1
|
Egas C, Luarte T, Vargas R, Castro-Nallar E, Pozo K, Přibylová P, Martiník J, Molina-Montenegro M, Galbán-Malagón C. Distribution and bioconcentration of semivolatile organic compounds (SVOCs) in soils and vascular plant Colobanthus quitensis from Sub-Antarctic and Antarctic regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 963:178494. [PMID: 39827628 DOI: 10.1016/j.scitotenv.2025.178494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/06/2025] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
Semi-volatile organic compounds (SVOCs) are widely distributed across the globe, including polar regions. This study investigates the distribution and bioconcentration of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) in soils and Colobanthus quitensis, while also estimating potential emission sources. Results indicated high concentrations of PAHs in soils and plants from the Sub-Antarctic region, while OCPs and PCBs were more prevalent in the Antarctic region, with higher contaminant concentrations found in soils than in plant tissues. Hexachlorobenzene (HCB) and dichlorodiphenyldichloroethylene (p,p'-DDE) were significantly higher in the Antarctic region, suggesting historical dichlorodiphenyltrichloroethane (DDT) use, while PCB 153 and 180 were the most representative PCBs in the Antarctic region. Phenanthrene (Phe) was the dominant PAH in both regions. The bioconcentration factor analysis from soils (BCFSoils) revealed potential anthropogenic influences for certain contaminants, including γ-hexachlorocyclohexane (γ-HCH) and PCB 9 in the Sub-Antarctic region, and HCB, p,p'-DDE, PCB 9, and benzo-naphtho-thiophene in the Antarctic region. However, compounds with higher hydrophobicity showed lower Bioconcentration factor (BCFSoils) values, indicating a tendency to accumulate in soil rather than plant tissues. This was consistent with the inverse relationship found between BCFSoils and the octanol-water partition coefficient (Log KOW). Diagnostic ratios of PAHs revealed a predominantly pyrogenic source in the Sub-Antarctic region, while a mixture of sources was observed in the Antarctic region.
Collapse
Affiliation(s)
- C Egas
- Centro de Ecología Integrativa (CEI), Universidad de Talca, Campus Lircay, Talca, Chile; Instituto de Ciencias Biológicas (ICB), Universidad de Talca, Campus Lircay, Talca, Chile
| | - T Luarte
- Centro de Genómica, Ecología y Medio Ambiente (GEMA), Universidad Mayor, Campus Huechuraba, Santiago, Chile; Facultad Ciencias de La Vida, Universidad Andrés Bello, Santiago, 8370251, Chile
| | - R Vargas
- Centro de Genómica, Ecología y Medio Ambiente (GEMA), Universidad Mayor, Campus Huechuraba, Santiago, Chile
| | - E Castro-Nallar
- Centro de Ecología Integrativa (CEI), Universidad de Talca, Campus Lircay, Talca, Chile; Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Campus Lircay, Talca, Chile
| | - K Pozo
- Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Lientur 1457, Concepción, Chile; RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - P Přibylová
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - J Martiník
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - M Molina-Montenegro
- Centro de Ecología Integrativa (CEI), Universidad de Talca, Campus Lircay, Talca, Chile; Instituto de Ciencias Biológicas (ICB), Universidad de Talca, Campus Lircay, Talca, Chile; Centro de Investigación en Estudios Avanzados del Maule (CIEAM), Universidad Católica del Maule, Talca, Chile
| | - C Galbán-Malagón
- Centro de Genómica, Ecología y Medio Ambiente (GEMA), Universidad Mayor, Campus Huechuraba, Santiago, Chile; Institute of Environment, Florida International University, University Park, Miami, FL 33199, USA; Data Observatory Foundation, Santiago, Chile.
| |
Collapse
|
2
|
Li J, Yuan B, Li Q, Du X, Chang R, Yuan GL, Wu Y, Lin T. Tibetan lake sediment records reveal historical emission and long-range atmospheric transport of chlorinated paraffins. WATER RESEARCH 2024; 265:122300. [PMID: 39173360 DOI: 10.1016/j.watres.2024.122300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/17/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
The Tibetan Plateau, a recognized global sink for Persistent Organic Pollutants (POPs), lies adjacent to two major emitting regions, inland China and India. This unique geographical setting makes it a pivotal site for examining the presence and compositional evolution of POPs following their long-range atmospheric transport (LRAT). This study focuses on the current predominant POPs, chlorinated paraffins (CPs). We comprehensively screened 675 homologues of the very short- (vSCCPs), short- (SCCPs), medium- (MCCPs), and long-chain CPs (LCCPs) in six dated sediment cores across the extensive Tibetan area. The findings unveiled pronounced temporal disparities in CP concentrations and compositions between Tibet's southern and eastern sectors, reflecting divergent usage and emission chronicles of inland China and India. Notably, a market shift in China from regulated SCCPs to the in-use MCCPs and LCCPs was observed in the 21st century, contrasting with India's unregulated production of SCCPs. The Organization for Economic Cooperation and Development (OECD) Screening Tool, developed to assess the overall persistence (POV) and long-range transport potential (LRTP) of organic chemicals, elucidated the erosion of CP source signatures induced by fractionation, a process that intensifies with transport distance from the source regions. This study enhances our understanding of the emission inventories and LRAT behavior of these transitional regulatory contaminants, highlighting the Tibetan Plateau's crucial role as an environmental sentinel in global pollution dynamics.
Collapse
Affiliation(s)
- Jun Li
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China.
| | - Bo Yuan
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Qian Li
- Research Center of Applied Geology of China Geological Survey, Chengdu 610036, PR China
| | - Xinyu Du
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, PR China.
| | - Ruwen Chang
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China
| | - Guo-Li Yuan
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China
| | - Yan Wu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, PR China
| | - Tian Lin
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, PR China
| |
Collapse
|
3
|
Arriola A, Al Saify I, Warner NA, Herzke D, Harju M, Amundsen PA, Evenset A, Möckel C, Krogseth IS. Dechloranes and chlorinated paraffins in sediments and biota of two subarctic lakes. FRONTIERS IN TOXICOLOGY 2024; 6:1298231. [PMID: 38817305 PMCID: PMC11137240 DOI: 10.3389/ftox.2024.1298231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/18/2024] [Indexed: 06/01/2024] Open
Abstract
Our understanding of the environmental behavior, bioaccumulation and concentrations of chlorinated paraffins (CPs) and Dechloranes (Dec) in the Arctic environment is still limited, particularly in freshwater ecosystems. In this descriptive study, short chain (SCCPs) and medium chain (MCCPs) CPs, Dechlorane Plus (DP) and analogues, and polychlorinated biphenyls (PCBs) were measured in sediments, benthic organisms, three-spined stickleback (Gasterosteus aculeatus), Arctic char (Salvelinus alpinus) and brown trout (Salmo trutta) in two Sub-Arctic lakes in Northern Norway. Takvannet (TA) is a remote lake, with no known local sources for organic contaminants, while Storvannet (ST) is situated in a populated area. SCCPs and MCCPs were detected in all sediment samples from ST with concentration of 42.26-115.29 ng/g dw and 66.18-136.69 ng/g dw for SCCPs and MCCPs, respectively. Only SCCPs were detected in TA sediments (0.4-5.28 ng/g dw). In biota samples, sticklebacks and benthic organisms showed the highest concentrations of CPs, while concentrations were low or below detection limits in both char and trout. The congener group patterns observed in both lakes showed SCCP profiles dominated by higher chlorinated congener groups while the MCCPs showed consistency in their profiles, with C14 being the most prevalent carbon chain length. Anti- and syn-DP isomers were detected in all sediment, benthic and stickleback samples with higher concentrations in ST than in TA. However, they were only present in a few char and trout samples from ST. Dec 601 and 604 were below detection limits in all samples in both lakes. Dec 603 was detected only in ST sediments, sticklebacks and 2 trout samples, while Dec 602 was the only DP analogue found in all samples from both lakes. While there were clear differences in sediment concentrations of DP and Dec 602 between ST and TA, differences between lakes decreased with increasing δ15N. This pattern was similar to the PCB behavior, suggesting the lake characteristics in ST are playing an important role in the lack of biomagnification of pollutants in this lake. Our results suggest that ST receives pollutants from local sources in addition to atmospheric transport.
Collapse
Affiliation(s)
| | - Insam Al Saify
- Waternet Institute for the Urban Water Cycle, Department of Technology, Research and Engineering, Amsterdam, Netherlands
| | - Nicholas A. Warner
- Thermo Fisher Scientific, Bremen, Germany
- NILU (Norsk Institutt for Luftforskning), Fram Centre, Tromsø, Norway
| | - Dorte Herzke
- NILU (Norsk Institutt for Luftforskning), Fram Centre, Tromsø, Norway
| | - Mikael Harju
- NILU (Norsk Institutt for Luftforskning), Fram Centre, Tromsø, Norway
| | - Per-Arne Amundsen
- Department of Arctic and Marine Biology, UiT the Arctic University of Norway, Tromsø, Norway
| | | | - Claudia Möckel
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Ingjerd S. Krogseth
- NILU (Norsk Institutt for Luftforskning), Fram Centre, Tromsø, Norway
- Department of Arctic and Marine Biology, UiT the Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
4
|
Postigo C, Moreno-Merino L, López-García E, López-Martínez J, López de Alda M. Human footprint on the water quality from the northern Antarctic Peninsula region. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131394. [PMID: 37086669 DOI: 10.1016/j.jhazmat.2023.131394] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
This study assessed the human footprint on the chemical pollution of Antarctic waters by characterizing inorganic chemicals and selected organic anthropogenic contaminants of emerging concern (CECs) in inland freshwater and coastal seawater and the associated ecotoxicological risk. Nicotine and tolytriazole, present in 74% and 89% of the samples analyzed, respectively, were the most ubiquitous CECs in the investigated area. The most abundant CECs were citalopram, clarithromycin, and nicotine with concentrations reaching 292, 173, and 146 ng/L, respectively. The spatial distribution of CECs was not linked to any water characteristic or inorganic component. The contamination pattern by CECs in inland freshwater varied among locations, whereas it was very similar in coastal seawater. This suggests that concentrations in inland freshwater may be ruled by environmental processes (reemission from ice, atmospheric deposition, limited photo- and biodegradation processes, etc.) in addition to human activities. Following risk assessment, citalopram, clarithromycin, nicotine, venlafaxine, and hydrochlorothiazide should be considered of concern in this area, and hence, included in future monitoring of Antarctic waters and biota. This work provides evidence on the fact that current measures taken to protect the pristine environment of Antarctica from human activities are not effective to avoid CEC spread in its aquatic environment.
Collapse
Affiliation(s)
- Cristina Postigo
- Technologies for Water Management and Treatment Research Group, Department of Civil Engineering, University of Granada, Campus de Fuentenueva s/n, Granada 18071, Spain; Institute for Water Research (IdA), University of Granada, Ramón y Cajal 4, 18071, Granada, Spain.
| | - Luis Moreno-Merino
- Spanish Geological Survey CN IGME (CSIC), Ríos Rosas, 23, Madrid 28003, Spain
| | - Ester López-García
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona 18-26, Barcelona 08034, Spain
| | - Jerónimo López-Martínez
- Faculty of Sciences, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid 28049, Spain
| | - Miren López de Alda
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona 18-26, Barcelona 08034, Spain
| |
Collapse
|
5
|
Wang P, Meng W, Zhang W, Fu M, Li Y, Yang R, Zhang Q, Jiang G. Source identification of PCBs in Antarctic air by compound-specific isotope analysis of chlorine (CSIA-Cl) using HRGC/HRMS. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130907. [PMID: 36764260 DOI: 10.1016/j.jhazmat.2023.130907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Occurrence of persistent organic pollutants (POPs) in the Polar Regions has received great concern in the past several decades due to their long-term adverse effect on biological health in such a fragile environment. However, there is still argument over their source and fate in these pristine areas. Here we attempted to use a novel approach (compound-specific isotope analysis of chlorine, CSIA-Cl) to identify the source of POPs in Antarctic air by comparison with the source area. The results showed that the relative isotope-ratio variation of Cl (δ37Cl') values showed a large variation from - 137 to 9.04 ‰ in the gas-phase samples, and a significantly negative correlation (p < 0.01) was obtained against the logKoa values of PCBs. There were no significant correlations (p > 0.05) observed between the δ37Cl' values and meteorological parameters except for PCB-28 which showed temperature dependence. By contrast, the δ37Cl' values in the urban (Beijing) air ranged from - 12.8 to 2.03 ‰. The larger variation of δ37Cl' in Antarctic air indicated evidently influence of long-range atmospheric transport (LRAT) on isotopologue fractionation of PCBs. This study may shed light on the application of CSIA-Cl for source identification of chlorinated POPs on a large scale.
Collapse
Affiliation(s)
- Pu Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Wenying Meng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Weiwei Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Min Fu
- Key Laboratory of Research on Marine Hazards Forecasting, National Marine Environmental Forecasting Center, Beijing 100081, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qinghua Zhang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Vudamala K, Chakraborty P, Chatragadda R, Tiwari AK, Qureshi A. Distribution of organochlorine pesticides in surface and deep waters of the Southern Indian Ocean and coastal Antarctic waters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 321:121206. [PMID: 36738882 DOI: 10.1016/j.envpol.2023.121206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Antarctica is a remote and pristine region. Yet it plays a vital role in biogeochemical cycles of global anthropogenic contaminants, such as persistent organic pollution (POPs). This work reports the distribution of legacy and new POPs in surface and depth profiles/deeper water of the Southern Indian Ocean (SIO) and the coast of Antarctica (COA). Samples were collected during the 10th Indian Southern Ocean expedition (SOE-10) in the year 2017. Concentrations of ∑HCH (hexachlorocyclohexane), ∑DDT (dichlorodiphenyltrichloroethane), and ∑ENDO (endosulfan) in surface seawater from the SIO region ranged between not detected (ND) to 1.21 pg/Liter (pg L-1) (average. ± s.d.: 0.35 ± 0.42 pg L-1), ND to 1.83 pg L-1 (0.69 ± 84 pg L-1), and ND - to 2.06 pg L-1 (0.56 ± 0., 88 pg L-1), respectively. The concentrations of ∑HCH, ∑DDT, and ∑ENDO in COA ranged from ND to 0.98 pg L-1 (0.25 ± 0.27 pg L-1), ND to 3.61 pg L-1(0.50 ± 1.08 pg L-1), and ND to 2.09 pg L-1 (0.45 ± 0.84 pg L-1), respectively. Concentrations of isomers of endosulfan, and largely of HCHs, suggested an aged source. Some concentration ratios of α-to γ-HCH were close to 1, indicating a contribution from ongoing sources. Results indicate the important role of ocean currents in mediating the transport and detection of OCPs. As such, OCPs dynamics in deeper oceans may play an important role in OCPs cycling in the marine environment.
Collapse
Affiliation(s)
- Krushna Vudamala
- Integrative Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India; Department of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, TS, 502285, India.
| | - Paromita Chakraborty
- Environmental Science and Technology Research Group, Centre for Research in Environment, Sustainability Advocacy and Climate Change, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Ramesh Chatragadda
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India
| | - Anoop Kumar Tiwari
- Environmental Impact Assessment Group, National Centre for Polar and Ocean Research Headland Sada, Vasco da Gama, Goa, 403802, India
| | - Asif Qureshi
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, TS, 502285, India; Department of Climate Change, Indian Institute of Technology Hyderabad, Kandi, TS, 502285, India
| |
Collapse
|
7
|
Alshemmari H. Past, present and future trends of selected pesticidal and industrial POPs in Kuwait. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:3191-3214. [PMID: 34661833 DOI: 10.1007/s10653-021-01113-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Given the background of current global initiatives for controlling persistent organic pollutants (POPs), an overview of the scientific knowledge about the POPs issues in Kuwait is presented in this study. Both acute and chronic exposure to POPs can be associated with a wide range of deleterious health effects, including illness and death. POPs have drawn significant political and scientific interest in their fate and actions, particularly where local releases have resulted in dispersed contamination far from the source regions. These concerns inevitably led to the establishment of the Stockholm Convention (SC) on POPs. In recent years, Kuwait has carried out a wide variety of environmental research, in particular, on the monitoring of POPs in different matrices. The technological development facilitated to achieve the opposite monitoring of pesticidal and industrial POPs. The majority of these POPs are from a point source. Kuwait does not have pesticide manufacturing facilities and has not produced pesticides for POPs in the past. In the agriculture sector, Kuwait primarily imports pesticides for pest and disease control. This review encompasses the historical presence and current status of (pesticidal) organochlorine pesticides (OCPs) and (industrial POPs) PCBs and PBDEs in Kuwait based on the export, import, consumption and usage. This research also contrasts pesticide and industrial POP data from various Kuwaiti environmental matrices with data from other parts of Asia, the EU, the USA and Africa.
Collapse
Affiliation(s)
- Hassan Alshemmari
- Environmental and Climate Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box: 24885, Safat, 13109, State of Kuwait.
- Stockholm Convention Regional Center for Capacity-Building and the Transfer of Technology for West Asia (SCRC-Kuwait), Kuwait Institute for Scientific Research, P.O. Box: 24885, Safat, 13109, State of Kuwait.
| |
Collapse
|
8
|
Aravind Kumar J, Krithiga T, Sathish S, Renita AA, Prabu D, Lokesh S, Geetha R, Namasivayam SKR, Sillanpaa M. Persistent organic pollutants in water resources: Fate, occurrence, characterization and risk analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154808. [PMID: 35341870 DOI: 10.1016/j.scitotenv.2022.154808] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Persistent organic pollutants (POPs) are organic chemicals that can persist in the environment for a longer period due to their non-biodegradability. The pervasive and bio-accumulative behavior of POPs makes them highly toxic to the environmental species including plants, animals, and humans. The present review specifies the POP along with their fate, persistence, occurrence, and risk analysis towards humans. The different biological POPs degradation methods, especially the microbial degradation using bacteria, fungi, algae, and actinomycetes, and their mechanisms were described. Moreover, the source, transport of POPs to the environmental sources, and the toxic nature of POPs were discussed in detail. Agricultural and industrial activities are distinguished as the primary source of these toxic compounds, which are delivered to air, soil, and water, affecting on the social and economic advancement of society at a worldwide scale. This review also demonstrated the microbial degradation of POPs and outlines the potential for an eco-accommodating and cost-effective approach for the biological remediation of POPs using microbes. The direction for future research in eliminating POPs from the environmental sources through various microbial processes was emphasized.
Collapse
Affiliation(s)
- J Aravind Kumar
- Department of Biomass and Energy Conversion, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - T Krithiga
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai - 600119, India
| | - S Sathish
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai - 600119, India
| | - A Annam Renita
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai - 600119, India.
| | - D Prabu
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai - 600119, India
| | - S Lokesh
- Department of Biomass and Energy Conversion, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - R Geetha
- Department of Instrumentation and Control Engineering, Saveetha School of Engineering, SIMATS, Chennai, India
| | - S Karthick Raja Namasivayam
- Division of Research and Innovation, Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Mika Sillanpaa
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa; Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India
| |
Collapse
|
9
|
Sobotka J, Smedes F, Vrana B. Performance comparison of silicone and low-density polyethylene as passive samplers in a global monitoring network for aquatic organic contaminants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:119050. [PMID: 35218918 DOI: 10.1016/j.envpol.2022.119050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Contamination with hydrophobic organic compounds (HOCs) such as persistent organic pollutants negatively affects global water quality. Accurate and globally comparable monitoring data are required to understand better the HOCs distribution and environmental fate. We present the first results of a proof-of-concept global monitoring campaign, the Aquatic Global Passive Sampling initiative (AQUA-GAPS), performed between 2016 and 2020, for assessing trends of freely dissolved HOC concentrations in global surface waters. One of the pilot campaign aims was to compare performance characteristics of silicone (SSP) and low-density polyethylene (PE) sheets co-deployed in parallel under identical conditions, i.e. at the same site, using the same deployment design, and for an equal period. Individual exposures lasted between 36 and 400 days, and samples were collected from 22 freshwater and 40 marine locations. The sampler inter-comparability is based on a rationale of common underlying principles, i.e. HOC diffusion through a water boundary layer (WBL) and absorption by the polymer. In the integrative uptake phase, equal surface-specific uptake in both samplers was observed for HOCs with a molecular volume less than 300 Å3. For those HOCs, transport in the WBL controls the uptake as mass transfer in the polymer is over 20-times faster. In such a case, sampled HOC mass can be converted into aqueous concentrations using available models derived for WBL-controlled sampling using performance reference compounds. In contrast, for larger molecules, surface-specific uptake to PE was lower than to SSP. Diffusion in PE is slower than in SSP, and it is likely that for large molecules, diffusion in PE limits the transport from water to the sampler, complicating the interpretation. Although both samplers provided mostly well comparable results, we recommend, based on simpler practical handling, simpler data interpretation, and better availability of reliable polymer-water partition coefficients, silicone-based samplers for future operation in the worldwide monitoring programme.
Collapse
Affiliation(s)
- Jaromír Sobotka
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic
| | - Foppe Smedes
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic
| | - Branislav Vrana
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic.
| |
Collapse
|
10
|
Hassan AA, Nøst TH, Brustad M, Sandanger TM. Concentrations and geographical patterns of persistent organic pollutants (POPs) in meat from semi-domesticated reindeer (Rangifer tarandus tarandus L.) in Norway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149278. [PMID: 34340081 DOI: 10.1016/j.scitotenv.2021.149278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 07/12/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
The study aimed at investigating the concentrations and geographical patterns of 11 polychlorinated biphenyls (PCBs) and 15 organochlorine pesticides (OCPs) in reindeer muscle samples (n = 100) collected from 10 grazing districts in Norway, 2009. Concentrations were examined for patterns related to geographical region as well as age and sex of animals. Concentrations measured for PCBs and OCPs in reindeer meat samples were generally low. Geographical patterns were revealed and districts with previous mining activities, military trenches, or those that were in the vicinity of the Russian border exhibited slightly elevated concentrations compared to other districts. Calves (10 months) exhibited higher concentrations than young (1.5 year) and old animals (>2 years) adjusted for sex, whereas males exhibited higher concentrations than females, adjusted for age. All PCB congeners inter-correlated strongly with each other, whereas oxy-chlordane and heptachlor epoxide were the strongest inter-correlated OCP compounds. Concentrations of PCBs and OCPs in reindeer meat were all considerably lower than the maximum levels set for those contaminants in foodstuffs for safe human consumption by the European Commission. Thus, reindeer meat is not likely to be a substantial contributor to the human body burden of persistent organic pollutants.
Collapse
Affiliation(s)
- Ammar Ali Hassan
- Centre for Sami Health Research, Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Therese Haugdahl Nøst
- Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Magritt Brustad
- Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Torkjel M Sandanger
- Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, N-9037 Tromsø, Norway; NILU - Norwegian Institute for Air Research, Fram Centre, N-9296 Tromsø, Norway
| |
Collapse
|
11
|
Oregel-Zamudio E, Alvarez-Bernal D, Franco-Hernandez MO, Buelna-Osben HR, Mora M. Bioaccumulation of PCBs and PBDEs in Fish from a Tropical Lake Chapala, Mexico. TOXICS 2021; 9:toxics9100241. [PMID: 34678937 PMCID: PMC8540629 DOI: 10.3390/toxics9100241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/28/2021] [Accepted: 09/27/2021] [Indexed: 11/21/2022]
Abstract
Lake Chapala is the largest natural freshwater reservoir in Mexico and the third largest lake in Latin America. Lakes are often considered the final deposit of polluting materials; they can be concentrated in the organisms that inhabit them, the water, and the sediments. The PCBs and PBDEs are environmental pollutants highly studied for their known carcinogenic and mutagenic effects. PCB and PBDE bioaccumulation levels were determined in Chirostoma spp., Cyprinus carpio, and Oreochromis aureus. In addition, we monitored the concentrations of PCBs and PBDEs in sediment and water from Lake Chapala were monitored. Samples were collected during two periods, in October 2018 and May 2019. The samples were analyzed by gas chromatography coupled with mass spectrometry. Two bioaccumulation factors were determined in fish, one in relation to the concentration of PCBs and PBDEs in sediments and the other in relation to the concentration of PCBs and PBDEs in water. The PCB levels were 0.55–3.29 ng/g dry weight (dw) in sediments, 1.43–2.98 ng/mL in water, 0.30–5.31 ng/g dw in Chirostoma spp., 1.06–6.07 ng/g dw in Cyprinus carpio, and 0.55–7.20 ng/g dw in Oreochromis aureus. The levels of PBDEs were 0.17–0.35 ng/g dw in sediments, 0.13–0.32 ng/mL in water, 0.01–0.23 ng/g dw in Chirostoma spp., 0–0.31 ng/g dw in Cyprinus carpio, and 0.1–0.22 ng/g dw in Oreochromis aureus. This study provides information for a better understanding of the movement, global distribution, and bioaccumulation of PCBs and PBDEs. The results show that the fish, water, and sediments of Lake Chapala are potential risks to the biota and the local human population.
Collapse
Affiliation(s)
- Ernesto Oregel-Zamudio
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología-IPN (UPIBI), Av. Acueducto, Barrio la Laguna Ticoman, Ciudad de México 07340, Mexico;
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Michoacán, Justo Sierra 28, Col. Centro, Jiquilpan 59510, Mexico; (D.A.-B.); (H.R.B.-O.)
- Correspondence: ; Tel.: +52-353-533-0218
| | - Dioselina Alvarez-Bernal
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Michoacán, Justo Sierra 28, Col. Centro, Jiquilpan 59510, Mexico; (D.A.-B.); (H.R.B.-O.)
| | - Marina Olivia Franco-Hernandez
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología-IPN (UPIBI), Av. Acueducto, Barrio la Laguna Ticoman, Ciudad de México 07340, Mexico;
| | - Hector Rene Buelna-Osben
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Michoacán, Justo Sierra 28, Col. Centro, Jiquilpan 59510, Mexico; (D.A.-B.); (H.R.B.-O.)
| | - Miguel Mora
- Department of Wildlife and Fisheries Sciences, Texas A&M University, 454 Throckmorton St, College Station, TX 77840, USA;
| |
Collapse
|
12
|
Verma R, Dhingra G, Malik AK. A Comprehensive Review on Metal Organic Framework Based Preconcentration Strategies for Chromatographic Analysis of Organic Pollutants. Crit Rev Anal Chem 2021; 53:415-441. [PMID: 34435923 DOI: 10.1080/10408347.2021.1964344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Organic pollutants (OPs) are of worldwide concern for being hazardous to human existence and natural flora and fauna in view of their contaminating nature, bio-aggregation properties and long range movement abilities in environment. Metal organic frameworks (MOFs) are a new kind of crystalline porous material, composed of metal ions and multi dentate organic ligands with well-defined co-ordination geometry exhibiting promising application respect to adsorptive evacuation of OPs for chromatographic analysis. Applications of MOFs as preconcentration material and column packing material are reviewed. Key analytical characteristics of MOF based preconcentration techniques and coupled chromatographic procedures are summarized in detail. MOF based preconcentration strategies are compared with conventional sorbent based extraction techniques for thorough evaluation of performance of MOF materials.
Collapse
Affiliation(s)
- Rajpal Verma
- Department of Chemistry, Punjabi University, Patiala, Punjab, India
| | - Gaurav Dhingra
- Punjabi University Constituent College, Patiala, Punjab, India
| | | |
Collapse
|
13
|
Ishtiaq J, Syed JH, Jadoon WA, Hamid N, Iqbal Chaudhry MJ, Shahnawaz M, Nasir J, Haider Rizvi SH, Chakraborty P, Li J, Zhang G. Atmospheric polycyclic aromatic hydrocarbons (PAHs) at urban settings in Pakistan: Spatial variations, sources and health risks. CHEMOSPHERE 2021; 274:129811. [PMID: 33561720 DOI: 10.1016/j.chemosphere.2021.129811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
For the first time, this study presents gaseous and particulate-bound (PM2.5) polycyclic aromatic hydrocarbons (PAHs) in ambient air samples collected from eight major cities of Pakistan. Diurnal air samples (gaseous and PM2.5) were collected in summer 2014 on polyurethane foam and quartz fiber filters using high volume-active air sampler. The US-EPA enlisted 16 priority PAHs in particulate and gaseous phase were measured on gas chromatograph equipped with mass spectrometer detector. The total PAHs concentrations ranged between 188 pg m-3 (in Gilgit), and 2340 pg m-3 (in Lahore). The decreasing order of PAHs concentrations in various cities was in the following order: Lahore > Rawalpindi > Multan > Faisalabad > Karachgi > Peshawar > Quetta > Gilgit. Phenanthrene showed the highest concentration, accounted 18% of total PAHs followed by fluoranthene (12% of total PAHs). This study showed that the gaseous fractions were predominant in the ambient air. Source apportionment analysis revealed that biomass combustion, vehicular emissions and diesel combustion in power generators were the potential PAHs emissions sources. The lifetime lungs cancer risk (LLCR) was in the range of 8.28 × 10-7 to 2.09 × 10-5 depicting mild cancer risk to the residents on exposure to atmospheric PAHs. Therefore, it is recommended to monitor atmospheric PAHs throughout the year and also adopt environmentally friendly fuels to reduce PAHs pollution and health risks in the country.
Collapse
Affiliation(s)
- Jaziba Ishtiaq
- Department of Meteorology, COMSATS University Islamabad (CUI), Park Road, Tarlai Kalan, Islamabad, 45550, Pakistan
| | - Jabir Hussain Syed
- Department of Meteorology, COMSATS University Islamabad (CUI), Park Road, Tarlai Kalan, Islamabad, 45550, Pakistan.
| | - Waqar Azeem Jadoon
- Department of Environmental Sciences, Hazara University, Mansehra, 21130, Pakistan
| | - Naima Hamid
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Muhammad Shahnawaz
- Department of Agriculture & Food Technology, Karakoram International University Main Campus University Road Gilgit (15100), Pakistan
| | - Jawad Nasir
- Earth Sciences Directorate, Pakistan Space and Upper Atmosphere Research Commission (SUPARCO), P.O. Box 8402, Karachi, 75270, Pakistan
| | - Syed Hussain Haider Rizvi
- Earth Sciences Directorate, Pakistan Space and Upper Atmosphere Research Commission (SUPARCO), P.O. Box 8402, Karachi, 75270, Pakistan
| | - Paromita Chakraborty
- Department of Civil Engineering & SRM Research Institute, SRM Institute of Science and Technology, Kancheepuram District, Tamil Nadu, 603203, India
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
14
|
Arctic Freshwater Environment Altered by the Accumulation of Commonly Determined and Potentially New POPs. WATER 2021. [DOI: 10.3390/w13131739] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chemical composition of Arctic freshwater ecosystems depends on several factors. They include characteristics of the surrounding landscape, its lithology, geomorphology, vegetation, and hydrological features, as well as accumulation of anthropogenic pollution. In the Arctic, the problem of environmental contamination is widespread. That is why research on lakes and river catchments in terms of their chemical composition has enjoyed increasing interest among scientists worldwide. The freshwater reservoirs of the Arctic are fragile and particularly vulnerable to the uptake of pollutants that become trapped in the water and sediments for an extended period. This review summarises selected studies of freshwater bodies in the Arctic to highlight the problem of the accumulation of pollutants in these reservoirs. Moreover, it emphasises the possible negative impact of chemical pollutants on both animal and human health.
Collapse
|
15
|
Occurrence of Volatile and Semi-Volatile Organic Pollutants in the Russian Arctic Atmosphere: The International Siberian Shelf Study Expedition (ISSS-2020). ATMOSPHERE 2021. [DOI: 10.3390/atmos12060767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Environmental issues in the Arctic region are of primary importance due to the fragility of the Arctic ecosystem. Mainly persistent organic compounds are monitored in the region by nine stationary laboratories. Information on the volatile (VOC) and semi volatile (SVOC) organic priority pollutants is very limited, especially for the Russian Arctic. Air samples from 16 sites along the Russian Arctic coast from the White Sea to the East Siberian Sea were collected on sorption tubes packed with Tenax, Carbograph, and Carboxen sorbents with different selectivity for a wide range of VOCs and SVOCs in 2020 within the framework of the International Siberian Shelf Study Expedition on the research vessel Akademik Keldysh. Thermal desorption gas chromatography–high-resolution mass spectrometry with Orbitrap was used for the analysis. Eighty-six VOCs and SVOCs were detected in the air samples at ng/m3 levels. The number of quantified compounds varied from 26 to 66 per sample. Benzoic acid was the major constituent, followed by BTEX, phenol, chloroform, bis(2-ethylhexyl) phthalate, and carbon tetrachloride. The study allowed for obtaining the first ever data on the presence of 138 priority pollutants in the air of Russian Arctic, whereas the thorough assessment of their possible sources will be the aim of a next investigation.
Collapse
|
16
|
Goutman SA, Feldman EL. Voicing the Need for Amyotrophic Lateral Sclerosis Environmental Research. JAMA Neurol 2021; 77:543-544. [PMID: 32119032 DOI: 10.1001/jamaneurol.2020.0051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Stephen A Goutman
- Department of Neurology, University of Michigan, Ann Arbor.,Program for Neurology Research and Discovery, University of Michigan, Ann Arbor
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor.,Program for Neurology Research and Discovery, University of Michigan, Ann Arbor
| |
Collapse
|
17
|
Emerging Contaminants: Analysis, Aquatic Compartments and Water Pollution. EMERGING CONTAMINANTS VOL. 1 2021. [DOI: 10.1007/978-3-030-69079-3_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
18
|
Syed JH, Iqbal M, Breivik K, Chaudhry MJI, Shahnawaz M, Abbas Z, Nasir J, Rizvi SHH, Taqi MM, Li J, Zhang G. Legacy and emerging flame retardants (FRs) in the urban atmosphere of Pakistan: Diurnal variations, gas-particle partitioning and human health exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140874. [PMID: 32758856 DOI: 10.1016/j.scitotenv.2020.140874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/05/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Atmospheric concentration of legacy (LFRs) and emerging flame retardants (EFRs) including 8 polybrominated diphenyl ethers (PBDEs), 6 novel brominated flame retardants (NBFRs), 2 dechlorane plus isomers (DP), and 8 chlorinated organophosphate flame retardants (OPFRs) were consecutively measured in eight major cities across Pakistan. A total of 96 samples (48 PM2.5 & 48 PUFs) were analyzed and the concentrations of ∑8PBDEs (gaseous+particulate) ranged between 40.8 and 288 pg/m3 with an average value of 172 pg/m3. ∑6NBFRs ranged between 12.0 and 35.0 pg/m3 with an average value of 22.5 pg/m3 while ∑8OPFRs ranged between 12,900-40,800 pg/m3 with an average of 24,700 pg/m3. Among the studied sites, Faisalabad city exhibited the higher concentrations of FRs among all cities which might be a consequence of textile mills and garment manufacturing industries. While analyzing the diurnal patterns, OPFRs depicted higher concentrations during night-time. The estimated risks of all groups of FRs from inhalation of ambient air were negligible for all the cities, according to USEPA guidelines. Nonetheless, our study is the first to report gaseous and particulate concentrations of FRs in air on a diurnal basis across major cities in Pakistan, offering insights into the atmospheric fate of these substances in urban areas in a sub-tropical region.
Collapse
Affiliation(s)
- Jabir Hussain Syed
- Department of Meteorology, COMSATS University Islamabad (CUI), Park Road, Tarlai Kalan, Islamabad 45550, Pakistan.
| | - Mehreen Iqbal
- UFZ, Helmholtz Centre for Environmental Research, Department of Ecological Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany; Institute of Organic Chemistry Technical University Bergakademie Freiberg, Leipziger Strasse 29, 09596 Freiberg, Germany
| | - Knut Breivik
- Norwegian Institute for Air Research, Box 100, NO-2027 Kjeller, Norway; University of Oslo, Department of Chemistry, Box 1033, NO-0315 Oslo, Norway
| | | | - Muhammad Shahnawaz
- Department of Agriculture & Food Technology, Karakoram International University, Main Campus University Road, Gilgit 15100, Pakistan
| | - Zaigham Abbas
- Chemical Division, Ministry of Climate Change, Islamabad, Pakistan
| | - Jawad Nasir
- Earth Sciences Directorate, Pakistan Space and Upper Atmosphere Research Commission (SUPARCO), P.O. Box 8402, Karachi 75270, Pakistan
| | - Syed Hussain Haider Rizvi
- Earth Sciences Directorate, Pakistan Space and Upper Atmosphere Research Commission (SUPARCO), P.O. Box 8402, Karachi 75270, Pakistan
| | | | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
19
|
Maner J, Burkard M, Cassano JC, Nash SMB, Schirmer K, Suter MJF. Hexachlorobenzene exerts genotoxic effects in a humpback whale cell line under stable exposure conditions. RSC Adv 2019; 9:39447-39457. [PMID: 35540658 PMCID: PMC9076109 DOI: 10.1039/c9ra05352b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/15/2019] [Indexed: 01/04/2023] Open
Abstract
Humpback whales, like other polar wildlife, accumulate persistent organic pollutants. In Southern hemisphere populations, hexachlorobenzene (HCB) dominates the contaminant profiles. HCB is linked to a variety of health effects and is classified as a group 2B carcinogen, but the mechanism of action is a matter of contention. Potential toxicological effects to humpback whales remain entirely unknown. The recently established humpback whale fibroblast cell line (HuWa) offers an in vitro model for toxicological investigations. We here combine this novel cell line with a passive dosing strategy to investigate whale-specific toxicity of HCB. The relevant partitioning coefficients were determined to produce stable and predictable exposure concentrations in small-scale bioassays. The system was used to assess acute toxicity as well as genotoxicity of HCB to the HuWa cell line. While we found some transient reductions in metabolic activity, measured with the indicator dye alamarBlue, no clear acute toxic effects were discernible. Yet, a significant increase in DNA damage, detected in the alkaline comet assay, was found in HuWa cells exposed to 10 μg L-1 HCB during the sensitive phase of cell attachment. Collectively, this work provides a ready-to-use passive dosing system and delivers evidence that HCB elicits genotoxicity in humpback whale cells.
Collapse
Affiliation(s)
- Jenny Maner
- Department Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology 8600 Dübendorf Switzerland
- Department of Environmental Systems Science, ETH Zürich 8092 Zürich Switzerland
| | - Michael Burkard
- Department Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology 8600 Dübendorf Switzerland
- Southern Ocean Persistent Organic Pollutants Program, Environmental Futures Research Institute, Griffith University Brisbane QLD 4108 Australia
| | - Juan Carlos Cassano
- Empa, Swiss Laboratories for Material Science and Technology, Particle-Biology Interactions Laboratory 9014 St Gallen Switzerland
| | - Susan M Bengtson Nash
- Southern Ocean Persistent Organic Pollutants Program, Environmental Futures Research Institute, Griffith University Brisbane QLD 4108 Australia
| | - Kristin Schirmer
- Department Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology 8600 Dübendorf Switzerland
- Department of Environmental Systems Science, ETH Zürich 8092 Zürich Switzerland
- School of Architecture, Civil and Environmental Engineering, EPF Lausanne 1015 Lausanne Switzerland
| | - Marc J-F Suter
- Department Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology 8600 Dübendorf Switzerland
- Department of Environmental Systems Science, ETH Zürich 8092 Zürich Switzerland
| |
Collapse
|
20
|
Cagnazzi D, Consales G, Broadhurst MK, Marsili L. Bioaccumulation of organochlorine compounds in large, threatened elasmobranchs off northern New South Wales, Australia. MARINE POLLUTION BULLETIN 2019; 139:263-269. [PMID: 30686427 DOI: 10.1016/j.marpolbul.2018.12.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/10/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
Persistent organic pollutants (POPs) include polychlorinated biphenyls (PCBs) dichlorodiphenyltrichloroethane (DDT) and hexachlorobenzene (HCB), which are resistant to biodegradation and therefore accumulate in the marine environment. In Australia, POPs occur in high concentrations primarily in costal water near farming regions and urban centres. From contaminated sediments and biota, POPs are transferred and biomagnified in larger marine organisms. We quantified POPs concentrations in 57 individuals from ten species of sharks and rays caught in bather-protection gillnets deployed off northern New South Wales, Australia. Polychlorinated biphenyls, DDTs and HCB were detected in all species. For some individuals, concentrations were at levels known to have deleterious sub-lethal effects. Overall, the POP concentrations analysed in this study were comparable to those in similar species from more polluted regions, and may have negative impacts on longer-term health. Future research is warranted to investigate spatio-temporal patterns of species-specific contaminant loads and their implications.
Collapse
Affiliation(s)
- Daniele Cagnazzi
- Marine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, PO Box 157, Lismore, NSW 2480, Australia.
| | - Guia Consales
- Department of Environment, Earth and Physical Sciences, Siena University, Via Mattioli 4, 53100 Siena, Italy
| | - Matt K Broadhurst
- NSW Department of Primary Industries, Fisheries Conservation Technology Unit, National Marine Science Centre, PO Box 4321, Coffs Harbour, NSW 2450, Australia; Marine and Estuarine Ecology Unit, School of Biological Sciences, University of Queensland, St Lucia, Australia
| | - Letizia Marsili
- Department of Environment, Earth and Physical Sciences, Siena University, Via Mattioli 4, 53100 Siena, Italy
| |
Collapse
|