1
|
Pachner AR. The Neuroimmunology of Multiple Sclerosis: Fictions and Facts. Front Neurol 2022; 12:796378. [PMID: 35197914 PMCID: PMC8858985 DOI: 10.3389/fneur.2021.796378] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
There have been tremendous advances in the neuroimmunology of multiple sclerosis over the past five decades, which have led to improved diagnosis and therapy in the clinic. However, further advances must take into account an understanding of some of the complex issues in the field, particularly an appreciation of "facts" and "fiction." Not surprisingly given the incredible complexity of both the nervous and immune systems, our understanding of the basic biology of the disease is very incomplete. This lack of understanding has led to many controversies in the field. This review identifies some of these controversies and facts/fictions with relation to the basic neuroimmunology of the disease (cells and molecules), and important clinical issues. Fortunately, the field is in a healthy transition from excessive reliance on animal models to a broader understanding of the disease in humans, which will likely lead to many improved treatments especially of the neurodegeneration in multiple sclerosis (MS).
Collapse
Affiliation(s)
- Andrew R. Pachner
- Dartmouth–Hitchcock Medical Center, Lebanon, NH, United States
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
2
|
Sánchez-Fernández A, Zandee S, Mastrogiovanni M, Charabati M, Rubbo H, Prat A, López-Vales R. Administration of Maresin-1 ameliorates the physiopathology of experimental autoimmune encephalomyelitis. J Neuroinflammation 2022; 19:27. [PMID: 35109863 PMCID: PMC8808957 DOI: 10.1186/s12974-022-02386-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/13/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Resolution of inflammation is an active and regulated process that leads to the clearance of cell debris and immune cells from the challenged tissue, facilitating the recovery of homeostasis. This physiological response is coordinated by endogenous bioactive lipids known as specialized pro-resolving mediators (SPMs). When resolution fails, inflammation becomes uncontrolled leading chronic inflammation and tissue damage, as occurs in multiple sclerosis (MS). METHODS SPMs and the key biosynthetic enzymes involved in SPM production were analysed by metabololipidomics and qPCR in active brain lesions, serum and peripheral blood mononuclear cells (PBMC) of MS patients as well as in the spinal cord of mice with experimental autoimmune encephalomyelitis (EAE). We also tested the therapeutic actions of the SPM coined Maresin-1 (MaR1) in EAE mice and studied its impact on inflammation by doing luminex and flow cytometry analysis. RESULTS We show that levels of MaR1 and other SPMs were below the limit of detection or not increased in the spinal cord of EAE mice, whereas the production of pro-inflammatory eicosanoids was induced during disease progression. Similarly, we reveal that SPMs were undetected in serum and active brain lesion samples of MS patients, which was linked to impaired expression of the enzymes involved in the biosynthetic pathways of SPMs. We demonstrate that exogenous administration of MaR1 in EAE mice suppressed the protein levels of various pro-inflammatory cytokines and reduced immune cells counts in the spinal cord and blood. MaR1 also decreased the numbers of Th1 cells but increased the accumulation of regulatory T cells and drove macrophage polarization towards an anti-inflammatory phenotype. Importantly, we provide clear evidence that administration of MaR1 in mice with clinical signs of EAE enhanced neurological outcomes and protected from demyelination. CONCLUSIONS This study reveals that there is an imbalance in the production of SPMs in MS patients and in EAE mice, and that increasing the bioavailability of SPMs, such as MaR1, minimizes inflammation and mediates therapeutic actions. Thus, these data suggest that immunoresolvent therapies, such as MaR1, could be a novel avenue for the treatment of MS.
Collapse
Affiliation(s)
- Alba Sánchez-Fernández
- Institut de Neurociencies and Departament de Biologia Cel lular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autonoma de Barcelona, 08193, Bellaterra, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Stephanie Zandee
- Department of Neuroscience, Faculty of Medicine, Université de Montréal and Neuroimmunology Unit, Centre de Recherche du CHUM (CRCHUM), Montréal, Québec, Canada
| | - Mauricio Mastrogiovanni
- Departamento de Bioquímica, Facultad de Medicina and Centro de Investigaciones Biomédicas (CEINBIO), Universidad de La República, Montevideo, Uruguay
| | - Marc Charabati
- Department of Neuroscience, Faculty of Medicine, Université de Montréal and Neuroimmunology Unit, Centre de Recherche du CHUM (CRCHUM), Montréal, Québec, Canada
| | - Homero Rubbo
- Departamento de Bioquímica, Facultad de Medicina and Centro de Investigaciones Biomédicas (CEINBIO), Universidad de La República, Montevideo, Uruguay
| | - Alexandre Prat
- Department of Neuroscience, Faculty of Medicine, Université de Montréal and Neuroimmunology Unit, Centre de Recherche du CHUM (CRCHUM), Montréal, Québec, Canada
| | - Rubèn López-Vales
- Institut de Neurociencies and Departament de Biologia Cel lular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autonoma de Barcelona, 08193, Bellaterra, Catalonia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain.
| |
Collapse
|
3
|
OUP accepted manuscript. Clin Chem 2022; 68:1134-1150. [DOI: 10.1093/clinchem/hvac061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/04/2022] [Indexed: 11/13/2022]
|
4
|
Tong Y, Liu J, Yang T, Wang J, Zhao T, Kang Y, Fan Y. Association of Pain with Plasma C5a in Patients with Neuromyelitis Optica Spectrum Disorders During Remission. Neuropsychiatr Dis Treat 2022; 18:1039-1046. [PMID: 35615424 PMCID: PMC9124695 DOI: 10.2147/ndt.s359620] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 05/06/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To investigate the association of pain with plasma C5a levels and other related inflammatory cytokines in neuromyelitis optica spectrum disorders (NMOSD) patients during remission. PARTICIPANTS AND METHODS NMOSD patients (n = 87) and healthy controls (HC; n = 44) were consecutively recruited between January 2017 and April 2018. Plasma complement 5 (C5), C5a, interleukin (IL)-6, tumor necrosis factor (TNF)-α, and IL-1β levels were detected. Visual Analogue Scale (VAS), ID pain scale, 24-item Hamilton Depression Scale (HAMD), Multiple Sclerosis Impact Scale (MSIS-29), and Kurtzke Expanded Disability Status Scale (EDSS) were used to evaluate the degree and types of pain, the existence of depression and anxiety, and the life quality and disability status of patients. Binary logistic regression equation was used to assess the association of pain with plasma C5a levels. RESULTS Among the 87 NMOSD patients, 40 complained of pain that in 67.5% (27/40) of cases had a neuropathic component (ID pain ≥2). Plasma C5a, IL-6, TNF-α, and IL-1β levels were significantly elevated in NMOSD patients than in HC. Plasma C5 levels were negatively correlated with the time from sampling to the last relapse or disease onset. NMOSD patients with pain had higher plasma C5a levels, and they suffered from a higher disability, more anxiety, and worse life quality compared to those patients without pain. In NMOSD patients with pain, there were not significant differences between plasma levels of C5, C5a, IL-6, TNF-α, or IL-1β, regardless of neuropathic pain or not. Binary logistic regression showed that the OR of plasma C5a level was 1.002, with gender and EDSS score were identified as independent factors associated with pain in NMOSD. CONCLUSION NMOSD patients during remission had elevated C5a and related inflammatory cytokines levels in peripheral blood. Elevated C5a may have a unique role in the pathogenesis of pain in NMOSD patients.
Collapse
Affiliation(s)
- Yanping Tong
- Department of Traditional Chinese Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China.,Beijing Integrative Medicine on Encephalopathy Research Institution, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China
| | - Jie Liu
- Department of Respiratory Medicine, Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, 100026, People's Republic of China
| | - Tao Yang
- Department of Traditional Chinese Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China.,Beijing Integrative Medicine on Encephalopathy Research Institution, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China
| | - Jingwen Wang
- Department of Neurology, Beijing Miyun District Hospital of Traditional Chinese Medicine, Beijing, 101599, People's Republic of China
| | - Tianyou Zhao
- Department of Neurology, Beijing Miyun District Hospital of Traditional Chinese Medicine, Beijing, 101599, People's Republic of China
| | - Yuezhi Kang
- Department of Traditional Chinese Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China.,Beijing Integrative Medicine on Encephalopathy Research Institution, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China
| | - Yongping Fan
- Department of Traditional Chinese Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China.,Beijing Integrative Medicine on Encephalopathy Research Institution, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China
| |
Collapse
|
5
|
Wei R, Xie J, Wu H, He F, Meng F, Liu J, Liang H, Zhao Y. Superficial Macula Capillary Complexity Changes Are Associated With Disability in Neuromyelitis Optica Spectrum Disorders. Front Neurol 2021; 12:724946. [PMID: 34630300 PMCID: PMC8492905 DOI: 10.3389/fneur.2021.724946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/03/2021] [Indexed: 11/27/2022] Open
Abstract
Purpose: We examined the macular microvascular changes of the macula in neuromyelitis optica spectrum disorder (NMOSD) patients and its association with their disability and other clinical variables. Methods: Thirty-four NMOSD (13 patients without optic neuritis, NMOSD-NON, and 21 patients with a history of optic neuritis, NMOSD-ON) and 44 healthy controls (HCs) were included in the study. Optical coherence tomographic angiography (OCTA) was used to image the superficial (SCP), deep (DCP), and whole capillary plexus (WCP) in a 2.5-mm-diameter concentric circle [excluding the foveal avascular zone (FAZ)]. An algorithm (Dbox) was used to quantify the complexity of the three capillary layers by fractal analysis. We also evaluated the expanded disability scale status (EDSS). Results: Dbox values were significantly reduced in SCP (p < 0.001), DCP (p < 0.001), and WCP (p = 0.003) of NMOSD when compared with HCs. Dbox values were significantly reduced in NMOSD eyes with optic neuritis when compared with healthy controls (p < 0.001) and eyes without optic neuritis (p = 0.004) in the SCP. In the DCP, eyes with optic neuritis showed significantly reduced Dbox values when compared with eyes without optic neuritis (p = 0.016) and healthy controls (p < 0.001); eyes without optic neuritis showed significantly reduced Dbox values (p = 0.007) in the DCP when compared with healthy controls. A significant negative correlation (Rho = −0.475, p = 0.005) was shown between the superficial macula Dbox values and the EDSS in NMOSD patients. Additionally, a negative correlation (Rho = −0.715, p = 0.006) was seen in the superficial Dbox values in [e]eyes without optic neuritis and EDSS. Conclusions: Macular microvascular damage in the superficial plexus is associated with disability in NMOSD. Macular microvascular alterations arise independently of the occurrence of ON in NMOSD.
Collapse
Affiliation(s)
- Ruili Wei
- Neurology Department, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianyang Xie
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Huihui Wu
- Neurology Department, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fangping He
- Neurology Department, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fangxia Meng
- Neurology Department, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiang Liu
- Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Hui Liang
- Neurology Department, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yitian Zhao
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
6
|
Iorio R, Papi C. Neuromyelitis optica, aquaporin-4 antibodies, and neuroendocrine disorders. HANDBOOK OF CLINICAL NEUROLOGY 2021; 181:173-186. [PMID: 34238456 DOI: 10.1016/b978-0-12-820683-6.00013-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neuromyelitis optica (NMO) is an autoimmune disorder of the central nervous system that preferentially affects the optic nerve and the spinal cord. In around 80% of NMO patients, autoantibodies binding to aquaporin-4 (AQP4) are detected. AQP4-IgG unifies a spectrum of disorders (NMOSD) that include not only optic neuritis, longitudinally extensive transverse myelitis but also syndromes caused by lesion of the diencephalic region and the circumventricular organs (CVOs). The distinctive immunopathological characteristics of NMOSD lesions, occurring in regions where AQP4 is highly expressed, supports a central role for AQP4-IgG in disease pathogenesis. AQP4 expression is concentrated in CVOs and in the hypothalamus, mainly in the dorsal hypothalamic area, dorsomedial hypothalamic nucleus and suprachiasmatic nucleus. Several neuroendocrine disorders caused by inflammatory lesions involving the diencephalic region have been described in patients with NMOSD, including syndrome of inappropriate antidiuresis, sleep disorders, and other endocrinopathies caused by hypothalamic injury. Focus of this chapter is the involvement of hypothalamus and CVOs in AQP4 autoimmunity.
Collapse
Affiliation(s)
- Raffaele Iorio
- Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, and Università Cattolica del Sacro Cuore, Rome, Italy
| | - Claudia Papi
- Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, and Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
7
|
Yick LW, Tang CH, Ma OKF, Kwan JSC, Chan KH. Memantine ameliorates motor impairments and pathologies in a mouse model of neuromyelitis optica spectrum disorders. J Neuroinflammation 2020; 17:236. [PMID: 32782018 PMCID: PMC7418436 DOI: 10.1186/s12974-020-01913-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023] Open
Abstract
Background Neuromyelitis optica spectrum disorders (NMOSD) are central nervous system (CNS) autoimmune inflammatory demyelinating diseases characterized by recurrent episodes of acute optic neuritis and transverse myelitis. Aquaporin-4 immunoglobulin G (AQP4-IgG) autoantibodies, which target the water channel aquaporin-4 (AQP4) on astrocytic membrane, are pathogenic in NMOSD. Glutamate excitotoxicity, which is triggered by internalization of AQP4-glutamate transporter complex after AQP4-IgG binding to astrocytes, is involved in early NMOSD pathophysiologies. We studied the effects of memantine, a N-methyl-D-aspartate (NMDA) receptor antagonist, on motor impairments and spinal cord pathologies in mice which received human AQP4-IgG. Methods Purified IgG from AQP4-IgG-seropositive NMOSD patients were passively transferred to adult C57BL/6 mice with disrupted blood-brain barrier. Memantine was administered by oral gavage. Motor impairments of the mice were assessed by beam walking test. Spinal cords of the mice were assessed by immunofluorescence and ELISA. Results Oral administration of memantine ameliorated the motor impairments induced by AQP4-IgG, no matter the treatment was initiated before (preventive) or after (therapeutic) disease flare. Memantine profoundly reduced AQP4 and astrocyte loss, and attenuated demyelination and axonal loss in the spinal cord of mice which had received AQP4-IgG. The protective effects of memantine were associated with inhibition of apoptosis and suppression of neuroinflammation, with decrease in microglia activation and neutrophil infiltration and reduction of increase in levels of proinflammatory cytokines including interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). In addition, memantine elevated growth factors including brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and vascular endothelial growth factor (VEGF) in the spinal cord. Conclusions Our findings support that glutamate excitotoxicity and neuroinflammation play important roles in complement-independent pathophysiology during early development of NMOSD lesions, and highlight the potential of oral memantine as a therapeutic agent in NMOSD acute attacks.
Collapse
Affiliation(s)
- Leung-Wah Yick
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,Neuroimmunology and Neuroinflammation Research Laboratory, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Chi-Ho Tang
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,Neuroimmunology and Neuroinflammation Research Laboratory, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Oscar Ka-Fai Ma
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,Neuroimmunology and Neuroinflammation Research Laboratory, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Jason Shing-Cheong Kwan
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,Neuroimmunology and Neuroinflammation Research Laboratory, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Koon-Ho Chan
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong. .,Neuroimmunology and Neuroinflammation Research Laboratory, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong. .,Department of Medicine, The University of Hong Kong, 4/F, Professorial Block, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, Hong Kong.
| |
Collapse
|
8
|
Sánchez-Fernández A, Skouras DB, Dinarello CA, López-Vales R. OLT1177 (Dapansutrile), a Selective NLRP3 Inflammasome Inhibitor, Ameliorates Experimental Autoimmune Encephalomyelitis Pathogenesis. Front Immunol 2019; 10:2578. [PMID: 31736980 PMCID: PMC6839275 DOI: 10.3389/fimmu.2019.02578] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/17/2019] [Indexed: 01/05/2023] Open
Abstract
IL-1β and IL-18 are pro-inflammatory cytokines that are linked to inflammation. Activation of the NOD-like receptor protein 3 (NLRP3) inflammasome is involved in the maturation and secretion of IL-1β and IL-18 and, thus, plays a key role in the pathogenesis of many inflammatory conditions, including multiple sclerosis (MS). OLT1177™ (Dapansutrile) is a newly developed drug that is safe in humans and inhibits specifically the NLRP3 inflammasome. In the present study, we investigated whether OLT1177 exerts therapeutic effects in experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. We found that EAE mice fed an OLT1177-enriched diet prophylactically were significantly protected against functional deficits and demyelination in the spinal cord. We also demonstrated that prophylactic oral administration of OLT1177 led to marked reduction (~2- to 3-fold) in the protein levels of IL-1β and IL-18, as well as, IL-6 and TNFα, in the spinal cord of EAE mice. Moreover, prophylactic oral administration of OLT1177 significantly attenuated the infiltration of CD4 T cells and macrophages in the spinal cord. We also demonstrated that oral administration of OLT1177, starting at disease onset, resulted in significant amelioration of the clinical signs of EAE. Overall, these first data suggest that OLT1177 could have clinical benefit for the treatment of MS in humans.
Collapse
Affiliation(s)
- Alba Sánchez-Fernández
- Institut de Neurociencies and Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autonoma de Barcelona, Bellaterra, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain
| | | | - Charles A Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States.,Department of Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Rubèn López-Vales
- Institut de Neurociencies and Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autonoma de Barcelona, Bellaterra, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain
| |
Collapse
|
9
|
Mealy MA, Kozachik SL, Levy M. Review of Treatment for Central Spinal Neuropathic Pain and Its Effect on Quality of Life: Implications for Neuromyelitis Optica Spectrum Disorder. Pain Manag Nurs 2019; 20:580-591. [PMID: 31103517 DOI: 10.1016/j.pmn.2019.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/10/2019] [Accepted: 03/15/2019] [Indexed: 01/10/2023]
Abstract
OBJECTIVES Neuromyelitis optica spectrum disorder (NMOSD) causes disabling and persistent central neuropathic pain (NP). Because the pain syndrome in NMOSD is severe and often intractable to analgesic treatment, it interferes with quality of life in patients. No interventional trials have been published looking at response to interventions for pain in NMOSD. This is a synthesis of the literature surveying the impact on quality of life of interventions in all mechanisms of central spinal NP. This review has important implications for management of pain in NMOSD. METHODS AND DATA SOURCES A systematic database search was conducted using PubMed, Embase, and CINAHL Plus with keywords including "spinal cord," "quality of life," and "neuropathic pain" in an attempt to identify original research that targeted spinal NP treatment and used quality of life as an outcome measure. Both pharmacologic and nonpharmacologic treatments were sought out. RESULTS Twenty-one studies meeting our eligibility criteria were identified and evaluated, 13 using pharmacologic treatments and 8 using nonpharmacologic interventions. Overall, sample sizes were modest, and effects on decreasing pain and/or improving quality of life were suboptimal. CONCLUSIONS This review provides researchers with a foundation from which to start a more thorough and thoughtful investigation into the management of NP in NMOSD and underscores the importance of including quality of life as a clinically meaningful outcome measure.
Collapse
Affiliation(s)
- Maureen A Mealy
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, Maryland; Johns Hopkins University, School of Nursing, Baltimore, Maryland.
| | | | - Michael Levy
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| |
Collapse
|
10
|
Sun Y, Jing Y, Huang M, Ma J, Peng X, Wang J, Li G, Cheng X. The PD-1/PD-Ls pathway is up-regulated during the suppression of experimental autoimmune encephalomyelitis treated by Astragalus polysaccharides. J Neuroimmunol 2019; 332:78-90. [PMID: 30981049 DOI: 10.1016/j.jneuroim.2019.03.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/29/2019] [Accepted: 03/29/2019] [Indexed: 12/16/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of CNS. Astragalus polysaccharides (APS), the main active extract from astragalus membranaceus which is a kind of traditional Chinese medicinal herb, is associated with a variety of immunomodulatory activities. We have evaluated the therapeutic effects of APS in the animal model of MS, experimental autoimmune encephalomyelitis (EAE). It was found that APS could effectively alleviate EAE through inhibiting MOG35-55-specific T cell proliferation and reducing the expression of proinflammatory cytokines, which is mediated by up-regulating the expression of PD-1/PD-Ls signaling pathway. Our results demonstrated that EAE could be suppressed significantly by APS administration. It indicated that APS might be a potential of developing innovative drug for the therapy of MS.
Collapse
Affiliation(s)
- Yu Sun
- Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yuanya Jing
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Mengwen Huang
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jinyun Ma
- Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xiaoyan Peng
- Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Jinying Wang
- Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Guoling Li
- Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xiaodong Cheng
- Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
11
|
Mealy MA, Mossburg SE, Kim SH, Messina S, Borisow N, Lopez-Gonzalez R, Ospina JP, Scheel M, Yeshokumar AK, Awad A, Leite MI, Arango JJ, Paul F, Palace J, Kim HJ, Levy M. Long-term disability in neuromyelitis optica spectrum disorder with a history of myelitis is associated with age at onset, delay in diagnosis/preventive treatment, MRI lesion length and presence of symptomatic brain lesions. Mult Scler Relat Disord 2018; 28:64-68. [PMID: 30554040 DOI: 10.1016/j.msard.2018.12.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/05/2018] [Accepted: 12/09/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune disease of the central nervous system (CNS) that preferentially targets the spinal cord and optic nerves. Increasing disability is accrued with each inflammatory attack. Disability has been shown to be an independent predictor of poor quality of life in those with NMOSD. Factors associated with increasing disability need further systematic investigation. METHODS We performed a multi-center retrospective chart analysis of aquaporin-4 (AQP4) seropositive NMOSD patients with a history of myelitis seen at five large referral centers for patients with NMOSD worldwide for whom thorough records including relapse history and corresponding imaging were available. Potential contributors to long-term disability were extracted including demographics, radiographic findings, and clinical characteristics. Multivariable regression modeling was conducted to determine correlates of disability in patients with NMOSD, as measured by the Expanded Disability Status Scale (EDSS). RESULTS One hundred eighty-two AQP4 seropositive patients (88% female) were included in this analysis. Multiple regression modeling revealed that older age at disease onset, delay in diagnosis/preventive treatment, length of longest acute myelitis lesion and presence of symptomatic brain/brainstem lesions were associated with increased disability when holding other variables constant. CONCLUSION While age at onset is a factor that cannot be controlled in NMOSD, we can reduce the delay in diagnosis/preventive treatment and reduce future relapses in the brain/brainstem and spinal cord. Delay in diagnosis/preventive treatment and imaging variables that contributed to increased disability support the need for improved measures for early, accurate diagnosis and management of NMOSD, and aggressive treatment of acute relapses.
Collapse
Affiliation(s)
- Maureen A Mealy
- Johns Hopkins University, School of Medicine, Department of Neurology, Baltimore, MD, USA; Johns Hopkins University School of Nursing, Baltimore, MD, USA.
| | | | - Su-Hyun Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, South Korea
| | - Silvia Messina
- Nuffield Department of Clinical Neurosciences, West Wing, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Nadja Borisow
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center and Department of Neurology, Berlin, Germany; Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | | | - Juan Pablo Ospina
- Johns Hopkins University, School of Medicine, Department of Neurology, Baltimore, MD, USA
| | - Michael Scheel
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center and Department of Neurology, Berlin, Germany; Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Anusha K Yeshokumar
- Johns Hopkins University, School of Medicine, Department of Neurology, Baltimore, MD, USA; Icahn School of Medicine at Mount Sinai, Department of Neurology, New York, NY
| | - Amine Awad
- Nuffield Department of Clinical Neurosciences, West Wing, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - M Isabel Leite
- Nuffield Department of Clinical Neurosciences, West Wing, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - JorgeA Jimenez Arango
- University of Antioquia, Department of Neurology, Neuroclinica, Medellín, CO, Colombia
| | - Friedemann Paul
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center and Department of Neurology, Berlin, Germany; Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Jacqueline Palace
- Nuffield Department of Clinical Neurosciences, West Wing, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Ho Jin Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, South Korea
| | - Michael Levy
- Johns Hopkins University, School of Medicine, Department of Neurology, Baltimore, MD, USA
| |
Collapse
|
12
|
MOG antibody disease: A review of MOG antibody seropositive neuromyelitis optica spectrum disorder. Mult Scler Relat Disord 2018; 25:66-72. [DOI: 10.1016/j.msard.2018.07.025] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/25/2018] [Accepted: 07/11/2018] [Indexed: 11/19/2022]
|