1
|
Drommelschmidt K, Mayrhofer T, Foldyna B, Müller H, Raudzus J, Göricke SL, Schweiger B, Sirin S. Cerebellar hemorrhages in very preterm infants: presence, involvement of the dentate nucleus, and cerebellar hypoplasia are associated with adverse cognitive outcomes. Eur Radiol 2025:10.1007/s00330-025-11452-0. [PMID: 39971793 DOI: 10.1007/s00330-025-11452-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/12/2024] [Accepted: 01/23/2025] [Indexed: 02/21/2025]
Abstract
OBJECTIVE Impaired cognition is a frequent complication of prematurity, closely related to patients' outcomes. Imaging features of cerebellar hemorrhages (CBH) related to impaired cognition are not well studied. This study evaluated the relationship between cMRI-derived CBH characteristics and clinical risk factors for adverse cognition. METHODS Our analysis is threefold: (1) We included very preterm infants (2009-2018) undergoing cMRI, and compared clinical and cMRI findings between infants with and without CBH. (2) In the CBH cohort, we associated clinical and imaging findings with cognitive outcomes (Bayley Score of Infant Development at two years corrected age, impaired outcomes: < 85) using uni- and multivariable logistic regression analyses. (3) We conducted a matched pair case-control analysis (CBH vs. no CBH) matching for gestational age (GA) and supratentorial injury. RESULTS Among the 507 infants (52% male; mean GA 26.8 ± 2.7 weeks), 53 (10.5%) presented with CBH. Cognition was impaired in those with CBH (case-control: 88 (IQR: 75-110) vs. 105 (IQR: 90-112), p < 0.001), even in those with CBH < 5 mm (case-control: 95 (IQR: 77.5-115) vs. 105 (IQR: 91-113), p = 0.037). In infants with CBH, red-blood-cell-transfusion requirement (odds ratio (OR) 1.32, 95% CI: 1.01-1.72, p = 0.037), dentate nucleus involvement (OR 17.61, 95% CI: 1.83-169.83, p = 0.013) and moderate-to-severe cerebellar hypoplasia (OR 26.41, 95% CI: 1.11-626.21, p = 0.043) were independent predictors of impaired cognition. Adding dentate nucleus involvement to cerebellar hypoplasia increased the discriminatory capacity (AUC 0.85 vs. 0.71, p = 0.004). CONCLUSION CBH (even < 5 mm) impact cognitive outcomes of very preterm infants, underlining the cerebellum's importance for cognition. In infants with CBH, involvement of the dentate nucleus and moderate-to-severe cerebellar hypoplasia are independent structural risk factors for impaired cognition. KEY POINTS Question The cerebellum is important for cognition. Cerebellar hemorrhages are common in preterm infants, but the imaging features related to impaired cognition are not well studied. Findings Even small cerebellar hemorrhages affected cognition. Involvement of the dentate nucleus and moderate-to-severe cerebellar hypoplasia were identified as new structural risk factors for adverse cognition. Clinical relevance Cerebral MRI enables precise diagnosis of cerebellar hemorrhages and the detection of structural risk factors for adverse cognition like dentate nucleus involvement and cerebellar moderate-to-severe hypoplasia. This knowledge facilitates risk estimation, structured follow-up, and interventions after prematurity.
Collapse
Affiliation(s)
- Karla Drommelschmidt
- Department of Pediatrics I, Neonatology, Pediatric Intensive Care, and Pediatric Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (cTNBS), University Medicine Essen, Essen, Germany
| | - Thomas Mayrhofer
- School of Business Studies, Stralsund, University of Applied Sciences, Stralsund, Germany
- Cardiovascular Imaging Research Center, Department of Radiology, Massachusetts General Hospital - Harvard Medical School, Boston, USA
| | - Borek Foldyna
- Cardiovascular Imaging Research Center, Department of Radiology, Massachusetts General Hospital - Harvard Medical School, Boston, USA
| | - Hanna Müller
- Division of Neonatology and Department of Pediatrics, University Hospital of Tübingen, Tübingen, Germany
| | - Janika Raudzus
- School of Business Studies, Stralsund, University of Applied Sciences, Stralsund, Germany
| | - Sophia L Göricke
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bernd Schweiger
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Selma Sirin
- Department of Diagnostic Imaging, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Muehlbacher T, Dudink J, Steggerda SJ. Cerebellar Development and the Burden of Prematurity. CEREBELLUM (LONDON, ENGLAND) 2025; 24:39. [PMID: 39885037 PMCID: PMC11782465 DOI: 10.1007/s12311-025-01790-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 02/01/2025]
Abstract
The role of the cerebellum in the neurodevelopmental outcomes of preterm infants has often been neglected. However, accumulating evidence indicates that normal cerebellar development is disrupted by prematurity-associated complications causing cerebellar injury and by prematurity itself. This hampers not only the normal development of motor skills and gait, but also cognitive, language, and behavioral development, collectively referred to as "developmental cognitive affective syndrome." In this comprehensive narrative review, we provide the results of an extensive literature search in PubMed and Embase to summarize recent evidence on altered cerebellar development in premature infants, focusing on neuroimaging findings, its causative factors and its impact on long-term neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Tobias Muehlbacher
- Department of Neonatology, Newborn Research Zurich, University Hospital Zurich, Zurich, Switzerland.
| | - Jeroen Dudink
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sylke J Steggerda
- Department of Pediatrics, Division of Neonatology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Utrecht, the Netherlands
| |
Collapse
|
3
|
Vassar R, George E, Mogga A, Li Y, Norton ME, Glenn O, Gano D. Fetal Intraparenchymal Hemorrhage Imaging Patterns, Etiology, and Outcomes: A Single Center Cohort Study. Ann Neurol 2024; 96:1137-1147. [PMID: 39215698 DOI: 10.1002/ana.27072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/10/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE This study examines associations among fetal brain magnetic resonance imaging (MRI) injury patterns, etiologies, and outcomes in fetal intraparenchymal hemorrhage (IPH). METHODS This is a retrospective, single-center cohort study of IPH diagnosed on fetal MRI (1996-2022). IPH and associated abnormalities were categorized by 2 pediatric neuroradiologists; electronic medical records were reviewed by 2 pediatric neurologists to classify etiology and outcomes including cerebral palsy, epilepsy, developmental delay, and death. RESULTS Forty-four fetuses with IPH were identified (34 singleton and 10 twin gestations) with MRI at median 24 weeks gestation (interquartile range [IQR] = 22-28 weeks). IPH was commonly supratentorial (84%) and focal (50%) or focal with diffuse injury (43%) and was often associated with germinal matrix hemorrhage (GMH; 75%) and/or intraventricular hemorrhage (IVH; 52%). An etiology was identified in 75%, including twin-twin transfusion syndrome (TTTS, n = 10), COL4A1/2 variants (n = 8), or other fetal/maternal conditions (n = 15). COL4A1/2 variants were associated with focal IPH and the presence of hemorrhagic porencephaly, and intrauterine transfusion was associated with infratentorial hemorrhage. Twenty-two fetuses were liveborn, and 18 pregnancies were terminated. Among those with follow-up ≥ 12 months (median = 7 years), 12 of 13 had cerebral palsy, 6 of 13 had developmental delay, and 5 of 13 had epilepsy. INTERPRETATION An etiology for fetal IPH with or without GMH-IVH is identified in most cases in our cohort and is commonly TTTS, COL4A1/2 variants, or other maternal/fetal comorbidities. Pattern of fetal IPH on MRI is associated with etiology. Cerebral palsy and neurodevelopmental impairment were common in liveborn infants. Genetic studies should be considered in cases of fetal IPH without an otherwise apparent cause. ANN NEUROL 2024;96:1137-1147.
Collapse
Affiliation(s)
- Rachel Vassar
- Department of Neurology, University of California San Francisco, San Francisco, CA
| | - Elizabeth George
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Andrew Mogga
- School of Medicine, Albany Medical College, Albany, NY
| | - Yi Li
- Department of Neurology, University of California San Francisco, San Francisco, CA
| | - Mary E Norton
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA
| | - Orit Glenn
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Dawn Gano
- Department of Neurology, University of California San Francisco, San Francisco, CA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA
| |
Collapse
|
4
|
Dewan MV, Weber PD, Felderhoff-Mueser U, Huening BM, Dathe AK. A Simple MRI Score Predicts Pathological General Movements in Very Preterm Infants with Brain Injury-Retrospective Cohort Study. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1067. [PMID: 39334600 PMCID: PMC11430197 DOI: 10.3390/children11091067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND/OBJECTIVES Very preterm infants are at increased risk of brain injury and impaired brain development. The Total Abnormality Score and biometric parameters, such as biparietal width, interhemispheric distance and transcerebellar diameter, are simple measures to evaluate brain injury, development and growth using cerebral magnetic resonance imaging data at term-equivalent age. The aim of this study was to evaluate the association between the Total Abnormality Score and biometric parameters with general movements in very preterm infants with brain injury. METHODS This single-center retrospective cohort study included 70 very preterm infants (≤32 weeks' gestation and/or <1500 g birth weight) born between January 2017 and June 2021 in a level-three neonatal intensive care unit with brain injury-identified using cerebral magnetic resonance imaging data at term-equivalent age. General movements analysis was carried out at corrected age of 8-16 weeks. Binary logistic regression and Spearman correlation were used to examine the associations between the Total Abnormality Score and biometric parameters with general movements. RESULTS There was a significant association between the Total Abnormality Score and the absence of fidgety movements [OR: 1.19, 95% CI = 1.38-1.03] as well as a significant association between the transcerebellar diameter and fidgety movements (Spearman ρ = -0.269, p < 0.05). CONCLUSIONS Among very preterm infants with brain injury, the Total Abnormality Score can be used to predict the absence of fidgety movements and may be an easily accessible tool for identifying high-risk very preterm infants and planning early interventions accordingly.
Collapse
Affiliation(s)
- Monia Vanessa Dewan
- Neonatology, Paediatric Intensive Care and Paediatric Neurology, Department of Paediatrics I, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (M.V.D.); (U.F.-M.); (B.M.H.)
- Centre for Translational Neuro- and Behavioural Sciences, C-TNBS, Faculty of Medicine, University of Duisburg-Essen, 45122 Essen, Germany
| | - Pia Deborah Weber
- Neonatology, Paediatric Intensive Care and Paediatric Neurology, Department of Paediatrics I, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (M.V.D.); (U.F.-M.); (B.M.H.)
| | - Ursula Felderhoff-Mueser
- Neonatology, Paediatric Intensive Care and Paediatric Neurology, Department of Paediatrics I, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (M.V.D.); (U.F.-M.); (B.M.H.)
- Centre for Translational Neuro- and Behavioural Sciences, C-TNBS, Faculty of Medicine, University of Duisburg-Essen, 45122 Essen, Germany
| | - Britta Maria Huening
- Neonatology, Paediatric Intensive Care and Paediatric Neurology, Department of Paediatrics I, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (M.V.D.); (U.F.-M.); (B.M.H.)
- Centre for Translational Neuro- and Behavioural Sciences, C-TNBS, Faculty of Medicine, University of Duisburg-Essen, 45122 Essen, Germany
| | - Anne-Kathrin Dathe
- Neonatology, Paediatric Intensive Care and Paediatric Neurology, Department of Paediatrics I, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (M.V.D.); (U.F.-M.); (B.M.H.)
- Centre for Translational Neuro- and Behavioural Sciences, C-TNBS, Faculty of Medicine, University of Duisburg-Essen, 45122 Essen, Germany
- Department of Health and Nursing, Occupational Therapy, Ernst-Abbe-University of Applied Sciences, 07745 Jena, Germany
| |
Collapse
|
5
|
Weaver O, Gano D, Zhou Y, Kim H, Tognatta R, Yan Z, Ryu JK, Brandt C, Basu T, Grana M, Cabriga B, Alzamora MDPS, Barkovich AJ, Akassoglou K, Petersen MA. Fibrinogen inhibits sonic hedgehog signaling and impairs neonatal cerebellar development after blood-brain barrier disruption. Proc Natl Acad Sci U S A 2024; 121:e2323050121. [PMID: 39042684 PMCID: PMC11295022 DOI: 10.1073/pnas.2323050121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 06/17/2024] [Indexed: 07/25/2024] Open
Abstract
Cerebellar injury in preterm infants with central nervous system (CNS) hemorrhage results in lasting neurological deficits and an increased risk of autism. The impact of blood-induced pathways on cerebellar development remains largely unknown, so no specific treatments have been developed to counteract the harmful effects of blood after neurovascular damage in preterm infants. Here, we show that fibrinogen, a blood-clotting protein, plays a central role in impairing neonatal cerebellar development. Longitudinal MRI of preterm infants revealed that cerebellar bleeds were the most critical factor associated with poor cerebellar growth. Using inflammatory and hemorrhagic mouse models of neonatal cerebellar injury, we found that fibrinogen increased innate immune activation and impeded neurogenesis in the developing cerebellum. Fibrinogen inhibited sonic hedgehog (SHH) signaling, the main mitogenic pathway in cerebellar granule neuron progenitors (CGNPs), and was sufficient to disrupt cerebellar growth. Genetic fibrinogen depletion attenuated neuroinflammation, promoted CGNP proliferation, and preserved normal cerebellar development after neurovascular damage. Our findings suggest that fibrinogen alters the balance of SHH signaling in the neurovascular niche and may serve as a therapeutic target to mitigate developmental brain injury after CNS hemorrhage.
Collapse
Affiliation(s)
- Olivia Weaver
- Department of Pediatrics, University of California San Francisco, San Francisco, CA94158
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Center for Neurovascular Brain Immunology at Gladstone Institutes and University of California San Francisco, San Francisco, CA94158
| | - Dawn Gano
- Department of Pediatrics, University of California San Francisco, San Francisco, CA94158
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA94158
| | - Yungui Zhou
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Center for Neurovascular Brain Immunology at Gladstone Institutes and University of California San Francisco, San Francisco, CA94158
| | - Hosung Kim
- Department of Neurology, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Reshmi Tognatta
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Center for Neurovascular Brain Immunology at Gladstone Institutes and University of California San Francisco, San Francisco, CA94158
| | - Zhaoqi Yan
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Center for Neurovascular Brain Immunology at Gladstone Institutes and University of California San Francisco, San Francisco, CA94158
| | - Jae Kyu Ryu
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Center for Neurovascular Brain Immunology at Gladstone Institutes and University of California San Francisco, San Francisco, CA94158
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA94158
| | - Caroline Brandt
- Department of Pediatrics, University of California San Francisco, San Francisco, CA94158
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Center for Neurovascular Brain Immunology at Gladstone Institutes and University of California San Francisco, San Francisco, CA94158
| | - Trisha Basu
- Department of Pediatrics, University of California San Francisco, San Francisco, CA94158
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Center for Neurovascular Brain Immunology at Gladstone Institutes and University of California San Francisco, San Francisco, CA94158
| | - Martin Grana
- Department of Pediatrics, University of California San Francisco, San Francisco, CA94158
| | - Belinda Cabriga
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Center for Neurovascular Brain Immunology at Gladstone Institutes and University of California San Francisco, San Francisco, CA94158
| | - Maria del Pilar S. Alzamora
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Center for Neurovascular Brain Immunology at Gladstone Institutes and University of California San Francisco, San Francisco, CA94158
| | - A. James Barkovich
- Department of Pediatrics, University of California San Francisco, San Francisco, CA94158
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA94158
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA94143
| | - Katerina Akassoglou
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Center for Neurovascular Brain Immunology at Gladstone Institutes and University of California San Francisco, San Francisco, CA94158
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA94158
| | - Mark A. Petersen
- Department of Pediatrics, University of California San Francisco, San Francisco, CA94158
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Center for Neurovascular Brain Immunology at Gladstone Institutes and University of California San Francisco, San Francisco, CA94158
| |
Collapse
|
6
|
Calandrelli R, Tuzza L, Romeo DM, Arpaia C, Colosimo C, Pilato F. Extremely Preterm Infants with a Near-total Absence of Cerebellum: Usefulness of Quantitative Magnetic Resonance in Predicting the Motor Outcome. CEREBELLUM (LONDON, ENGLAND) 2024; 23:981-992. [PMID: 37603264 DOI: 10.1007/s12311-023-01593-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/09/2023] [Indexed: 08/22/2023]
Abstract
This study aims to evaluate in extremely premature infants the severity of brain structural injury causing total absence or near-total absence of cerebellar hemispheres by using MRI visual and volumetric scoring systems. It also aims to assess the role of the score systems in predicting motor outcome. We developed qualitative and quantitative MRI scoring systems to grade the overall brain damage severity in 16 infants with total absence or near-total absence of cerebellar hemispheres. The qualitative scoring system assessed the severity of macrostructural abnormalities of cerebellum, brainstem, supratentorial gray and white matters, ventricles while the quantitative scoring system weighted the loss of brain tissue volumes, and gross motor function classification system (GMFCS) was used to assess motor function at 1- and 5-year follow-ups.Positive correlations between both MRI scores and GMFCS scales were detected at follow-ups (p > 0.05), but only the volumetric score could identify those infants developing higher levels of motor impairment.Brain volumetric MRI offers an unbiassed assessment of prenatal brain damage. The quantitative scoring system, performed at term equivalent age, can be a helpful tool for predicting the long-term motor outcome in extremely preterm infants with a near-total absence of cerebellum.
Collapse
Affiliation(s)
- Rosalinda Calandrelli
- Radiology and Neuroradiology Unit, Department of Imaging, Radiation Therapy and Hematology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 1, 00168, Rome, Italy.
| | - Laura Tuzza
- Radiology and Neuroradiology Unit, Department of Imaging, Radiation Therapy and Hematology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 1, 00168, Rome, Italy
| | - Domenico Marco Romeo
- Pediatric Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
- Pediatric Neurology Unit, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Chiara Arpaia
- Pediatric Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
- Pediatric Neurology Unit, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Cesare Colosimo
- Radiology and Neuroradiology Unit, Department of Imaging, Radiation Therapy and Hematology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 1, 00168, Rome, Italy
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Fabio Pilato
- Research Unit of Neurology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, -00128, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, -00128, Rome, Italy
| |
Collapse
|
7
|
Ogata R, Watanabe K, Chong PF, Okamoto J, Sakemi Y, Nakashima T, Ohno T, Nomiyama H, Sonoda Y, Ichimiya Y, Inoue H, Ochiai M, Yamashita H, Sakai Y, Ohga S. Divergent neurodevelopmental profiles of very-low-birth-weight infants. Pediatr Res 2024; 95:233-240. [PMID: 37626120 DOI: 10.1038/s41390-023-02778-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Advanced perinatal medicine has decreased the mortality rate of preterm infants. Long-term neurodevelopmental outcomes of very-low-birth-weight infants (VLBWIs) remain to be investigated. METHODS Participants were 124 VLBWIs who had in-hospital birth from 2007 to 2015. Perinatal information, developmental or intelligence quotient (DQ/IQ), and neurological comorbidities at ages 3 and 6 years were analyzed. RESULTS Fifty-eight (47%) VLBWIs received neurodevelopmental assessments at ages 3 and 6 years. Among them, 15 (26%) showed DQ/IQ <75 at age 6 years. From age 3 to 6 years, 21 (36%) patients showed a decrease (≤-10), while 5 (9%) showed an increase (≥+10) in DQ/IQ scores. Eight (17%) with autism spectrum disorder or attention-deficit hyperactivity disorder (ASD/ADHD) showed split courses of DQ/IQ, including two with ≤-10 and one with +31 to their scores. On the other hand, all 7 VLBWIs with cerebral palsy showed DQ ≤35 at these ages. Magnetic resonance imaging detected severe brain lesions in 7 (47%) of those with DQ <75 and 1 (18%) with ASD/ADHD. CONCLUSIONS VLBWIs show a broad spectrum of neurodevelopmental outcomes after 6 years. These divergent profiles also indicate that different risks contribute to the development of ASD/ADHD from those of cerebral palsy and epilepsy in VLBWIs. IMPACT Very-low-birth-weight infants (VLBWIs) show divergent neurodevelopmental outcomes from age 3 to 6 years. A deep longitudinal study depicts the dynamic change in neurodevelopmental profiles of VLBWIs from age 3 to 6 years. Perinatal brain injury is associated with developmental delay, cerebral palsy and epilepsy, but not with ASD or ADHD at age 6 years.
Collapse
Affiliation(s)
- Reina Ogata
- Department of Pediatrics, National Hospital Organization Kokura Medical Center, Kitakyushu, 802-8533, Japan
| | - Kyoko Watanabe
- Department of Pediatrics, National Hospital Organization Kokura Medical Center, Kitakyushu, 802-8533, Japan.
| | - Pin Fee Chong
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Jun Okamoto
- Department of Pediatrics, National Hospital Organization Kokura Medical Center, Kitakyushu, 802-8533, Japan
| | - Yoshihiro Sakemi
- Department of Pediatrics, National Hospital Organization Kokura Medical Center, Kitakyushu, 802-8533, Japan
| | - Toshinori Nakashima
- Department of Pediatrics, National Hospital Organization Kokura Medical Center, Kitakyushu, 802-8533, Japan
| | - Takuro Ohno
- Department of Pediatrics, National Hospital Organization Kokura Medical Center, Kitakyushu, 802-8533, Japan
| | - Hiroyuki Nomiyama
- Department of Radiology, National Hospital Organization Kokura Medical Center, Kitakyushu, 802-8533, Japan
| | - Yuri Sonoda
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
- Research Center for Environment and Developmental Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yuko Ichimiya
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Hirosuke Inoue
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Masayuki Ochiai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
- Research Center for Environment and Developmental Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Hironori Yamashita
- Department of Pediatrics, National Hospital Organization Kokura Medical Center, Kitakyushu, 802-8533, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| |
Collapse
|
8
|
Sasaki Y, Nemoto K, Goto S, Kato E. Cerebellar injury in preterm infants less than 28 weeks gestational age. Pediatr Int 2024; 66:e15734. [PMID: 38156509 DOI: 10.1111/ped.15734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/31/2023] [Accepted: 11/23/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Cerebellar injury is one of the perinatal complications in preterm infants. Recent studies have highlighted the effect of perinatal complications on neurological morbidity. We investigated the perinatal risk factors and morbidity for cerebellar injury in extremely premature infants. METHODS This retrospective cohort study included 285 infants born between April 2009 and December 2020 at gestational age <28 weeks at our institution. The infants were divided into two groups based on magnetic resonance imaging findings: those with and without cerebellar injury. We performed a statistical analysis of the perinatal background and short-term morbidity of the two groups. RESULTS Significant differences (p < 0.05) were observed between the groups with respect to the perinatal background, especially gestational weeks, birthweight, and hemoglobin values at birth. In the short-term morbidity, significant differences (p < 0.05) were observed in the incidence of respiratory distress syndrome, chronic lung disease, hydrocephalus, severe intraventricular hemorrhage (IVH), and cerebellar hemorrhage. Extensive cerebellar lesions, such as cerebellar agenesis or global cerebellar hypoplasia, accounted for 11 of the 22 cases of cerebellar injury; seven of the 11 cases had severe IVH in addition to cerebellar hemorrhage. CONCLUSIONS Gestational age was significantly lower in the cerebellar injury group. The combination of severe IVH and cerebellar hemorrhage may promote cerebellar injury.
Collapse
Affiliation(s)
- Yoshihito Sasaki
- Department of Obstetrics and Neonatology, Funabashi Central Hospital, Funabashi, Chiba, Japan
| | - Kazuhisa Nemoto
- Department of Radiology, Funabashi Central Hospital, Funabashi, Chiba, Japan
| | - Shunji Goto
- Department of Obstetrics and Neonatology, Funabashi Central Hospital, Funabashi, Chiba, Japan
| | - Eiji Kato
- Department of Obstetrics and Neonatology, Funabashi Central Hospital, Funabashi, Chiba, Japan
| |
Collapse
|
9
|
Boerma T, Ter Haar S, Ganga R, Wijnen F, Blom E, Wierenga CJ. What risk factors for Developmental Language Disorder can tell us about the neurobiological mechanisms of language development. Neurosci Biobehav Rev 2023; 154:105398. [PMID: 37741516 DOI: 10.1016/j.neubiorev.2023.105398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/03/2023] [Accepted: 09/17/2023] [Indexed: 09/25/2023]
Abstract
Language is a complex multidimensional cognitive system that is connected to many neurocognitive capacities. The development of language is therefore strongly intertwined with the development of these capacities and their neurobiological substrates. Consequently, language problems, for example those of children with Developmental Language Disorder (DLD), are explained by a variety of etiological pathways and each of these pathways will be associated with specific risk factors. In this review, we attempt to link previously described factors that may interfere with language development to putative underlying neurobiological mechanisms of language development, hoping to uncover openings for future therapeutical approaches or interventions that can help children to optimally develop their language skills.
Collapse
Affiliation(s)
- Tessel Boerma
- Institute for Language Sciences, Department of Languages, Literature and Communication, Utrecht University, Utrecht, the Netherlands
| | - Sita Ter Haar
- Institute for Language Sciences, Department of Languages, Literature and Communication, Utrecht University, Utrecht, the Netherlands; Cognitive Neurobiology and Helmholtz Institute, Department of Psychology, Utrecht University/Translational Neuroscience, University Medical Center Utrecht, the Netherlands
| | - Rachida Ganga
- Institute for Language Sciences, Department of Languages, Literature and Communication, Utrecht University, Utrecht, the Netherlands
| | - Frank Wijnen
- Institute for Language Sciences, Department of Languages, Literature and Communication, Utrecht University, Utrecht, the Netherlands
| | - Elma Blom
- Department of Development and Education of youth in Diverse Societies (DEEDS), Utrecht University, Utrecht, the Netherlands; Department of Language and Culture, The Arctic University of Norway UiT, Tromsø, Norway.
| | - Corette J Wierenga
- Biology Department, Faculty of Science, Utrecht University, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
10
|
Butler DF, Skibo J, Traudt CM, Millen KJ. Neonatal subarachnoid hemorrhage disrupts multiple aspects of cerebellar development. Front Mol Neurosci 2023; 16:1161086. [PMID: 37187957 PMCID: PMC10175619 DOI: 10.3389/fnmol.2023.1161086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Over the past decade, survival rates for extremely low gestational age neonates (ELGANs; <28 weeks gestation) has markedly improved. Unfortunately, a significant proportion of ELGANs will suffer from neurodevelopmental dysfunction. Cerebellar hemorrhagic injury (CHI) has been increasingly recognized in the ELGANs population and may contribute to neurologic dysfunction; however, the underlying mechanisms are poorly understood. To address this gap in knowledge, we developed a novel model of early isolated posterior fossa subarachnoid hemorrhage (SAH) in neonatal mice and investigated both acute and long-term effects. Following SAH on postnatal day 6 (P6), we found significant decreased levels of proliferation with the external granular layer (EGL), thinning of the EGL, decreased Purkinje cell (PC) density, and increased Bergmann glial (BG) fiber crossings at P8. At P42, CHI resulted in decreased PC density, decreased molecular layer interneuron (MLI) density, and increased BG fiber crossings. Results from both Rotarod and inverted screen assays did not demonstrate significant effects on motor strength or learning at P35-38. Treatment with the anti-inflammatory drug Ketoprofen did not significantly alter our findings after CHI, suggesting that treatment of neuro-inflammation does not provide significant neuroprotection post CHI. Further studies are required to fully elucidate the mechanisms through which CHI disrupts cerebellar developmental programming in order to develop therapeutic strategies for neuroprotection in ELGANs.
Collapse
Affiliation(s)
- David F. Butler
- Division of Pediatric Critical Care, Seattle Children's Hospital, University of Washington, Seattle, WA, United States
| | - Jonathan Skibo
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | | | - Kathleen J. Millen
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington Medical School, Seattle, WA, United States
| |
Collapse
|
11
|
Liu MX, Li HF, Wu MQ, Geng SS, Ke L, Lou BW, Du W, Hua J. Associations of preterm and early-term birth with suspected developmental coordination disorder: a national retrospective cohort study in children aged 3-10 years. World J Pediatr 2023; 19:261-272. [PMID: 36469242 PMCID: PMC9974676 DOI: 10.1007/s12519-022-00648-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/26/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND This study analyzed the motor development and suspected developmental coordination disorder of very and moderately preterm (< 34+0 gestational age), late preterm (34+0-36+6 gestational week), and early-term (37+0-38+6 gestational week) children compared to their full-term peers with a national population-based sample in China. METHODS A total of 1673 children (799 girls, 874 boys) aged 3-10 years old were individually assessed with the Movement Assessment Battery for Children-second edition (MABC-2). The association between gestational age and motor performance of children was analyzed using a multilevel regression model. RESULTS The global motor performance [β = - 5.111, 95% confidence interval (CI) = - 9.200 to - 1.022; P = 0.015] and balance (β = - 5.182, 95% CI = - 5.055 to - 1.158; P = 0.003) for very and moderately preterm children aged 3-6 years old were significantly lower than their full-term peers when adjusting for confounders. Late preterm and early-term children showed no difference. Moreover, very and moderately preterm children aged 3-6 years had a higher risk of suspected developmental coordination disorder (DCD) (≤ 5 percentile of MABC-2 score) when adjusting for potential confounders [odds ratio (OR) = 2.931, 95% CI = 1.067-8.054; P = 0.038]. Late preterm and early-term children showed no difference in motor performance from their full-term peers (each P > 0.05). CONCLUSIONS Our findings have important implications for understanding motor impairment in children born at different gestational ages. Very and moderately preterm preschoolers have an increased risk of DCD, and long-term follow-up should be provided for early detection and intervention.
Collapse
Affiliation(s)
- Ming-Xia Liu
- The Women's and Children's Department, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hai-Feng Li
- Department of Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Mei-Qin Wu
- The Women's and Children's Department, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shan-Shan Geng
- The Women's and Children's Department, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li Ke
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Bi-Wen Lou
- Leitontech Research Institution, Suzhou, China
| | - Wenchong Du
- Department of Psychology, NTU Psychology, Nottingham Trent University, Nottingham, UK.
| | - Jing Hua
- The Women's and Children's Department, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
12
|
Butler DF, Skibo J, Traudt CM, Millen KJ. Neonatal Subarachnoid Hemorrhage Disrupts Multiple Aspects of Cerebellar Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.528048. [PMID: 36798230 PMCID: PMC9934646 DOI: 10.1101/2023.02.10.528048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Over the past decade, survival rates for extremely low gestational age neonates (ELGANs; <28 weeks gestation) has markedly improved. Unfortunately, a significant proportion of ELGANs will suffer from neurodevelopmental dysfunction. Cerebellar hemorrhagic injury (CHI) has been increasingly recognized in the ELGANs population and may contribute to neurologic dysfunction; however, the underlying mechanisms are poorly understood. To address this gap in knowledge, we developed a novel model of early isolated posterior fossa subarachnoid hemorrhage (SAH) in neonatal mice and investigated both acute and long-term effects. Following SAH on postnatal day 6 (P6), we found significant decreased levels of proliferation with the external granular layer (EGL), thinning of the EGL, decreased Purkinje cell (PC) density, and increased Bergmann glial (BG) fiber crossings at P8. At P42, CHI resulted in decreased PC density, decreased molecular layer interneuron (MLI) density, and increased BG fiber crossings. Results from both Rotarod and inverted screen assays did not demonstrate significant effects on motor strength or learning at P35-38. Treatment with the anti-inflammatory drug Ketoprofen did not significantly alter our findings after CHI, suggesting that treatment of neuro-inflammation does not provide significant neuroprotection post CHI. Further studies are required to fully elucidate the mechanisms through which CHI disrupts cerebellar developmental programming in order to develop therapeutic strategies for neuroprotection in ELGANs.
Collapse
|
13
|
Iskusnykh IY, Chizhikov VV. Cerebellar development after preterm birth. Front Cell Dev Biol 2022; 10:1068288. [PMID: 36523506 PMCID: PMC9744950 DOI: 10.3389/fcell.2022.1068288] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/09/2022] [Indexed: 11/30/2022] Open
Abstract
Preterm birth and its complications and the associated adverse factors, including brain hemorrhage, inflammation, and the side effects of medical treatments, are the leading causes of neurodevelopmental disability. Growing evidence suggests that preterm birth affects the cerebellum, which is the brain region involved in motor coordination, cognition, learning, memory, and social communication. The cerebellum is particularly vulnerable to the adverse effects of preterm birth because key cerebellar developmental processes, including the proliferation of neural progenitors, and differentiation and migration of neurons, occur in the third trimester of a human pregnancy. This review discusses the negative impacts of preterm birth and its associated factors on cerebellar development, focusing on the cellular and molecular mechanisms that mediate cerebellar pathology. A better understanding of the cerebellar developmental mechanisms affected by preterm birth is necessary for developing novel treatment and neuroprotective strategies to ameliorate the cognitive, behavioral, and motor deficits experienced by preterm subjects.
Collapse
|
14
|
Abstract
Structural brain anomalies are relatively common and may be detected either prenatally or postnatally. Brain malformations can be characterized based on the developmental processes that have been perturbed, either by environmental, infectious, disruptive or genetic causes. Fetuses and neonates with brain malformations should be thoroughly surveilled for potential other anomalies, and depending on the nature of the brain malformation, may require additional investigations such as genetic testing, ophthalmological examinations, cardiorespiratory monitoring, and screening laboratory studies.
Collapse
|
15
|
Brossard-Racine M, Limperopoulos C. Cerebellar injury in premature neonates: Imaging findings and relationship with outcome. Semin Perinatol 2021; 45:151470. [PMID: 34462245 DOI: 10.1016/j.semperi.2021.151470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cerebellar hemorrhagic injury (CHI) is a common complication of preterm birth. There are now many studies that have investigated the developmental consequences of CHI. This review summarizes the present state of evidence regarding the outcomes of prematurity related CHI, with a particular focus on the neuroimaging characteristics associated with adverse outcomes. Studies published to date suggest that the severity of functional deficits is dependent on injury size and topography. However, the unique contribution of the CHI to outcomes still needs to be further investigated to ensure optimal prognostic counseling.
Collapse
Affiliation(s)
- Marie Brossard-Racine
- Advances in Brain and Child Development Research Laboratory, Research Institute of McGill University Health Center - Child Heald and Human Development, Montreal PQ, Canada; School of Physical and Occupational Therapy and Department of Pediatrics, Division of Neonatology, McGill University, Montreal PQ, Canada.
| | - Catherine Limperopoulos
- Institute for the Developing Brain; Prenatal Pediatrics Institute; Division of Neonatology; Division of Diagnostic Imaging and Radiology, Children's National Health System, Washington DC, USA
| |
Collapse
|
16
|
van der Heijden ME, Lackey EP, Perez R, Ișleyen FS, Brown AM, Donofrio SG, Lin T, Zoghbi HY, Sillitoe RV. Maturation of Purkinje cell firing properties relies on neurogenesis of excitatory neurons. eLife 2021; 10:e68045. [PMID: 34542409 PMCID: PMC8452305 DOI: 10.7554/elife.68045] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/31/2021] [Indexed: 01/18/2023] Open
Abstract
Preterm infants that suffer cerebellar insults often develop motor disorders and cognitive difficulty. Excitatory granule cells, the most numerous neuron type in the brain, are especially vulnerable and likely instigate disease by impairing the function of their targets, the Purkinje cells. Here, we use regional genetic manipulations and in vivo electrophysiology to test whether excitatory neurons establish the firing properties of Purkinje cells during postnatal mouse development. We generated mutant mice that lack the majority of excitatory cerebellar neurons and tracked the structural and functional consequences on Purkinje cells. We reveal that Purkinje cells fail to acquire their typical morphology and connectivity, and that the concomitant transformation of Purkinje cell firing activity does not occur either. We also show that our mutant pups have impaired motor behaviors and vocal skills. These data argue that excitatory cerebellar neurons define the maturation time-window for postnatal Purkinje cell functions and refine cerebellar-dependent behaviors.
Collapse
Affiliation(s)
- Meike E van der Heijden
- Department of Pathology and Immunology, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Elizabeth P Lackey
- Department of Pathology and Immunology, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Ross Perez
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Fatma S Ișleyen
- Department of Pathology and Immunology, Baylor College of MedicineHoustonUnited States
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
| | - Amanda M Brown
- Department of Pathology and Immunology, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Sarah G Donofrio
- Department of Pathology and Immunology, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Tao Lin
- Department of Pathology and Immunology, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Huda Y Zoghbi
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
- Howard Hughes Medical Institute, Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
- Development, Disease Models and Therapeutics Graduate Program, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
17
|
Spoto G, Amore G, Vetri L, Quatrosi G, Cafeo A, Gitto E, Nicotera AG, Di Rosa G. Cerebellum and Prematurity: A Complex Interplay Between Disruptive and Dysmaturational Events. Front Syst Neurosci 2021; 15:655164. [PMID: 34177475 PMCID: PMC8222913 DOI: 10.3389/fnsys.2021.655164] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022] Open
Abstract
The cerebellum plays a critical regulatory role in motor coordination, cognition, behavior, language, memory, and learning, hence overseeing a multiplicity of functions. Cerebellar development begins during early embryonic development, lasting until the first postnatal years. Particularly, the greatest increase of its volume occurs during the third trimester of pregnancy, which represents a critical period for cerebellar maturation. Preterm birth and all the related prenatal and perinatal contingencies may determine both dysmaturative and lesional events, potentially involving the developing cerebellum, and contributing to the constellation of the neuropsychiatric outcomes with several implications in setting-up clinical follow-up and early intervention.
Collapse
Affiliation(s)
- Giulia Spoto
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Greta Amore
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Luigi Vetri
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Palermo, Italy
| | - Giuseppe Quatrosi
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Palermo, Italy
| | - Anna Cafeo
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Eloisa Gitto
- Neonatal Intensive Care Unit, Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Antonio Gennaro Nicotera
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| |
Collapse
|
18
|
Bonaventura E, Purpura G, Pasquariello R, Da Prato S, Di Lieto MC, Barsotti J, Paolicelli PB, Cioni G, Tinelli F. Complex neurodevelopmental disorder in a preterm child with unilateral cerebellar hemorrhage. APPLIED NEUROPSYCHOLOGY-CHILD 2021; 11:915-920. [PMID: 34100324 DOI: 10.1080/21622965.2021.1935256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Cerebellar hemorrhage (CBH) represents the main form of direct cerebellar injury in preterm infants. Most CBHs occur bilaterally, while isolated unilateral hemorrhages are less frequent and often associated with focal atrophy. Limited and heterogeneous data exist on preterm birth, unilateral CBH and consequent long-term neurodevelopmental and non-motor outcomes. CASE REPORT This is the case of a six-year-old child, born preterm, diagnosed with a complete atrophy of the right cerebellar hemisphere through brain MRI and presenting mild social atypies, visuo-perceptive and pragmatic language impairment, but only minor neurological signs. DISCUSSION Despite the large extension of the patient's CBH neurological sequelae were mild, likely due to cerebellar plasticity, and only specific deficits in non-motor, behavioral and social skills were shown. Evidence exists on cerebellar contribution to dynamic visual information processing and to perceptual signals detection and prediction, that might explain the presence of non-motor signs.
Collapse
Affiliation(s)
- Eleonora Bonaventura
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Giulia Purpura
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Rosa Pasquariello
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Sara Da Prato
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Maria Chiara Di Lieto
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Jessica Barsotti
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
| | | | - Giovanni Cioni
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesca Tinelli
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
| |
Collapse
|
19
|
Abstract
Cerebellar hypoplasia (CH) refers to a cerebellum of reduced volume with preserved shape. CH is associated with a broad heterogeneity in neuroradiologic features, etiologies, clinical characteristics, and neurodevelopmental outcomes, challenging physicians evaluating children with CH. Traditionally, neuroimaging has been a key tool to categorize CH based on the pattern of cerebellar involvement (e.g., hypoplasia of cerebellar vermis only vs. hypoplasia of both the vermis and cerebellar hemispheres) and the presence of associated brainstem and cerebral anomalies. With the advances in genetic technologies of the recent decade, many novel CH genes have been identified, and consequently, a constant updating of the literature and revision of the classification of cerebellar malformations are needed. Here, we review the current literature on CH. We propose a systematic approach to recognize specific neuroimaging patterns associated with CH, based on whether the CH is isolated or associated with posterior cerebrospinal fluid anomalies, specific brainstem or cerebellar malformations, brainstem hypoplasia with or without cortical migration anomalies, or dysplasia. The CH radiologic pattern and clinical assessment will allow the clinician to guide his investigations and genetic testing, give a more precise diagnosis, screen for associated comorbidities, and improve prognostication of associated neurodevelopmental outcomes.
Collapse
|
20
|
Lewis SA, Shetty S, Wilson BA, Huang AJ, Jin SC, Smithers-Sheedy H, Fahey MC, Kruer MC. Insights From Genetic Studies of Cerebral Palsy. Front Neurol 2021; 11:625428. [PMID: 33551980 PMCID: PMC7859255 DOI: 10.3389/fneur.2020.625428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Abstract
Cohort-based whole exome and whole genome sequencing and copy number variant (CNV) studies have identified genetic etiologies for a sizable proportion of patients with cerebral palsy (CP). These findings indicate that genetic mutations collectively comprise an important cause of CP. We review findings in CP genomics and propose criteria for CP-associated genes at the level of gene discovery, research study, and clinical application. We review the published literature and report 18 genes and 5 CNVs from genomics studies with strong evidence of for the pathophysiology of CP. CP-associated genes often disrupt early brain developmental programming or predispose individuals to known environmental risk factors. We discuss the overlap of CP-associated genes with other neurodevelopmental disorders and related movement disorders. We revisit diagnostic criteria for CP and discuss how identification of genetic etiologies does not preclude CP as an appropriate diagnosis. The identification of genetic etiologies improves our understanding of the neurobiology of CP, providing opportunities to study CP pathogenesis and develop mechanism-based interventions.
Collapse
Affiliation(s)
- Sara A Lewis
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, United States.,Departments of Child Health, Neurology, and Cellular & Molecular Medicine and Program in Genetics, University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Sheetal Shetty
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, United States.,Departments of Child Health, Neurology, and Cellular & Molecular Medicine and Program in Genetics, University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Bryce A Wilson
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, United States.,Departments of Child Health, Neurology, and Cellular & Molecular Medicine and Program in Genetics, University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Aris J Huang
- Programs in Neuroscience and Molecular & Cellular Biology, School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Hayley Smithers-Sheedy
- Cerebral Palsy Alliance, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Michael C Fahey
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Michael C Kruer
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, United States.,Departments of Child Health, Neurology, and Cellular & Molecular Medicine and Program in Genetics, University of Arizona College of Medicine, Phoenix, AZ, United States.,Programs in Neuroscience and Molecular & Cellular Biology, School of Life Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|