.
| | - Esra Erbak
- Izmir Katip Celebi University School of Medicine, Department of Forensic Medicine, Izmir, Turkey
| | - Ferhat Turgut Tunçez
- Izmir Katip Celebi University School of Medicine, Department of Forensic Medicine, Izmir, Turkey
| | - Ferhan Elmali
- Izmir Katip Celebi University School of Medicine, Department of Biostatistics, Izmir, Turkey
| | - Huriye Erbak Yilmaz
- Izmir Katip Celebi University School of Medicine, Department of Biochemistry, Izmir, Turkey; Izmir Biomedicine and Genome Center, Izmir, Turkey
| |
Collapse
|
2
|
Aliev F, De Sa Nogueira D, Aston-Jones G, Dick DM. Genetic associations between orexin genes and phenotypes related to behavioral regulation in humans, including substance use. Mol Psychiatry 2025:10.1038/s41380-025-02895-4. [PMID: 39880903 DOI: 10.1038/s41380-025-02895-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/23/2024] [Accepted: 01/14/2025] [Indexed: 01/31/2025]
Abstract
The hypothalamic neuropeptide system of orexin (hypocretin) neurons provides projections throughout the neuraxis and has been linked to sleep regulation, feeding and motivation for salient rewards including drugs of abuse. However, relatively little has been done to examine genes associated with orexin signaling and specific behavioral phenotypes in humans. Here, we tested for association of twenty-seven genes involved in orexin signaling with behavioral phenotypes in humans. We tested the full gene set, functional subsets, and individual genes involved in orexin signaling. Our primary phenotype of interest was Externalizing, a composite factor comprised of behaviors and disorders associated with reward-seeking, motivation, and behavioral regulation. We also tested for association with additional phenotypes that have been related to orexin regulation in model organism studies, including alcohol consumption, problematic alcohol use, daytime sleepiness, insomnia, cigarettes per day, smoking initiation, and body mass index. The composite set of 27 genes corresponding to orexin function was highly associated with Externalizing, as well as with alcohol consumption, insomnia, cigarettes per day, smoking initiation and BMI. In addition, all gene subsets (except the OXR2/HCRTR2 subset) were associated with Externalizing. BMI was significantly associated with all gene subsets. The "validated factors for PPOX/HCRT" and "PPOX/HCRT upregulation" gene subsets also were associated with alcohol consumption. Individually, 8 genes showed a strong association with Externalizing, 12 with BMI, 7 with smoking initiation, 3 with alcohol consumption, and 2 with problematic alcohol use, after correction for multiple testing. This study indicates that orexin genes are associated with multiple behaviors and disorders related to self-regulation in humans. This is consistent with prior work in animals that implicated orexin signaling in motivational activation induced by salient stimuli, and supports the hypothesis that orexin signaling is an important potential therapeutic target for numerous behavioral disorders.
Collapse
Affiliation(s)
- Fazil Aliev
- Department of Psychiatry, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
- Rutgers Addiction Research Center, Brain Health Institute, Rutgers University and Rutgers Health, Piscataway, NJ, 08854, USA
| | - David De Sa Nogueira
- Department of Psychiatry, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
- Rutgers Addiction Research Center, Brain Health Institute, Rutgers University and Rutgers Health, Piscataway, NJ, 08854, USA
| | - Gary Aston-Jones
- Department of Psychiatry, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
- Rutgers Addiction Research Center, Brain Health Institute, Rutgers University and Rutgers Health, Piscataway, NJ, 08854, USA
| | - Danielle M Dick
- Department of Psychiatry, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA.
- Rutgers Addiction Research Center, Brain Health Institute, Rutgers University and Rutgers Health, Piscataway, NJ, 08854, USA.
| |
Collapse
|
3
|
Luo PX, Trainor BC. Hypocretin modulation of behavioral coping strategies for social stress. Neuroscience 2025; 564:126-134. [PMID: 39547335 DOI: 10.1016/j.neuroscience.2024.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/30/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Best known for promoting wakefulness and arousal, the neuropeptide hypocretin (Hcrt) also plays an important role in mediating stress responses, including social stress. However, central and systemic manipulation of the Hcrt system has produced diverse behavioral outcomes in animal models. In this review, we first focus on studies where similar manipulations of the Hcrt system led to divergent coping behaviors. We hypothesize that Hcrt differentially facilitates active and passive coping behaviors in response to social stress by acting in different brain regions and on different cell types. We then focus on region and cell type-specific effects of Hcrt in the ventral pallidum, lateral habenula, ventral tegmental area, nucleus accumbens, amygdala, and bed nucleus of the stria terminalis. Overall, the evidence suggests that rather than enhancing or inhibiting behavioral responses to social stress, Hcrt may signal the heightened arousal associated with stressful contexts. The resulting behavioral effects depend on which circuits Hcrt release occurs in and which receptor types are activated. Further study is needed to determine how and why circuit specific activation of Hcrt neurons occurs.
Collapse
Affiliation(s)
- Pei X Luo
- Department of Psychology, University of California - Davis, Davis, CA 95616, USA
| | - Brian C Trainor
- Department of Psychology, University of California - Davis, Davis, CA 95616, USA.
| |
Collapse
|
4
|
Luo PX, Serna Godoy A, Zakharenkov HC, Vang N, Wright EC, Balantac TA, Archdeacon SC, Black AM, Lake AA, Ramirez AV, Lozier LE, Perez MD, Bhangal I, Desta NM, Trainor BC. Hypocretin in the nucleus accumbens shell modulates social approach in female but not male California mice. Neuropsychopharmacology 2024; 49:2000-2010. [PMID: 39117901 PMCID: PMC11480414 DOI: 10.1038/s41386-024-01937-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024]
Abstract
The hypocretin (Hcrt) system modulates arousal and anxiety-related behaviors and has been considered as a novel treatment target for stress-related affective disorders. We examined the effects of Hcrt acting in the nucleus accumbens shell (NAcSh) and anterodorsal bed nucleus of the stria terminalis (adBNST) on social behavior in male and female California mice (Peromyscus californicus). In female but not male California mice, infusion of Hcrt1 into NAcSh decreased social approach. Weak effects of Hcrt1 on social vigilance were observed in both females and males. No behavioral effects of Hcrt1 infused into the adBNST were observed. Analyses of sequencing data from California mice and Mus musculus NAc showed that Hcrtr2 was more abundant than Hcrtr1, so we infused the selective Hcrt receptor 2 antagonist into the NAcSh, which increased social approach in females previously exposed to social defeat. A calcium imaging study in the NAcSh of females before and after stress exposure showed that neural activity increased immediately following the expression of social avoidance but not during freezing behavior. This observation is consistent with previous studies that identified populations of neurons in the NAc that drive avoidance. Intriguingly, calcium transients were not affected by stress. These data suggest that hypocretin acting in the NAcSh plays a key role in modulating stress-induced social avoidance.
Collapse
Affiliation(s)
- Pei X Luo
- Department of Psychology, University of California, Davis, CA, USA
| | | | | | - Nou Vang
- Department of Psychology, University of California, Davis, CA, USA
| | - Emily C Wright
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | | | | | - Alexis M Black
- Department of Psychology, University of California, Davis, CA, USA
| | - Alyssa A Lake
- Department of Psychology, University of California, Davis, CA, USA
| | - Alison V Ramirez
- Department of Psychology, University of California, Davis, CA, USA
| | - Lauren E Lozier
- Department of Psychology, University of California, Davis, CA, USA
| | - Melvin D Perez
- Department of Psychology, University of California, Davis, CA, USA
| | - Irvin Bhangal
- Department of Psychology, University of California, Davis, CA, USA
| | - Nile M Desta
- Department of Psychology, University of California, Davis, CA, USA
| | - Brian C Trainor
- Department of Psychology, University of California, Davis, CA, USA.
| |
Collapse
|
5
|
Viudez-Martínez A, Torregrosa AB, Navarrete F, García-Gutiérrez MS. Understanding the Biological Relationship between Migraine and Depression. Biomolecules 2024; 14:163. [PMID: 38397400 PMCID: PMC10886628 DOI: 10.3390/biom14020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/25/2024] Open
Abstract
Migraine is a highly prevalent neurological disorder. Among the risk factors identified, psychiatric comorbidities, such as depression, seem to play an important role in its onset and clinical course. Patients with migraine are 2.5 times more likely to develop a depressive disorder; this risk becomes even higher in patients suffering from chronic migraine or migraine with aura. This relationship is bidirectional, since depression also predicts an earlier/worse onset of migraine, increasing the risk of migraine chronicity and, consequently, requiring a higher healthcare expenditure compared to migraine alone. All these data suggest that migraine and depression may share overlapping biological mechanisms. Herein, this review explores this topic in further detail: firstly, by introducing the common epidemiological and risk factors for this comorbidity; secondly, by focusing on providing the cumulative evidence of common biological aspects, with a particular emphasis on the serotoninergic system, neuropeptides such as calcitonin-gene-related peptide (CGRP), pituitary adenylate cyclase-activating polypeptide (PACAP), substance P, neuropeptide Y and orexins, sexual hormones, and the immune system; lastly, by remarking on the future challenges required to elucidate the etiopathological mechanisms of migraine and depression and providing updated information regarding new key targets for the pharmacological treatment of these clinical entities.
Collapse
Affiliation(s)
- Adrián Viudez-Martínez
- Hospital Pharmacy Service, Hospital General Dr. Balmis de Alicante, 03010 Alicante, Spain;
| | - Abraham B. Torregrosa
- Instituto de Neurociencias, Universidad Miguel Hernández, 03550 San Juan de Alicante, Spain; (A.B.T.); (F.N.)
- Research Network on Primary Addictions, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández, 03550 San Juan de Alicante, Spain; (A.B.T.); (F.N.)
- Research Network on Primary Addictions, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández, 03550 San Juan de Alicante, Spain; (A.B.T.); (F.N.)
- Research Network on Primary Addictions, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| |
Collapse
|
6
|
Dong P, Dai W, Su M, Wang S, Ma Y, Zhao T, Zheng F, Sun P. The potential role of the orexin system in premenstrual syndrome. Front Endocrinol (Lausanne) 2024; 14:1266806. [PMID: 38292774 PMCID: PMC10824941 DOI: 10.3389/fendo.2023.1266806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024] Open
Abstract
Premenstrual syndrome (PMS) occurs recurrently during the luteal phase of a woman's menstrual cycle and disappears after menstruation ends. It is characterized by abnormal changes in both the body and mood, and in certain cases, severe disruptions in daily life and even suicidal tendencies. Current drugs for treating PMS, such as selective serotonin reuptake inhibitors, do not yield satisfactory results. Orexin, a neuropeptide produced in the lateral hypothalamus, is garnering attention in the treatment of neurological disorders and is believed to modulate the symptoms of PMS. This paper reviews the advancements in research on sleep disturbances, mood changes, and cognitive impairment caused by PMS, and suggests potential pathways for orexin to address these symptoms. Furthermore, it delves into the role of orexin in the molecular mechanisms underlying PMS. Orexin regulates steroid hormones, and the cyclic fluctuations of estrogen and progesterone play a crucial role in the pathogenesis of PMS. Additionally, orexin also modulates the gamma-aminobutyric acid (GABA) system and the inflammatory response involved in coordinating the mechanism of PMS. Unraveling the role of orexin in the pathogenesis of PMS will not only aid in understanding the etiology of PMS but also hold implications for orexin as a novel target for treating PMS.
Collapse
Affiliation(s)
- Ping Dong
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weibo Dai
- Department of Pharmacy, Zhongshan Hospital of Traditional Chinese Medicine, Zhong Shan, China
| | - Mengyue Su
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shukun Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuexiang Ma
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tingting Zhao
- College of Foreign Languages, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Feng Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Peng Sun
- Innovation Research Institute of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
7
|
Kostansek JA, Latona GJ, Heruye SH, Matthews S, Bockman CS, Simeone KA, Simeone TA. Orexin receptors regulate hippocampal sharp wave-ripple complexes in ex vivo slices. Eur J Pharmacol 2023; 950:175763. [PMID: 37146705 PMCID: PMC10311575 DOI: 10.1016/j.ejphar.2023.175763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/13/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Orexin is a neuromodulatory peptide produced by lateral hypothalamic orexin neurons and binds to G-protein-coupled orexin-1 receptor and orexin-2 receptors. Whether orexin modulates learning and memory is not fully understood. Orexin has biphasic effects on learning and memory: promoting learning and memory at homeostatic levels and inhibiting at supra- and sub-homeostatic levels. Hippocampal sharp wave-ripples encode memory information and are essential for memory consolidation and retrieval. The role of orexin on sharp wave-ripples in hippocampal CA1 remains unknown. Here, we used multi-electrode array recordings in acute ex vivo hippocampal slices to determine the effects of orexin receptor antagonists on sharp wave-ripples. Bath-application of either the orexin-1 receptor antagonist N-(2-Methyl-6-benzoxazolyl)-N'-1,5-naphthyridin-4-yl urea (SB-334867) or the orexin-2 receptor antagonist N-Ethyl-2-[(6-methoxy-3-pyridinyl)[(2-methylphenyl)sulfonyl]amino]-N-(3-pyridinylmethyl)-acetamide (EMPA) reduced sharp wave and ripple incidence, sharp wave amplitude, and sharp wave duration. SB-334867 and EMPA effects on sharp wave amplitude and duration were equivalent, whereas EMPA exhibited a greater reduction of sharp wave and ripple incidence. EMPA also increased ripple duration, whereas SB-334867 had no effect. Inhibition of both orexin receptors with a dual orexin receptor antagonist N-[1,1'-Biphenyl]-2-yl-1-[2-[(1-methyl-1H-benzimidazol-2-yl)thio]acetyl-2-pyrrolidinedicarboxamide (TCS-1102) had effects similar to EMPA, however, sharp wave amplitude and duration were unaffected. Region-specific expression of orexin receptors suggests orexin may regulate sharp wave generation in CA3, dentate gyrus-mediated sharp wave modification, sharp wave propagation to CA1, and local ripple emergence in CA1. Our study indicates an orexin contribution to hippocampal sharp wave-ripple complexes and suggests a mechanism by which sub-homeostatic concentrations of orexin may inhibit learning and memory function.
Collapse
Affiliation(s)
- Joseph A Kostansek
- Creighton University, School of Medicine, Department of Pharmacology & Neuroscience, Omaha, NE, 68174, USA.
| | - Gavin J Latona
- Creighton University, School of Medicine, Department of Pharmacology & Neuroscience, Omaha, NE, 68174, USA
| | - Segewkal H Heruye
- Creighton University, School of Medicine, Department of Pharmacology & Neuroscience, Omaha, NE, 68174, USA
| | - Stephanie Matthews
- Creighton University, School of Medicine, Department of Pharmacology & Neuroscience, Omaha, NE, 68174, USA
| | - Charles S Bockman
- Creighton University, School of Medicine, Department of Pharmacology & Neuroscience, Omaha, NE, 68174, USA
| | - Kristina A Simeone
- Creighton University, School of Medicine, Department of Pharmacology & Neuroscience, Omaha, NE, 68174, USA
| | - Timothy A Simeone
- Creighton University, School of Medicine, Department of Pharmacology & Neuroscience, Omaha, NE, 68174, USA.
| |
Collapse
|
8
|
Costello A, Linning-Duffy K, Vandenbrook C, Lonstein JS, Yan L. Effects of bright light therapy on neuroinflammatory and neuroplasticity markers in a diurnal rodent model of Seasonal Affective Disorder. Ann Med 2023; 55:2249015. [PMID: 37625385 PMCID: PMC10461522 DOI: 10.1080/07853890.2023.2249015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Bright light therapy (BLT) is widely used for treating Seasonal Affective Disorder (SAD). However, the neural mechanisms underlying the therapeutic effects of BLT remain largely unexplored. The present study used a diurnal rodent (Nile grass rats; Arvicanthis niloticus) to test the hypothesis that the therapeutic effects of BLT could be, in part, due to reduced neuroinflammation and/or enhanced neuroplasticity. Our previous research has demonstrated that compared to grass rats housed in a summer-like daytime bright light condition (1000 lux), those housed in a winter-like daytime dim light condition (50 lux) showed increased depression- and anxiety-like behaviours, as well as impaired sociosexual behaviours and spatial memory, similar to what is observed in patients suffering from SAD. MATERIALS AND METHODS In the present study, male and female grass rats were housed under the winter-like dim daytime light condition (lights on 600-1800 hr, 50 lux). The experimental groups received daily 1-h early morning BLT from 0600-0700 using full-spectrum light (10,000 lux), while the control groups received narrowband red light (λmax, 780 nm). Following 4 weeks of treatment, the expression of several neuroinflammatory or plasticity markers was examined in the medial prefrontal cortex (mPFC), basolateral amygdala (BLA), and the CA1 of the dorsal hippocampus. RESULTS For the neuroinflammatory markers, BLT reduced TNF-α in the BLA of females, and upregulated CD11b in the mPFC and IL6 in the BLA in males. For the neuroplasticity markers, BLT downregulated BDNF in the CA1 and TrkB in all three brain regions in females but upregulated BDNF in the BLA and CA1 in males. CONCLUSIONS These results indicate that the therapeutic effects of BLT on sleep, mood, and cognition may be attributed in part to mechanisms involving neuroinflammation and neuroplasticity in corticolimbic brain regions. Moreover, these effects appear to vary between sexes.
Collapse
Affiliation(s)
| | | | | | - Joseph S. Lonstein
- Department of Psychology, MI State University, MI, USA
- Neuroscience Program, Michigan State University, MI, USA
| | - Lily Yan
- Department of Psychology, MI State University, MI, USA
- Neuroscience Program, Michigan State University, MI, USA
| |
Collapse
|
9
|
Raïch I, Rebassa JB, Lillo J, Cordomi A, Rivas-Santisteban R, Lillo A, Reyes-Resina I, Franco R, Navarro G. Antagonization of OX 1 Receptor Potentiates CB 2 Receptor Function in Microglia from APP Sw/Ind Mice Model. Int J Mol Sci 2022; 23:12801. [PMID: 36361598 PMCID: PMC9656664 DOI: 10.3390/ijms232112801] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/04/2022] [Accepted: 10/14/2022] [Indexed: 08/01/2023] Open
Abstract
Microdialysis assays demonstrated a possible role of orexin in the regulation of amyloid beta peptide (Aß) levels in the hippocampal interstitial fluid in the APP transgenic model. CB2R is overexpressed in activated microglia, showing a neuroprotective effect. These two receptors may interact, forming CB2-OX1-Hets and becoming a new target to combat Alzheimer's disease. Aims: Demonstrate the potential role of CB2-OX1-Hets expression and function in microglia from animal models of Alzheimer's disease. Receptor heteromer expression was detected by immunocytochemistry, bioluminescence resonance energy transfer (BRET) and proximity ligation assay (PLA) in transfected HEK-293T cells and microglia primary cultures. Quantitation of signal transduction events in a heterologous system and in microglia cells was performed using the AlphaScreen® SureFire® kit, western blot, the GCaMP6 calcium sensor and the Lance Ultra cAMP kit (PerkinElmer). The formation of CB2-OX1 receptor complexes in transfected HEK-293T cells has been demonstrated. The tetrameric complex is constituted by one CB2R homodimer, one OX1R homodimer and two G proteins, a Gi and a Gq. The use of TAT interfering peptides showed that the CB2-OX1 receptor complex interface is TM4-TM5. At the functional level it has been observed that the OX1R antagonist, SB334867, potentiates the action induced by CB2R agonist JWH133. This effect is observed in transfected HEK-293T cells and microglia, and it is stronger in the Alzheimer's disease (AD) animal model APPSw/Ind where the expression of the complex assessed by the proximity ligation assay indicates an increase in the number of complexes compared to resting microglia. The CB2-OX1 receptor complex is overexpressed in microglia from AD animal models where OX1R antagonists potentiate the neuroprotective actions of CB2R activation. Taken together, these results point to OX1R antagonists as drugs with therapeutic potential to combat AD. Data access statement: Raw data will be provided by the corresponding author upon reasonable requirement.
Collapse
Affiliation(s)
- Iu Raïch
- Molecular Neuropharmacology Laboratory, Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, 08007 Barcelona, Spain
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28029 Madrid, Spain
- Neurosciences Institut, University of Barcelona (NeuroUB), 08028 Barcelona, Spain
| | - Joan Biel Rebassa
- Molecular Neuropharmacology Laboratory, Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, 08007 Barcelona, Spain
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28029 Madrid, Spain
- Neurosciences Institut, University of Barcelona (NeuroUB), 08028 Barcelona, Spain
| | - Jaume Lillo
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28029 Madrid, Spain
- Neurosciences Institut, University of Barcelona (NeuroUB), 08028 Barcelona, Spain
| | | | - Rafael Rivas-Santisteban
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28029 Madrid, Spain
- Neurosciences Institut, University of Barcelona (NeuroUB), 08028 Barcelona, Spain
| | - Alejandro Lillo
- Molecular Neuropharmacology Laboratory, Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, 08007 Barcelona, Spain
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28029 Madrid, Spain
- Neurosciences Institut, University of Barcelona (NeuroUB), 08028 Barcelona, Spain
| | - Irene Reyes-Resina
- Molecular Neuropharmacology Laboratory, Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, 08007 Barcelona, Spain
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28029 Madrid, Spain
- Neurosciences Institut, University of Barcelona (NeuroUB), 08028 Barcelona, Spain
| | - Rafael Franco
- Molecular Neuropharmacology Laboratory, Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, 08007 Barcelona, Spain
- School of Chemistry, Universitat de Barcelona, 08007 Barcelona, Spain
| | - Gemma Navarro
- Molecular Neuropharmacology Laboratory, Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, 08007 Barcelona, Spain
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28029 Madrid, Spain
- Neurosciences Institut, University of Barcelona (NeuroUB), 08028 Barcelona, Spain
| |
Collapse
|
10
|
DeCarlo AA, Hammes N, Johnson PL, Shekhar A, Samuels BC. Dual Orexin Receptor Antagonist Attenuates Increases in IOP, ICP, and Translaminar Pressure Difference After Stimulation of the Hypothalamus in Rats. Invest Ophthalmol Vis Sci 2022; 63:1. [PMID: 35234838 PMCID: PMC8899853 DOI: 10.1167/iovs.63.3.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
PURPOSE Intraocular pressure (IOP) remains the only modifiable risk factor for glaucoma progression. Our previous discovery that stimulation of nuclei within the hypothalamus can modulate IOP, intracranial pressure (ICP), and translaminar pressure difference (TLPD) fluctuations led us to investigate this pathway further. Our purpose was to determine the role of orexin neurons, primarily located in the dorsomedial hypothalamus (DMH) and perifornical (PeF) regions of the hypothalamus, in modulating these pressures. METHODS Sprague Dawley rats were pretreated systemically with a dual orexin receptor antagonist (DORA-12) at 30 mg/Kg (n = 8), 10 mg/Kg (n = 8), or vehicle control (n = 8). The IOP, ICP, heart rate (HR), and mean arterial pressure (MAP) were recorded prior to and following excitation of the DMH/PeF using microinjection of the gamma-aminobutyric acid (GABA)A receptor antagonist bicuculline methiodide (BMI). RESULTS Administration of the DORA at 30 mg/Kg significantly attenuated peak IOP by 5.2 ± 3.6 mm Hg (P = 0.007). During the peak response period (8-40 minutes), the area under the curve (AUC) for the 30 mg/Kg DORA cohort was significantly lower than the control cohort during the same period (P = 0.04). IOP responses for peak AUC versus DORA dose, from 0 to 30 mg/Kg, were linear (R2 = 0.18, P = 0.04). The ICP responses during the peak response period (4-16 minutes) versus DORA dose were also linear (R2 = 0.24, P = 0.014). Pretreatment with DORA significantly decreased AUC for the TLPD following stimulation of the DMH/PeF (10 mg/kg, P = 0.045 and 30 mg/kg, P = 0.015). CONCLUSIONS DORAs have the potential to attenuate asynchronous changes in IOP and in ICP and to lessen the extent of TLPDs that may result from central nervous system (CNS) activation.
Collapse
Affiliation(s)
- Arthur A. DeCarlo
- University of Alabama at Birmingham, Department of Ophthalmology and Visual Sciences, Birmingham, Alabama, United States
| | - Nathan Hammes
- Indiana University School of Medicine, Department of Ophthalmology, Indianapolis, Indiana, United States,Microsoft Corporation, Redmond, Washington, United States
| | - Philip L. Johnson
- Indiana University School of Medicine, Department of Anatomy, Cell Biology, and Physiology, Indianapolis, Indiana, United States
| | - Anantha Shekhar
- University of Pittsburgh, Department of Psychiatry, Pittsburgh, Pennsylvania, United States
| | - Brian C. Samuels
- University of Alabama at Birmingham, Department of Ophthalmology and Visual Sciences, Birmingham, Alabama, United States
| |
Collapse
|
11
|
Effects of Bedtime Dosing With Suvorexant and Zolpidem on Balance and Psychomotor Performance in Healthy Elderly Participants During the Night and in the Morning. J Clin Psychopharmacol 2021; 41:414-420. [PMID: 34181362 DOI: 10.1097/jcp.0000000000001439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE/BACKGROUND This study was designed as an early assessment of the safety of the orexin receptor antagonist suvorexant, but also included exploratory assessments of balance and psychomotor performance that are the focus of this report. METHODS/PROCEDURES This was a double-blind, randomized, 3-period, crossover, phase 1 study. Balance and psychomotor performance were evaluated during the night in 12 healthy elderly participants after bedtime administration of suvorexant 30 mg (a supratherapeutic dose), the GABAergic agonist zolpidem 5 mg (the recommended dose in the elderly), or placebo. Balance (body sway measured by platform stability) and psychomotor performance (measured by choice reaction time) were assessed predose and at 1.5, 4, and 8 hours postdose in each period. Memory (measured by word recall) was assessed predose and at 4 hours postdose. FINDINGS/RESULTS At 1.5 hours after nighttime administration of each drug (the approximate time of their anticipated maximal plasma concentrations), both zolpidem and suvorexant increased body sway versus placebo, with a greater increase for zolpidem than suvorexant. Suvorexant increased choice reaction time compared with placebo or zolpidem at 1.5 hours. There were no treatment differences on body sway or choice reaction time at 4 or 8 hours, or on word recall at 4 hours. IMPLICATIONS/CONCLUSIONS These exploratory data suggest that a 30-mg dose of suvorexant (supratherapeutic) and a 5-mg dose of zolpidem (recommended dose in the elderly) impaired balance at 1.5 hours in healthy elderly people, with potentially less impairment for suvorexant relative to zolpidem, but no treatment differences on body sway or psychomotor performance at 4 and 8 hours. Because of their exploratory nature, these findings and their clinical relevance, if any, require confirmation in a prospective study.
Collapse
|
12
|
Zlebnik NE, Holtz NA, Lepak VC, Saykao AT, Zhang Y, Carroll ME. Age-specific treatment effects of orexin/hypocretin-receptor antagonism on methamphetamine-seeking behavior. Drug Alcohol Depend 2021; 224:108719. [PMID: 33940327 PMCID: PMC8180489 DOI: 10.1016/j.drugalcdep.2021.108719] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Worldwide methamphetamine (METH) use has increased significantly over the last 10 years, and in the US, METH dependence has sky-rocketed among individuals with opioid use disorder. Of significant concern, METH use is gaining popularity among groups with susceptibility to developing severe substance use disorders, such as women and adolescents. Nevertheless, there is no established pharmacotherapy for METH addiction. Emerging evidence has identified the orexin/hypocretin system as an important modulator of reward-driven behavior and a potential target for the treatment of drug addiction and relapse. However, to date, there have been no investigations into the therapeutic efficacy of orexin/hypocretin receptor antagonists for METH-motivated behavior in adolescents or adults. In the present study, we examined the effects of selective antagonists of the orexin-1 (SB-334867, 20 mg/kg) and orexin-2 (TCS-OX2-29, 20 mg/kg) receptors on the reinstatement of METH seeking in both adolescent and adult male and female rats. METHODS Rats were trained to self-administer METH (0.05 mg/kg/inf, iv) during two 2-h sessions/day for 5 days. Following 20 sessions of extinction over 10 days, a within-subjects design was used to test for METH seeking precipitated by METH (1 mg/kg, ip) or METH cues after systemic pretreatment with SB-334867 or TCS-OX2-29. RESULTS SB-334867 reduced cue-induced reinstatement in males and females, regardless of age. Additionally, METH-induced METH seeking was attenuated by SB-334867 in adolescents and by TCS-OX2-29 in adults. CONCLUSION Selective orexin/hypocretin receptor antagonists have significant therapeutic potential for diminishing METH-seeking behavior, although their treatment efficacy may be influenced by age.
Collapse
Affiliation(s)
- Natalie E Zlebnik
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.
| | - Nathan A Holtz
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Victoria C Lepak
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Amy T Saykao
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, NC, 27709, USA
| | - Marilyn E Carroll
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| |
Collapse
|
13
|
Radke AK, Sneddon EA, Frasier RM, Hopf FW. Recent Perspectives on Sex Differences in Compulsion-Like and Binge Alcohol Drinking. Int J Mol Sci 2021; 22:ijms22073788. [PMID: 33917517 PMCID: PMC8038761 DOI: 10.3390/ijms22073788] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/29/2022] Open
Abstract
Alcohol use disorder remains a substantial social, health, and economic problem and problem drinking levels in women have been increasing in recent years. Understanding whether and how the underlying mechanisms that drive drinking vary by sex is critical and could provide novel, more targeted therapeutic treatments. Here, we examine recent results from our laboratories and others which we believe provide useful insights into similarities and differences in alcohol drinking patterns across the sexes. Findings for binge intake and aversion-resistant, compulsion-like alcohol drinking are considered, since both are likely significant contributors to alcohol problems in humans. We also describe studies regarding mechanisms that may underlie sex differences in maladaptive alcohol drinking, with some focus on the importance of nucleus accumbens (NAcb) core and shell regions, several receptor types (dopamine, orexin, AMPA-type glutamate), and possible contributions of sex hormones. Finally, we discuss how stressors such as early life stress and anxiety-like states may interact with sex differences to contribute to alcohol drinking. Together, these findings underscore the importance and critical relevance of studying female and male mechanisms for alcohol and co-morbid conditions to gain a true and clinically useful understanding of addiction and neuropsychiatric mechanisms and treatment.
Collapse
Affiliation(s)
- Anna K. Radke
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH 45040, USA;
- Correspondence:
| | - Elizabeth A. Sneddon
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH 45040, USA;
| | - Raizel M. Frasier
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (R.M.F.); (F.W.H.)
| | - Frederic W. Hopf
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (R.M.F.); (F.W.H.)
| |
Collapse
|
14
|
Moriya S, Takahashi H, Masukawa D, Yamada M, Ishigooka J, Nishimura K. Dual orexin receptor antagonist (DORA-12) treatment affects the overall levels of Net/maoA mRNA expression in the hippocampus. J Pharmacol Sci 2021; 145:198-201. [PMID: 33451754 DOI: 10.1016/j.jphs.2020.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 11/16/2022] Open
Abstract
The orexinergic system plays a significant role in regulating proper sleep/wake maintenance. Dual orexin receptor antagonist (DORA) is widely prescribed for insomnia symptoms. The antagonist acts on orexin 1 and 2 receptors located in certain brain areas, including the locus coeruleus and dorsal raphe. Nevertheless, its effects on monoamine-related gene expression remain unclear. Here, we measured the expression levels of monoamine-related genes in DORA-treated mice. DORA treatment significantly affected overall levels of noradrenalin transporter/monoamine oxidases A mRNA expression in the hippocampus. Our findings suggest that DORA contributes to noradrenalin-related gene expression regulation in the central nervous system.
Collapse
Affiliation(s)
- Shunpei Moriya
- Department of Psychiatry, Tokyo Women's Medical University, School of Medicine, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Hitoshi Takahashi
- Department of Psychiatry, Tokyo Women's Medical University, School of Medicine, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Daiki Masukawa
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Makiko Yamada
- Department of Psychiatry, Tokyo Women's Medical University, School of Medicine, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Jun Ishigooka
- Department of Psychiatry, Tokyo Women's Medical University, School of Medicine, Shinjuku-ku, Tokyo, 162-8666, Japan; CNS Pharmacological Research Institute, Shibuya-ku, Tokyo, 151-0051, Japan
| | - Katsuji Nishimura
- Department of Psychiatry, Tokyo Women's Medical University, School of Medicine, Shinjuku-ku, Tokyo, 162-8666, Japan
| |
Collapse
|
15
|
González-Hernández A, Condés-Lara M, García-Boll E, Villalón CM. An outlook on the trigeminovascular mechanisms of action and side effects concerns of some potential neuropeptidergic antimigraine therapies. Expert Opin Drug Metab Toxicol 2021; 17:179-199. [DOI: 10.1080/17425255.2021.1856366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Miguel Condés-Lara
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Enrique García-Boll
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Carlos M. Villalón
- Departamento de Farmacobiología, Cinvestav-Coapa, Ciudad de México, México
| |
Collapse
|
16
|
Korabelnikova EA, Danilov AB, Danilov AB, Vorobyeva YD, Latysheva NV, Artemenko AR. Sleep Disorders and Headache: A Review of Correlation and Mutual Influence. Pain Ther 2020; 9:411-425. [PMID: 32621175 PMCID: PMC7648824 DOI: 10.1007/s40122-020-00180-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Indexed: 12/18/2022] Open
Abstract
The review is devoted to the complex relationship between headache and sleep disorders. The shared neuroanatomical structures of the nervous system involved in pain perception and sleep are shown, and mechanisms of comorbidity between headaches and sleep disorders are considered. Various types of headaches in the continuum of the sleep–wake cycle are described. Both pharmacological and non-pharmacological approaches to treatment are examined in detail, with the biochemical basis of the drug action.
Collapse
Affiliation(s)
- Elena A Korabelnikova
- Department of Neurology, Institute for Postgraduate Education, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| | - Alexey B Danilov
- Department of Neurology, Institute for Postgraduate Education, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Andrey B Danilov
- Department of Neurology, Institute for Postgraduate Education, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Yulia D Vorobyeva
- Department of Neurology, Institute for Postgraduate Education, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Nina V Latysheva
- Department of Neurology, Institute for Postgraduate Education, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Ada R Artemenko
- Department of Neurology, Institute for Postgraduate Education, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
17
|
Targeting the Orexin System for Prescription Opioid Use Disorder. Brain Sci 2020; 10:brainsci10040226. [PMID: 32290110 PMCID: PMC7225970 DOI: 10.3390/brainsci10040226] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 01/09/2023] Open
Abstract
Prescription opioids are potent analgesics that are used for clinical pain management. However, the nonmedical use of these medications has emerged as a major concern because of dramatic increases in abuse and overdose. Therefore, effective strategies to prevent prescription opioid use disorder are urgently needed. The orexin system has been implicated in the regulation of motivation, arousal, and stress, making this system a promising target for the treatment of substance use disorder. This review discusses recent preclinical studies that suggest that orexin receptor blockade could be beneficial for the treatment of prescription opioid use disorder.
Collapse
|
18
|
Calva CB, Fadel JR. Intranasal administration of orexin peptides: Mechanisms and therapeutic potential for age-related cognitive dysfunction. Brain Res 2020; 1731:145921. [PMID: 30148983 PMCID: PMC6387866 DOI: 10.1016/j.brainres.2018.08.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/03/2018] [Accepted: 08/23/2018] [Indexed: 12/11/2022]
Abstract
Cognitive impairment is a core feature of several neuropsychiatric and neurological disorders, including narcolepsy and age-related dementias. Current pharmacotherapeutic approaches to cognitive enhancement are few in number and limited in efficacy. Thus, novel treatment strategies are needed. The hypothalamic orexin (hypocretin) system, a central integrator of physiological function, plays an important role in modulating cognition. Several single- and dual-orexin receptor antagonists are available for various clinical and preclinical applications, but the paucity of orexin agonists has limited the ability to research their therapeutic potential. To circumvent this hurdle, direct intranasal administration of orexin peptides is being investigated as a prospective treatment for cognitive dysfunction, narcolepsy or other disorders in which deficient orexin signaling has been implicated. Here, we describe the possible mechanisms and therapeutic potential of intranasal orexin delivery. Combined with the behavioral evidence that intranasal orexin-A administration improves cognitive function in narcoleptic and sleep-deprived subjects, our neurochemical studies in young and aged animals highlights the capacity for intranasal orexin administration to improve age-related deficits in neurotransmission. In summary, we highlight prior and original work from our lab and from others that provides a framework for the use of intranasal orexin peptides in treating cognitive dysfunction, especially as it relates to age-related cognitive disorders.
Collapse
Affiliation(s)
- Coleman B Calva
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, 6311 Garners Ferry Road, Columbia, SC 29209, USA
| | - Jim R Fadel
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, 6311 Garners Ferry Road, Columbia, SC 29209, USA.
| |
Collapse
|
19
|
He D, Jiang B, Guo Z, Mu Q, Mcclure MA. Biphasic feature of placebo response in primary insomnia: pooled analysis of data from randomized controlled clinical trials of orexin receptor antagonists. Sleep 2020; 43:5583906. [PMID: 31593985 DOI: 10.1093/sleep/zsz238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 09/13/2019] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The placebo response to orexin receptor antagonists in primary insomnia is little-known. Our aim was, therefore, to conduct a systematic review of placebo-controlled randomized clinical trials to characterize placebo response. METHODS We performed a comprehensive literature search for randomized, placebo-controlled, double-blind clinical trials evaluating the efficacy of orexin receptor antagonists addressing primary insomnia. To pool effect size estimates (Cohen's d) of placebo and orexin receptor antagonists across trials for outcome measures, a meta-analysis was done according to the Cochrane guideline. RESULTS The placebo response was significant and robust to improve the symptoms of insomnia in terms of objective and subjective measures, and the effects (0.70 ± 0.51) in subjective measures were smaller than that (1.10 ± 1.14) in objective measures (p = 0.027). The biphasic feature of placebo response showed an initial short-term increase of placebo effect and subsequent changeless long-term effect. CONCLUSION The biphasic feature of placebo response is clinically useful, and neuroimaging is essential to clarify the long-term mechanism in the future.
Collapse
Affiliation(s)
- Dongmei He
- Department of Neurology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Binghu Jiang
- Imaging Institute of Brain Function, Department of Radiology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Zhiwei Guo
- Imaging Institute of Brain Function, Department of Radiology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Qiwen Mu
- Imaging Institute of Brain Function, Department of Radiology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Morgan A Mcclure
- Imaging Institute of Brain Function, Department of Radiology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
20
|
Deganutti G, Moro S, Reynolds CA. A Supervised Molecular Dynamics Approach to Unbiased Ligand–Protein Unbinding. J Chem Inf Model 2020; 60:1804-1817. [DOI: 10.1021/acs.jcim.9b01094] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Giuseppe Deganutti
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, United Kingdom
| | - Stefano Moro
- Molecular Modeling Section, Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131, Padova, Italy
| | - Christopher A. Reynolds
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, United Kingdom
| |
Collapse
|
21
|
Cavaliere C, Longarzo M, Fogel S, Engström M, Soddu A. Neuroimaging of Narcolepsy and Primary Hypersomnias. Neuroscientist 2020; 26:310-327. [PMID: 32111133 DOI: 10.1177/1073858420905829] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Advances in neuroimaging open up the possibility for new powerful tools to be developed that potentially can be applied to clinical populations to improve the diagnosis of neurological disorders, including sleep disorders. At present, the diagnosis of narcolepsy and primary hypersomnias is largely limited to subjective assessments and objective measurements of behavior and sleep physiology. In this review, we focus on recent neuroimaging findings that provide insight into the neural basis of narcolepsy and the primary hypersomnias Kleine-Levin syndrome and idiopathic hypersomnia. We describe the role of neuroimaging in confirming previous genetic, neurochemical, and neurophysiological findings and highlight studies that permit a greater understanding of the symptoms of these sleep disorders. We conclude by considering some of the remaining challenges to overcome, the existing knowledge gaps, and the potential role for neuroimaging in understanding the pathogenesis and clinical features of narcolepsy and primary hypersomnias.
Collapse
Affiliation(s)
| | | | - Stuart Fogel
- Brain and Mind Institute, Western University, London, Ontario, Canada.,School of Psychology, University of Ottawa, Ottawa, Ontario, Canada.,Sleep Unit, The Royal's Institute for Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada.,University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
| | - Maria Engström
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Andrea Soddu
- Brain and Mind Institute, Western University, London, Ontario, Canada.,Physics & Astronomy Department, Brain and Mind Institute, Western University, London, Ontario, Canada
| |
Collapse
|
22
|
Affiliation(s)
- Michael A Grandner
- Sleep and Health Research Program, Department of Psychiatry, University of Arizona College of Medicine, Tucson
| | - Michael L Perlis
- Behavioral Sleep Medicine Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| |
Collapse
|
23
|
Efficacy and Placebo Response of Multimodal Treatments for Primary Insomnia: A Network Meta-Analysis. Clin Neuropharmacol 2019; 42:197-202. [DOI: 10.1097/wnf.0000000000000369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Wang Y, Chen AQ, Xue Y, Liu MF, Liu C, Liu YH, Pan YP, Diao HL, Chen L. Orexins alleviate motor deficits via increasing firing activity of pallidal neurons in a mouse model of Parkinson's disease. Am J Physiol Cell Physiol 2019; 317:C800-C812. [PMID: 31365289 DOI: 10.1152/ajpcell.00125.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Orexin is a peptide neurotransmitter released in the globus pallidus. Morphological evidence reveals that both orexin 1 receptor (OX1R) and orexin 2 receptor (OX2R) exist in the globus pallidus. Here we showed that bilateral microinjection of both orexin-A and orexin-B into the globus pallidus alleviated motor deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonian mice. Further in vivo extracellular single-unit recording revealed that the basal spontaneous firing rate of the globus pallidus neurons in MPTP parkinsonian mice was slower than that of normal mice. Application of orexin-A or orexin-B significantly increased the spontaneous firing rate of pallidal neurons. The influx of Ca2+ through the L-type Ca2+ channel is the major mechanism involved in orexin-induced excitation in the globus pallidus. Orexin-A-induced increase in firing rate of pallidal neurons in MPTP parkinsonian mice was stronger than that of normal mice. Orexin-A exerted both electrophysiological and behavioral effects mainly via OX1R, and orexin-B exerted the effects via OX2R. Endogenous orexins modulated the excitability of globus pallidus neurons mainly through OX1R. The present behavioral and electrophysiological results suggest that orexins ameliorate parkinsonian motor deficits through increasing the spontaneous firing of globus pallidus neurons.
Collapse
Affiliation(s)
- Ying Wang
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - An-Qi Chen
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yan Xue
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Mei-Fang Liu
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Cui Liu
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yun-Hai Liu
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yi-Peng Pan
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Hui-Ling Diao
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Lei Chen
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
25
|
Ong JJY, Wei DYT, Goadsby PJ. Recent Advances in Pharmacotherapy for Migraine Prevention: From Pathophysiology to New Drugs. Drugs 2019; 78:411-437. [PMID: 29396834 DOI: 10.1007/s40265-018-0865-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Migraine is a common and disabling neurological disorder, with a significant socioeconomic burden. Its pathophysiology involves abnormalities in complex neuronal networks, interacting at different levels of the central and peripheral nervous system, resulting in the constellation of symptoms characteristic of a migraine attack. Management of migraine is individualised and often necessitates the commencement of preventive medication. Recent advancements in the understanding of the neurobiology of migraine have begun to account for some parts of the symptomatology, which has led to the development of novel target-based therapies that may revolutionise how migraine is treated in the future. This review will explore recent advances in the understanding of migraine pathophysiology, and pharmacotherapeutic developments for migraine prevention, with particular emphasis on novel treatments targeted at the calcitonin gene-related peptide (CGRP) pathway.
Collapse
Affiliation(s)
- Jonathan Jia Yuan Ong
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,NIHR-Wellcome Trust King's Clinical Research Facility, King's College Hospital, Wellcome Foundation Building, London, SE5 9PJ, UK.,Division of Neurology, Department of Medicine, National University Health System, University Medicine Cluster, Singapore, Singapore
| | - Diana Yi-Ting Wei
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,NIHR-Wellcome Trust King's Clinical Research Facility, King's College Hospital, Wellcome Foundation Building, London, SE5 9PJ, UK
| | - Peter J Goadsby
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK. .,NIHR-Wellcome Trust King's Clinical Research Facility, King's College Hospital, Wellcome Foundation Building, London, SE5 9PJ, UK.
| |
Collapse
|
26
|
Turku A, Leino TO, Karhu L, Yli-Kauhaluoma J, Kukkonen JP, Wallén EAA, Xhaard H. Structure-Activity Relationships of 1-Benzoylazulenes at the OX 1 and OX 2 Orexin Receptors. ChemMedChem 2019; 14:965-981. [PMID: 30892823 DOI: 10.1002/cmdc.201900074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/20/2019] [Indexed: 11/08/2022]
Abstract
We previously demonstrated the potential of di- or trisubstituted azulenes as ligands (potentiators, weak agonists, and antagonists) of the orexin receptors. In this study we investigated 27 1-benzoylazulene derivatives, uncovering seven potentiators of the orexin response on OX1 and two weak dual orexin receptor agonists. For potentiators, replacement of the azulene scaffold by indole retained the activity of four out of six compounds. The structure-activity relationships for agonism and potentiation can be summarized into a bicyclic aromatic ring system substituted with two hydrogen-bond acceptors (1-position, benzoyl; 6-position, carboxyl/ester) within 7-8 Å of each other; a third acceptor at the 3-position is also well tolerated. The same pharmacophoric signature is found in the preferred conformations of the orexin receptor agonist Nag26 from molecular dynamics simulations. Subtle changes switch the activity between weak agonism and potentiation, suggesting overlapping binding sites.
Collapse
Affiliation(s)
- Ainoleena Turku
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland.,Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, 00014, Helsinki, Finland
| | - Teppo O Leino
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Lasse Karhu
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Jyrki P Kukkonen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, 00014, Helsinki, Finland.,Department of Physiology, Faculty of Medicine, University of Helsinki, P.O. Box 63, 00014, Helsinki, Finland
| | - Erik A A Wallén
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Henri Xhaard
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| |
Collapse
|
27
|
Herring WJ, Roth T, Krystal AD, Michelson D. Orexin receptor antagonists for the treatment of insomnia and potential treatment of other neuropsychiatric indications. J Sleep Res 2018; 28:e12782. [DOI: 10.1111/jsr.12782] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/06/2018] [Accepted: 09/22/2018] [Indexed: 01/06/2023]
Affiliation(s)
| | - Thomas Roth
- Sleep Disorders and Research Center Henry Ford Hospital Detroit MI USA
| | - Andrew D. Krystal
- Department of Psychiatry University of California San Francisco California USA
| | - David Michelson
- Clinical ResearchMerck & Co., Inc. Kenilworth New Jersey USA
| |
Collapse
|
28
|
Abstract
The neuropeptides orexins are important in regulating the neurobiological systems that respond to stressful stimuli. Furthermore, orexins are known to play a role many of the phenotypes associated with stress-related mental illness such as changes in cognition, sleep-wake states, and appetite. Interestingly, orexins are altered in stress-related psychiatric disorders such as Major Depressive Disorder and Anxiety Disorders. Thus, orexins may be a potential target for treatment of these disorders. In this review, we will focus on what is known about the role of orexins in acute and repeated stress, in stress-induced phenotypes relevant to psychiatric illness in preclinical models, and in stress-related psychiatric illness in humans. We will also briefly discuss how orexins may contribute to sex differences in the stress response and subsequent phenotypes relevant to mental health, as many stress-related psychiatric disorders are twice as prevalent in women.
Collapse
|
29
|
Abreu AR, Molosh AI, Johnson PL, Shekhar A. Role of medial hypothalamic orexin system in panic, phobia and hypertension. Brain Res 2018; 1731:145942. [PMID: 30205108 DOI: 10.1016/j.brainres.2018.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 12/11/2022]
Abstract
Orexin has been implicated in a number of physiological functions, including arousal, regulation of sleep, energy metabolism, appetitive behaviors, stress, anxiety, fear, panic, and cardiovascular control. In this review, we will highlight research focused on orexin system in the medial hypothalamic regions of perifornical (PeF) and dorsomedial hypothalamus (DMH), and describe the role of this hypothalamic neuropeptide in the behavioral expression of panic and consequent fear and avoidance responses, as well as sympathetic regulation and possible development of chronic hypertension. We will also outline recent data highlighting the clinical potential of single and dual orexin receptor antagonists for neuropsychiatric conditions including panic, phobia, and cardiovascular conditions, such as in hypertension.
Collapse
Affiliation(s)
- Aline R Abreu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrei I Molosh
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Philip L Johnson
- Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anantha Shekhar
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Clinical and Translational Sciences Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
30
|
Leino TO, Turku A, Yli-Kauhaluoma J, Kukkonen JP, Xhaard H, Wallén EA. Azulene-based compounds for targeting orexin receptors. Eur J Med Chem 2018; 157:88-100. [DOI: 10.1016/j.ejmech.2018.07.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 06/29/2018] [Accepted: 07/15/2018] [Indexed: 01/08/2023]
|
31
|
Calva CB, Fayyaz H, Fadel JR. Increased acetylcholine and glutamate efflux in the prefrontal cortex following intranasal orexin-A (hypocretin-1). J Neurochem 2018; 145:232-244. [PMID: 29250792 PMCID: PMC5924451 DOI: 10.1111/jnc.14279] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 01/20/2023]
Abstract
Orexin/hypocretin neurons of the lateral hypothalamus and perifornical area are integrators of physiological function. Previous work from our laboratory and others has shown the importance of orexin transmission in cognition. Age-related reductions in markers of orexin function further suggest that this neuropeptide may be a useful target for the treatment of age-related cognitive dysfunction. Intranasal administration of orexin-A (OxA) has shown promise as a therapeutic option for cognitive dysfunction. However, the neurochemical mechanisms of intranasal OxA administration are not fully understood. Here, we use immunohistochemistry and in vivo microdialysis to define the effects of acute intranasal OxA administration on: (i) activation of neuronal populations in the cortex, basal forebrain, and brainstem and (ii) acetylcholine (ACh) and glutamate efflux in the prefrontal cortex (PFC) of Fischer 344/Brown Norway F1 rats. Acute intranasal administration of OxA significantly increased c-Fos expression, a marker for neuronal activation, in the PFC and in subpopulations of basal forebrain cholinergic neurons. Subsequently, we investigated the effects of acute intranasal OxA on neurotransmitter efflux in the PFC and found that intranasal OxA significantly increased both ACh and glutamate efflux in this region. These findings were independent from any changes in c-Fos expression in orexin neurons, suggesting that these effects are not resultant from direct activation of orexin neurons. In total, these data indicate that intranasal OxA may enhance cognition through activation of distinct neuronal populations in the cortex and basal forebrain and through increased neurotransmission of ACh and glutamate in the PFC.
Collapse
Affiliation(s)
- Coleman B. Calva
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, 29208 USA
| | - Habiba Fayyaz
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, 29208 USA
| | - Jim R. Fadel
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, 29208 USA
| |
Collapse
|
32
|
Safety, Tolerability, and Pharmacokinetics of Suvorexant: A Randomized Rising-Dose Trial in Healthy Men. Clin Drug Investig 2018; 38:631-638. [DOI: 10.1007/s40261-018-0650-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
33
|
Svetnik V, Snyder ES, Tao P, Scammell TE, Roth T, Lines C, Herring WJ. Insight Into Reduction of Wakefulness by Suvorexant in Patients With Insomnia: Analysis of Wake Bouts. Sleep 2017; 41:4587975. [PMID: 29112763 DOI: 10.1093/sleep/zsx178] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | | | | | - Thomas E Scammell
- Beth Israel Deaconess Medical Center, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Thomas Roth
- Henry Ford Hospital Sleep Center, Detroit, MI
| | | | | |
Collapse
|
34
|
Kawabe K, Horiuchi F, Ochi M, Nishimoto K, Ueno SI, Oka Y. Suvorexant for the Treatment of Insomnia in Adolescents. J Child Adolesc Psychopharmacol 2017; 27:792-795. [PMID: 28520464 DOI: 10.1089/cap.2016.0206] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVES Suvorexant is the first dual orexin receptor antagonist for treating insomnia. This study aimed to evaluate the tolerability, efficacy, and safety of suvorexant on insomnia in adolescents. METHODS Thirty patients (8 male and 22 female; mean standard deviation age: 15.7 ± 2.4 years; range: 10-20) with insomnia were administered suvorexant. Clinical background, persistence rate, the Clinical Global Impression (CGI), and the Athens Insomnia Scale (AIS) were compared between patients who continued and discontinued suvorexant treatment. RESULTS Seventeen patients (56.7%) successfully continued taking suvorexant. Among the 13 patients who did not continue treatment, 5 patients were lost to follow-up. Of the remaining eight who did not continue treatment, four decided to discontinue of their own accord, two decided to discontinue due to lack of effectiveness, and two decided to discontinue due to adverse reaction, namely abnormal dreams. Among patients who completed the study, CGI significantly decreased from 3.6 ± 0.8 to 3.1 ± 0.9 (p = 0.014). The score of sleep quality in AIS was significantly higher among the patients who discontinued suvorexant than those who continued suvorexant (p = 0.02). CONCLUSION Our results indicate that suvorexant could be considered a treatment option for adolescents.
Collapse
Affiliation(s)
- Kentaro Kawabe
- 1 Center for Child Health, Behavior and Development, Ehime University Hospital, Toon, Japan
- 2 Department of Neuropsychiatry, Ehime University Graduate School of Medicine, Toon, Japan
| | - Fumie Horiuchi
- 1 Center for Child Health, Behavior and Development, Ehime University Hospital, Toon, Japan
- 2 Department of Neuropsychiatry, Ehime University Graduate School of Medicine, Toon, Japan
| | - Marina Ochi
- 1 Center for Child Health, Behavior and Development, Ehime University Hospital, Toon, Japan
- 2 Department of Neuropsychiatry, Ehime University Graduate School of Medicine, Toon, Japan
| | | | - Shu-Ichi Ueno
- 2 Department of Neuropsychiatry, Ehime University Graduate School of Medicine, Toon, Japan
| | - Yasunori Oka
- 1 Center for Child Health, Behavior and Development, Ehime University Hospital, Toon, Japan
- 4 Center for Sleep Medicine, Ehime University Hospital, Toon, Japan
| |
Collapse
|
35
|
Turku A, Rinne MK, Boije af Gennäs G, Xhaard H, Lindholm D, Kukkonen JP. Orexin receptor agonist Yan 7874 is a weak agonist of orexin/hypocretin receptors and shows orexin receptor-independent cytotoxicity. PLoS One 2017; 12:e0178526. [PMID: 28575023 PMCID: PMC5456073 DOI: 10.1371/journal.pone.0178526] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 05/15/2017] [Indexed: 01/22/2023] Open
Abstract
Two promising lead structures of small molecular orexin receptor agonist have been reported, but without detailed analyses of the pharmacological properties. One of them, 1-(3,4-dichlorophenyl)-2-[2-imino-3-(4-methylbenzyl)-2,3-dihydro-1H-benzo[d]imidazol-1-yl]ethan-1-ol (Yan 7874), is commercially available, and we set out to analyze its properties. As test system we utilized human OX1 and OX2 orexin receptor-expressing Chinese hamster ovary (CHO) K1 cells as well as control CHO-K1 and neuro-2a neuroblastoma cells. Gq-coupling was assessed by measurement of intracellular Ca2+ and phospholipase C activity, and the coupling to Gi and Gs by adenylyl cyclase inhibition and stimulation, respectively. At concentrations above 1 μM, strong Ca2+ and low phospholipase C responses to Yan 7874 were observed in both OX1- and OX2-expressing cells. However, a major fraction of the response was not mediated by orexin receptors, as determined utilizing the non-selective orexin receptor antagonist N-biphenyl-2-yl-1-{[(1-methyl-1H-benzimidazol-2-yl)sulfanyl]acetyl}-L-prolinamide (TCS 1102) as well as control CHO-K1 cells. Yan 7874 did not produce any specific adenylyl cyclase response. Some experiments suggested an effect on cell viability by Yan 7874, and we thus analyzed this. Within a few hours of exposure, Yan 7874 markedly changed cell morphology (shrunken, rich in vacuoles), reduced growth, promoted cell detachment, and induced necrotic cell death. The effect was equal in cells expressing orexin receptors or not. Thus, Yan 7874 is a weak partial agonist of orexin receptors. It also displays strong off-target effects in the same concentration range, culminating in necrotic cell demise. This makes Yan 7874 unsuitable as orexin receptor agonist.
Collapse
Affiliation(s)
- Ainoleena Turku
- Biochemistry and Cell Biology, Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Maiju K. Rinne
- Biochemistry and Cell Biology, Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Gustav Boije af Gennäs
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Henri Xhaard
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Dan Lindholm
- Department of Biochemistry and Developmental Biology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Jyrki P. Kukkonen
- Biochemistry and Cell Biology, Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
36
|
Yao L, Ramirez AD, Roecker AJ, Fox SV, Uslaner JM, Smith SM, Hodgson R, Coleman PJ, Renger JJ, Winrow CJ, Gotter AL. The dual orexin receptor antagonist, DORA-22, lowers histamine levels in the lateral hypothalamus and prefrontal cortex without lowering hippocampal acetylcholine. J Neurochem 2017; 142:204-214. [PMID: 28444767 DOI: 10.1111/jnc.14055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 04/18/2017] [Accepted: 04/18/2017] [Indexed: 11/27/2022]
Abstract
Chronic insomnia is defined as a persistent difficulty with sleep initiation maintenance or non-restorative sleep. The therapeutic standard of care for this condition is treatment with gamma-aminobutyric acid (GABA)A receptor modulators, which promote sleep but are associated with a panoply of side effects, including cognitive and memory impairment. Dual orexin receptor antagonists (DORAs) have recently emerged as an alternative therapeutic approach that acts via a distinct and more selective wake-attenuating mechanism with the potential to be associated with milder side effects. Given their distinct mechanism of action, the current work tested the hypothesis that DORAs and GABAA receptor modulators differentially regulate neurochemical pathways associated with differences in sleep architecture and cognitive performance induced by these pharmacological mechanisms. Our findings showed that DORA-22 suppresses the release of the wake neurotransmitter histamine in the lateral hypothalamus, prefrontal cortex, and hippocampus with no significant alterations in acetylcholine levels. In contrast, eszopiclone, commonly used as a GABAA modulator, inhibited acetylcholine secretion across brain regions with variable effects on histamine release depending on the extent of wakefulness induction. In normal waking rats, eszopiclone only transiently suppressed histamine secretion, whereas this suppression was more obvious under caffeine-induced wakefulness. Compared with the GABAA modulator eszopiclone, DORA-22 elicits a neurotransmitter profile consistent with wake reduction that does not impinge on neurotransmitter levels associated with cognition and rapid eye movement sleep.
Collapse
Affiliation(s)
- Lihang Yao
- Department of Neuroscience, Merck Research Laboratories, West Point, Pennsylvania, USA
| | - Andres D Ramirez
- Department of Neuroscience, Merck Research Laboratories, West Point, Pennsylvania, USA
| | - Anthony J Roecker
- Department of Medicinal Chemistry, Merck Research Laboratories, West Point, Pennsylvania, USA
| | - Steven V Fox
- Department of In Vivo Pharmacology, Merck Research Laboratories, West Point, Pennsylvania, USA
| | - Jason M Uslaner
- Department of Neuroscience, Merck Research Laboratories, West Point, Pennsylvania, USA
| | - Sean M Smith
- Department of Neuroscience, Merck Research Laboratories, West Point, Pennsylvania, USA
| | - Robert Hodgson
- Department of In Vivo Pharmacology, Merck Research Laboratories, West Point, Pennsylvania, USA
| | - Paul J Coleman
- Department of Medicinal Chemistry, Merck Research Laboratories, West Point, Pennsylvania, USA
| | - John J Renger
- Department of Neuroscience, Merck Research Laboratories, West Point, Pennsylvania, USA
| | - Christopher J Winrow
- Department of Neuroscience, Merck Research Laboratories, West Point, Pennsylvania, USA
| | - Anthony L Gotter
- Department of Neuroscience, Merck Research Laboratories, West Point, Pennsylvania, USA
| |
Collapse
|
37
|
Akerman S, Romero-Reyes M, Holland PR. Current and novel insights into the neurophysiology of migraine and its implications for therapeutics. Pharmacol Ther 2017; 172:151-170. [PMID: 27919795 DOI: 10.1016/j.pharmthera.2016.12.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Migraine headache and its associated symptoms have plagued humans for two millennia. It is manifest throughout the world, and affects more than 1/6 of the global population. It is the most common brain disorder, and is characterized by moderate to severe unilateral headache that is accompanied by vomiting, nausea, photophobia, phonophobia, and other hypersensitive symptoms of the senses. While there is still a clear lack of understanding of its neurophysiology, it is beginning to be understood, and it seems to suggest migraine is a disorder of brain sensory processing, characterized by a generalized neuronal hyperexcitability. The complex symptomatology of migraine indicates that multiple neuronal systems are involved, including brainstem and diencephalic systems, which function abnormally, resulting in premonitory symptoms, ultimately evolving to affect the dural trigeminovascular system, and the pain phase of migraine. The migraineur also seems to be particularly sensitive to fluctuations in homeostasis, such as sleep, feeding and stress, reflecting the abnormality of functioning in these brainstem and diencephalic systems. Implications for therapeutic development have grown out of our understanding of migraine neurophysiology, leading to major drug classes, such as triptans, calcitonin gene-related peptide receptor antagonists, and 5-HT1F receptor agonists, as well as neuromodulatory approaches, with the promise of more to come. The present review will discuss the current understanding of the neurophysiology of migraine, particularly migraine headache, and novel insights into the complex neural networks responsible for associated neurological symptoms, and how interaction of these networks with migraine pain pathways has implications for the development of novel therapeutics.
Collapse
Affiliation(s)
- Simon Akerman
- Department of Oral and Maxillofacial Pathology, Radiology and Medicine, New York University College of Dentistry, New York, NY 10010, USA.
| | - Marcela Romero-Reyes
- Department of Oral and Maxillofacial Pathology, Radiology and Medicine, New York University College of Dentistry, New York, NY 10010, USA
| | - Philip R Holland
- Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
38
|
Goadsby PJ, Holland PR, Martins-Oliveira M, Hoffmann J, Schankin C, Akerman S. Pathophysiology of Migraine: A Disorder of Sensory Processing. Physiol Rev 2017; 97:553-622. [PMID: 28179394 PMCID: PMC5539409 DOI: 10.1152/physrev.00034.2015] [Citation(s) in RCA: 1137] [Impact Index Per Article: 142.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Plaguing humans for more than two millennia, manifest on every continent studied, and with more than one billion patients having an attack in any year, migraine stands as the sixth most common cause of disability on the planet. The pathophysiology of migraine has emerged from a historical consideration of the "humors" through mid-20th century distraction of the now defunct Vascular Theory to a clear place as a neurological disorder. It could be said there are three questions: why, how, and when? Why: migraine is largely accepted to be an inherited tendency for the brain to lose control of its inputs. How: the now classical trigeminal durovascular afferent pathway has been explored in laboratory and clinic; interrogated with immunohistochemistry to functional brain imaging to offer a roadmap of the attack. When: migraine attacks emerge due to a disorder of brain sensory processing that itself likely cycles, influenced by genetics and the environment. In the first, premonitory, phase that precedes headache, brain stem and diencephalic systems modulating afferent signals, light-photophobia or sound-phonophobia, begin to dysfunction and eventually to evolve to the pain phase and with time the resolution or postdromal phase. Understanding the biology of migraine through careful bench-based research has led to major classes of therapeutics being identified: triptans, serotonin 5-HT1B/1D receptor agonists; gepants, calcitonin gene-related peptide (CGRP) receptor antagonists; ditans, 5-HT1F receptor agonists, CGRP mechanisms monoclonal antibodies; and glurants, mGlu5 modulators; with the promise of more to come. Investment in understanding migraine has been very successful and leaves us at a new dawn, able to transform its impact on a global scale, as well as understand fundamental aspects of human biology.
Collapse
Affiliation(s)
- Peter J Goadsby
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Philip R Holland
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Margarida Martins-Oliveira
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Jan Hoffmann
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Christoph Schankin
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Simon Akerman
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| |
Collapse
|
39
|
Skudlarek JW, DiMarco CN, Babaoglu K, Roecker AJ, Bruno JG, Pausch MA, O'Brien JA, Cabalu TD, Stevens J, Brunner J, Tannenbaum PL, Wuelfing WP, Garson SL, Fox SV, Savitz AT, Harrell CM, Gotter AL, Winrow CJ, Renger JJ, Kuduk SD, Coleman PJ. Investigation of orexin-2 selective receptor antagonists: Structural modifications resulting in dual orexin receptor antagonists. Bioorg Med Chem Lett 2017; 27:1364-1370. [DOI: 10.1016/j.bmcl.2017.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/03/2017] [Accepted: 02/05/2017] [Indexed: 01/07/2023]
|
40
|
Orexin 2 receptor regulation of the hypothalamic-pituitary-adrenal (HPA) response to acute and repeated stress. Neuroscience 2017; 348:313-323. [PMID: 28257896 DOI: 10.1016/j.neuroscience.2017.02.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 12/11/2022]
Abstract
Orexins are hypothalamic neuropeptides that have a documented role in mediating the acute stress response. However, their role in habituation to repeated stress, and the role of orexin receptors (OX1R and OX2R) in the stress response, has yet to be defined. Orexin neuronal activation and levels in the cerebrospinal fluid (CSF) were found to be stimulated with acute restraint, but were significantly reduced by day five of repeated restraint. As certain disease states such as panic disorder are associated with increased central orexin levels and failure to habituate to repeated stress, the effect of activating orexin signaling via Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) on the hypothalamic-pituitary-adrenal (HPA) response was evaluated after repeated restraint. While vehicle-treated rats displayed habituation of Adrenocorticotropic Hormone (ACTH) from day 1 to day 5 of restraint, stimulating orexins did not further increase ACTH beyond vehicle levels for either acute or repeated restraint. We delineated the roles of orexin receptors in acute and repeated stress using a selective OX2R antagonist (MK-1064). Pretreatment with MK-1064 reduced day 1 ACTH levels, but did not allow further habituation on day 5 compared with vehicle-treated rats, indicating that endogenous OX2R activity plays a role in acute stress, but not in habituation to repeated stress. However, in restrained rats with further stimulated orexins by DREADDs, MK-1064 decreased ACTH levels on day 5. Collectively, these results indicate that the OX2R plays a role in acute stress, and can prevent habituation to repeated stress under conditions of high orexin release.
Collapse
|
41
|
Chieffi S, Messina G, Villano I, Messina A, Esposito M, Monda V, Valenzano A, Moscatelli F, Esposito T, Carotenuto M, Viggiano A, Cibelli G, Monda M. Exercise Influence on Hippocampal Function: Possible Involvement of Orexin-A. Front Physiol 2017; 8:85. [PMID: 28261108 PMCID: PMC5306252 DOI: 10.3389/fphys.2017.00085] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 01/30/2017] [Indexed: 01/24/2023] Open
Abstract
In the present article, we provide a brief review of current knowledge regarding the effects induced by physical exercise on hippocampus. Research involving animals and humans supports the view that physical exercise, enhancing hippocampal neurogenesis and function, improves cognition, and regulates mood. These beneficial effects depend on the contribute of more factors including the enhancement of vascularization and upregulation of growth factors. Among these, the BDNF seems to play a significant role. Another putative factor that might contribute to beneficial effects of exercise is the orexin-A. In support of this hypothesis there are the following observations: (1) orexin-A enhances hippocampal neurogenesis and function and (2) the levels of orexin-A increase with physical exercise. The beneficial effects of exercise may represent an important resource to hinder the cognitive decline associated with the aging-related hippocampal deterioration and ameliorate depressive symptoms.
Collapse
Affiliation(s)
- Sergio Chieffi
- Section of Human Physiology and Unit of Dietetic and Sport Medicine, Department of Experimental Medicine, Second University of Naples Naples, Italy
| | - Giovanni Messina
- Section of Human Physiology and Unit of Dietetic and Sport Medicine, Department of Experimental Medicine, Second University of NaplesNaples, Italy; Department of Clinical and Experimental Medicine, University of FoggiaFoggia, Italy
| | - Ines Villano
- Section of Human Physiology and Unit of Dietetic and Sport Medicine, Department of Experimental Medicine, Second University of Naples Naples, Italy
| | - Antonietta Messina
- Section of Human Physiology and Unit of Dietetic and Sport Medicine, Department of Experimental Medicine, Second University of Naples Naples, Italy
| | - Maria Esposito
- Department of Mental Health, Physical and Preventive Medicine, Clinic of Child and Adolescent Neuropsychiatry, Center for Childhood Headache, Second University of Naples Naples, Italy
| | - Vincenzo Monda
- Section of Human Physiology and Unit of Dietetic and Sport Medicine, Department of Experimental Medicine, Second University of Naples Naples, Italy
| | - Anna Valenzano
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| | - Fiorenzo Moscatelli
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| | - Teresa Esposito
- Section of Human Physiology and Unit of Dietetic and Sport Medicine, Department of Experimental Medicine, Second University of Naples Naples, Italy
| | - Marco Carotenuto
- Department of Mental Health, Physical and Preventive Medicine, Clinic of Child and Adolescent Neuropsychiatry, Center for Childhood Headache, Second University of Naples Naples, Italy
| | - Andrea Viggiano
- Department of Medicine and Surgery, University of Salerno Salerno, Italy
| | - Giuseppe Cibelli
- Section of Human Physiology and Unit of Dietetic and Sport Medicine, Department of Experimental Medicine, Second University of Naples Naples, Italy
| | - Marcellino Monda
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| |
Collapse
|
42
|
Struyk A, Gargano C, Drexel M, Stoch SA, Svetnik V, Ma J, Mayleben D. Pharmacodynamic effects of suvorexant and zolpidem on EEG during sleep in healthy subjects. Eur Neuropsychopharmacol 2016; 26:1649-56. [PMID: 27554636 DOI: 10.1016/j.euroneuro.2016.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/30/2016] [Accepted: 07/02/2016] [Indexed: 01/22/2023]
Abstract
The objective of this study was to evaluate sleep electrophysiology in healthy subjects after bedtime administration of therapeutic doses of two insomnia treatments - the orexin receptor antagonist suvorexant or the GABAergic agonist zolpidem. Eighteen healthy men received single bedtime doses of suvorexant 20mg, zolpidem 10mg, or placebo in a double-blinded, randomized, balanced 3-period crossover study. EEG power spectral densities during non-rapid eye movement (NREM) and rapid eye movement (REM) sleep were recorded in a polysomnography (PSG) laboratory using a 19-lead EEG recording array. Spectral density was analyzed for each lead for frequencies between 1-32Hz. During NREM and REM sleep, zolpidem treatment reduced spectral density across theta and alpha frequency bands in all leads. In contrast, suvorexant had no significant effects on spectral density in any frequency band during NREM sleep, and modestly increased spectral density in the theta frequency band during REM sleep. Although the study was not designed to detect effects on PSG sleep endpoints in healthy subjects, both suvorexant and zolpidem increased mean total sleep time and sleep efficiency. Zolpidem reduced latency to persistent sleep whereas suvorexant did not. Suvorexant decreased wake after sleep onset, whereas zolpidem did not. These findings suggest that EEG power spectral density profile after administration of suvorexant in healthy subjects more closely approximates placebo sleep physiology than after zolpidem treatment.
Collapse
|
43
|
Turku A, Borrel A, Leino TO, Karhu L, Kukkonen JP, Xhaard H. Pharmacophore Model To Discover OX1 and OX2 Orexin Receptor Ligands. J Med Chem 2016; 59:8263-75. [DOI: 10.1021/acs.jmedchem.6b00333] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Ainoleena Turku
- Faculty of Pharmacy,
Division of Pharmaceutical Chemistry and Technology, University of Helsinki, P.O. Box 56, FIN-00014 Helsinki, Finland
- Faculty of Veterinary Medicine, Department of Veterinary Biosciences, University of Helsinki, P.O. Box 66, FIN-00014 Helsinki, Finland
| | - Alexandre Borrel
- Faculty of Pharmacy,
Division of Pharmaceutical Chemistry and Technology, University of Helsinki, P.O. Box 56, FIN-00014 Helsinki, Finland
| | - Teppo O. Leino
- Faculty of Pharmacy,
Division of Pharmaceutical Chemistry and Technology, University of Helsinki, P.O. Box 56, FIN-00014 Helsinki, Finland
| | - Lasse Karhu
- Faculty of Pharmacy,
Division of Pharmaceutical Chemistry and Technology, University of Helsinki, P.O. Box 56, FIN-00014 Helsinki, Finland
| | - Jyrki P. Kukkonen
- Faculty of Veterinary Medicine, Department of Veterinary Biosciences, University of Helsinki, P.O. Box 66, FIN-00014 Helsinki, Finland
| | - Henri Xhaard
- Faculty of Pharmacy,
Division of Pharmaceutical Chemistry and Technology, University of Helsinki, P.O. Box 56, FIN-00014 Helsinki, Finland
| |
Collapse
|
44
|
Role of Lateral Hypothalamic Orexin (Hypocretin) Neurons in Alcohol Use and Abuse: Recent Advances. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s40495-016-0069-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
45
|
Gao M, Wang M, Zheng QH. Synthesis of [11C]MK-1064 as a new PET radioligand for imaging of orexin-2 receptor. Bioorg Med Chem Lett 2016; 26:3694-9. [DOI: 10.1016/j.bmcl.2016.05.083] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 05/23/2016] [Accepted: 05/27/2016] [Indexed: 12/29/2022]
|
46
|
Herring WJ, Connor KM, Ivgy-May N, Snyder E, Liu K, Snavely DB, Krystal AD, Walsh JK, Benca RM, Rosenberg R, Sangal RB, Budd K, Hutzelmann J, Leibensperger H, Froman S, Lines C, Roth T, Michelson D. Suvorexant in Patients With Insomnia: Results From Two 3-Month Randomized Controlled Clinical Trials. Biol Psychiatry 2016; 79:136-48. [PMID: 25526970 DOI: 10.1016/j.biopsych.2014.10.003] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 09/05/2014] [Accepted: 10/01/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND Suvorexant is an orexin receptor antagonist for treatment of insomnia. We report results from two pivotal phase 3 trials. METHODS Two randomized, double-blind, placebo-controlled, parallel-group, 3-month trials in nonelderly (18-64 years) and elderly (≥65 years) patients with insomnia. Suvorexant doses of 40/30 mg (nonelderly/elderly) and 20/15 mg (nonelderly/elderly) were evaluated. The primary focus was 40/30 mg, with fewer patients randomized to 20/15 mg. There was an optional 3-month double-blind extension in trial 1. Each trial included a 1-week, randomized, double-blind run-out after double-blind treatment to assess withdrawal/rebound. Efficacy was assessed at week 1, month 1, and month 3 by patient-reported subjective total sleep time and time to sleep onset and in a subset of patients at night 1, month 1, and month 3 by polysomnography end points of wakefulness after persistent sleep onset and latency to onset of persistent sleep (LPS). One thousand twenty-one patients were randomized in trial 1 and 1019 patients in trial 2. RESULTS Suvorexant 40/30 mg was superior to placebo on all subjective and polysomnography end points at night 1/week 1, month 1, and month 3 in both trials, except for LPS at month 3 in trial 2. Suvorexant 20/15 mg was superior to placebo on subjective total sleep time and wakefulness after persistent sleep onset at night 1/week 1, month 1, and month 3 in both trials and at most individual time points for subjective time to sleep onset and LPS in each trial. Both doses of suvorexant were generally well tolerated, with <5% of patients discontinuing due to adverse events over 3 months. The results did not suggest the emergence of marked rebound or withdrawal signs or symptoms when suvorexant was discontinued. CONCLUSIONS Suvorexant improved sleep onset and maintenance over 3 months of nightly treatment and was generally safe and well tolerated.
Collapse
Affiliation(s)
- W Joseph Herring
- Merck Sharp & Dohme Corporation, Whitehouse Station, New Jersey.
| | | | - Neely Ivgy-May
- Merck Sharp & Dohme Corporation, Whitehouse Station, New Jersey
| | - Ellen Snyder
- Merck Sharp & Dohme Corporation, Whitehouse Station, New Jersey
| | - Ken Liu
- Merck Sharp & Dohme Corporation, Whitehouse Station, New Jersey
| | - Duane B Snavely
- Merck Sharp & Dohme Corporation, Whitehouse Station, New Jersey
| | - Andrew D Krystal
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina
| | - James K Walsh
- Sleep Medicine and Research Center, St. Luke's Hospital, St. Louis, Missouri
| | | | | | - R Bart Sangal
- Sleep Disorders Institute & Attention Disorders Institute, Oakland University William Beaumont School of Medicine, Sterling Heights
| | - Kerry Budd
- Merck Sharp & Dohme Corporation, Whitehouse Station, New Jersey
| | - Jill Hutzelmann
- Merck Sharp & Dohme Corporation, Whitehouse Station, New Jersey
| | | | - Samar Froman
- Merck Sharp & Dohme Corporation, Whitehouse Station, New Jersey
| | | | - Thomas Roth
- Henry Ford Hospital Sleep Center, Detroit, Michigan
| | - David Michelson
- Merck Sharp & Dohme Corporation, Whitehouse Station, New Jersey
| |
Collapse
|
47
|
Snyder E, Ma J, Svetnik V, Connor KM, Lines C, Michelson D, Herring WJ. Effects of suvorexant on sleep architecture and power spectral profile in patients with insomnia: analysis of pooled phase 3 data. Sleep Med 2015; 19:93-100. [PMID: 27198953 DOI: 10.1016/j.sleep.2015.10.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND The orexin receptor antagonist, suvorexant, is approved for treating insomnia at a maximum dose of 20 mg. We evaluated its effects on sleep architecture. METHODS The analyses included pooled polysomnography data from two similar randomized, double-blind, placebo-controlled, 3-month trials evaluating two age-adjusted (non-elderly/elderly) dose regimes of 20/15 mg and 40/30 mg in 1482 patients with insomnia. Polysomnography was recorded at baseline and on three nights during the treatment: Night-1, Month-1, and Month-3. Effects on non-REM sleep stages 1 (N1), 2 (N2), 3 (N3)/slow wave sleep (SWS), and REM sleep were evaluated. A power spectral analysis of non-REM sleep was also performed. RESULTS Suvorexant increased the time (in minutes) spent in all sleep stages compared with placebo. When suvorexant and placebo were compared in terms of changes in percentage of total sleep time spent in each stage, there were small decreases of ≤1%, ≤2.2%, and ≤0.8% for N1, N2, and N3/SWS on average, respectively, and an average increase of ≤3.9% in REM. The largest differences from placebo were observed at Night-1 and generally diminished over time. Suvorexant reduced REM latency (number of non-REM 30-s epochs from lights-off to the first REM epoch) compared with placebo; the reduction was greater at Night-1 (~40-50 non-REM epochs) in comparison to later time points (~12-25 non-REM epochs at Month-3). The spectral analysis of non-REM showed a small decrease in power of 3-6% in the gamma and beta bands, and a small increase of 4-8% in the delta band, at Night-1 for suvorexant relative to placebo; these effects were not apparent at the later Month-1 and Month-3 time points. CONCLUSION Overall sleep architecture appears to be preserved in insomnia patients taking suvorexant. The power spectral profile of suvorexant is generally similar to placebo.
Collapse
|
48
|
Roecker AJ, Mercer SP, Bergman JM, Gilbert KF, Kuduk SD, Harrell CM, Garson SL, Fox SV, Gotter AL, Tannenbaum PL, Prueksaritanont T, Cabalu TD, Cui D, Lemaire W, Winrow CJ, Renger JJ, Coleman PJ. Discovery of diazepane amide DORAs and 2-SORAs enabled by exploration of isosteric quinazoline replacements. Bioorg Med Chem Lett 2015; 25:4992-4999. [DOI: 10.1016/j.bmcl.2014.12.081] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 12/22/2014] [Accepted: 12/24/2014] [Indexed: 01/25/2023]
|
49
|
Johnson PL, Federici LM, Fitz SD, Renger JJ, Shireman B, Winrow CJ, Bonaventure P, Shekhar A. OREXIN 1 AND 2 RECEPTOR INVOLVEMENT IN CO2 -INDUCED PANIC-ASSOCIATED BEHAVIOR AND AUTONOMIC RESPONSES. Depress Anxiety 2015; 32:671-83. [PMID: 26332431 PMCID: PMC4729192 DOI: 10.1002/da.22403] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 07/07/2015] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The neuropeptides orexin A and B play a role in reward and feeding and are critical for arousal. However, it was not initially appreciated that most prepro-orexin synthesizing neurons are almost exclusively concentrated in the perifornical hypothalamus, which when stimulated elicits panic-associated behavior and cardiovascular responses in rodents and self-reported "panic attacks" and "fear of dying" in humans. More recent studies support a role for the orexin system in coordinating an integrative stress response. For instance, orexin neurons are highly reactive to anxiogenic stimuli, are hyperactive in anxiety pathology, and have strong projections to anxiety and panic-associated circuitry. Although the two cognate orexin receptors are colocalized in many brain regions, the orexin 2 receptor (OX2R) most robustly maps to the histaminergic wake-promoting region, while the orexin 1 receptor (OX1R) distribution is more exclusive and dense in anxiety and panic circuitry regions, such as the locus ceruleus. Overall, this suggests that OX1Rs play a critical role in mobilizing anxiety and panic responses. METHODS Here, we used a CO2 -panic provocation model to screen a dual OX1/2R antagonist (DORA-12) to globally inhibit orexin activity, then a highly selective OX1R antagonist (SORA1, Compound 56) or OX2R antagonist (SORA2, JnJ10397049) to assess OX1R and OX2R involvement. RESULTS All compounds except the SORA2 attenuated CO2 -induced anxiety-like behaviors, and all but the SORA2 and DORA attenuated CO2 -induced cardiovascular responses. CONCLUSIONS SORA1s may represent a novel method of treating anxiety disorders, with no apparent sedative effects that were present with a benzodiazepine.
Collapse
Affiliation(s)
- Philip L Johnson
- Departments of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana.,Departments of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana.,Departments of Medical Neuroscience Program, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana
| | - Lauren M Federici
- Departments of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana.,Departments of Medical Neuroscience Program, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana
| | - Stephanie D Fitz
- Departments of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Brock Shireman
- Janssen Research and Development LLC, San Diego, California
| | | | | | - Anantha Shekhar
- Departments of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana.,Departments of Medical Neuroscience Program, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana.,Indiana Clinical and Translational Sciences Institute, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
50
|
Tajti J, Szok D, Majláth Z, Tuka B, Csáti A, Vécsei L. Migraine and neuropeptides. Neuropeptides 2015; 52:19-30. [PMID: 26094101 DOI: 10.1016/j.npep.2015.03.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/22/2015] [Accepted: 03/25/2015] [Indexed: 12/25/2022]
Abstract
Migraine is a common disabling neurovascular primary headache disorder. The pathomechanism is not clear, but extensive preclinical and clinical studies are ongoing. The structural basis of the leading hypothesis is the trigeminovascular system, which includes the trigeminal ganglion, the meningeal vasculature, and the distinct nuclei of the brainstem, the thalamus and the somatosensory cortex. This review covers the effects of sensory (calcitonin gene-related peptide, pituitary adenylate cyclase-activating polypeptide and substance P), sympathetic (neuropeptide Y) and parasympathetic (vasoactive intestinal peptide) migraine-related neuropeptides and the functions of somatostatin, nociceptin and the orexins in the trigeminovascular system. These neuropeptides may take part in neurogenic inflammation (plasma protein extravasation and vasodilatation) of the intracranial vasculature and peripheral and central sensitization of the trigeminal system. The results of human clinical studies are discussed with regard to the alterations in these neuropeptides in the plasma, saliva and cerebrospinal fluid during or between migraine attacks, and the therapeutic possibilities involving migraine-related neuropeptides in the acute and prophylactic treatment of migraine headache are surveyed.
Collapse
Affiliation(s)
- János Tajti
- Department of Neurology, University of Szeged, Semmelweis u. 6, Szeged H-6725, Hungary.
| | - Délia Szok
- Department of Neurology, University of Szeged, Semmelweis u. 6, Szeged H-6725, Hungary
| | - Zsófia Majláth
- Department of Neurology, University of Szeged, Semmelweis u. 6, Szeged H-6725, Hungary
| | - Bernadett Tuka
- MTA - SZTE Neuroscience Research Group, Semmelweis u. 6, Szeged H-6725, Hungary
| | - Anett Csáti
- MTA - SZTE Neuroscience Research Group, Semmelweis u. 6, Szeged H-6725, Hungary
| | - László Vécsei
- Department of Neurology, University of Szeged, Semmelweis u. 6, Szeged H-6725, Hungary; MTA - SZTE Neuroscience Research Group, Semmelweis u. 6, Szeged H-6725, Hungary
| |
Collapse
|