1
|
Mok B, Welgampola MS, Rosengren SM. Vestibular migraine as a mimic of benign paroxysmal positioning vertigo and Meniere's disease. J Vestib Res 2025; 35:30-38. [PMID: 39240602 DOI: 10.3233/ves-240038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
BackgroundVestibular migraine (VM) is a common cause of recurrent spontaneous and positional dizziness of varying durations. Short episodes of VM lasting seconds to minutes, triggered by changes in head position can resemble those of benign paroxysmal positioning vertigo (BPPV), while episodes lasting minutes to hours can mimic those of Meniere's disease (MD).ObjectiveWe aimed to compare symptoms and vestibular test results in patients with VM, BPPV and MD, where VM was categorized by episode duration.MethodsWe compared vestibular, aural and migraine symptoms, as well as cervical and ocular vestibular evoked myogenic potentials and 3D video head impulse tests, in 108 patients: 24 with BPPV, 33 with VM episodes of short duration (<10 min), 29 with VM of medium duration (≥10 min) and 22 with MD.ResultsWe found significant overlap in the symptoms of all patient groups, and no significant differences between patients with short and medium VM. Abnormal test results occurred infrequently in all groups.ConclusionsOur results confirm significant symptom overlap between BPPV or MD and VM, and suggest that VM mimics other conditions when the episode duration matches the differential diagnosis, rather than because patients with different durations of vertigo have different symptoms.
Collapse
Affiliation(s)
- Barbara Mok
- Department of Linguistics, Macquarie University, Sydney, Australia
| | - Miriam S Welgampola
- Neurology Department and Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Sally M Rosengren
- Neurology Department and Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| |
Collapse
|
2
|
Yang C, Wei C, Alam S, Chen X, McKemy DD. The neurotrophic factor artemin and its receptor GFRα3 mediate migraine-like pain via the ion channel TRPM8. Cephalalgia 2024; 44:3331024241297679. [PMID: 39552306 DOI: 10.1177/03331024241297679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
BACKGROUND Migraine has a strong genetic foundation, including both monogenic and polygenic types. The former are rare, with most migraine considered polygenic, supported by genome-wide association studies (GWAS) identifying numerous genetic variants linked with migraine risk. Surprisingly, some of the most common mutations are associated with transient receptor potential melastatin 8 (TRPM8), a non-selective cation channel that is the primary sensor of cold temperatures in cutaneous primary afferents of the somatosensory system. However, it is unlikely that the temperature sensitivity of TRPM8 is relevant in migraine-related tissues, such as the meninges, suggesting other activation mechanisms underly its role in migraine pathogenesis. Thus, to define the basis of the channel's involvement, we reasoned that cellular processes that increase cold sensitivity in the skin, such as the neurotrophic factor artemin, via its receptor glial cell-line derived neurotrophic factor family receptor alpha-3 (GFRα3), also mediate TRPM8-associated migraine-like pain in the meninges. METHODS To investigate the role of artemin and GFRα3 in preclinical rodent migraine models, we infused nitroglycerin acutely and chronically, and measured changes in periorbital and hind paw mechanical sensitivity in male and female mice lacking GFRα3, after neutralization of free artemin with specific monoclonal antibodies, or by systemic treatment with a TRPM8-specific antagonist. Further, in mice lacking GFRα3 we tested the effects of supradural infusions of a mix of inflammatory mediators, as well as tested if dura stimulation with artemin or a TRPM8-specific agonist induce migraine-related pain in mice. RESULTS We find that mechanical allodynia induced by systemic nitroglycerin, or supradural infusion of inflammatory mediators, involves GFRα3. In addition, neutralization of circulating artemin reduces the nitroglycerin phenotype, demonstrating the importance of this neurotrophic pathway in headaches. Further, we show TRPM8 expression in the meninges, and that direct supradural infusion of either a TRPM8-specific agonist or artemin itself produces mechanical allodynia, with the latter dependent on TRPM8 and ameliorated by concurrent treatment with sumatriptan. CONCLUSIONS These results indicate that neuroinflammatory events in the meninges can produce migraine-like pain in mice via artemin and GFRα3, likely acting upstream of TRPM8, providing a novel pathway that may contribute to headaches or migraine pathogenesis.
Collapse
Affiliation(s)
- Chenyu Yang
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
- Molecular and Computational Biology Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Chao Wei
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Anesthesia and Critical Care, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Sanaa Alam
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Xunyang Chen
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - David D McKemy
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
- Molecular and Computational Biology Graduate Program, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Yang C, Wei C, Alam S, Chen X, McKemy DD. The neurotrophic factor artemin and its receptor GFRα3 mediate migraine-like pain via the ion channel TRPM8. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.611532. [PMID: 39314341 PMCID: PMC11419092 DOI: 10.1101/2024.09.09.611532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Background Migraine has a strong genetic foundation, including both monogenic and polygenic types. The former are rare, with most migraine considered polygenic, supported by genome-wide association studies (GWAS) identifying numerous genetic variants associated with migraine risk. Surprisingly, some of the most common mutations are associated with TRPM8, a non-selective cation channel that is the primary sensor of cold temperatures in primary afferent neurons of the somatosensory system. However, it is unlikely that the temperature sensitivity of TRPM8 underlies its role in migraine pathogenesis. To define the basis of the channel's involvement, we reasoned that cellular processes that increase cold sensitivity in the skin, such as the neurotrophic factor artemin, via its receptor GFRα3, also mediate TRPM8-associated migraine-like pain in the meninges. Methods To investigate the role of artemin and GFRα3 in preclinical rodent migraine models, we infused nitroglycerin acutely and chronically, and measured changes in periorbital and hind paw mechanical sensitivity in male and female mice lacking GFRα3, after neutralization of free artemin with specific monoclonal antibodies, or by systemic treatment with a TRPM8-specific antagonist. Further, in wildtypes and mice lacking either GFRα3 or TRPM8, we tested the effects of supradural infusions of a mix of inflammatory mediators, artemin, and a TRPM8-specific agonist on migraine-related pain in mice. Results We find that mechanical allodynia induced by systemic nitroglycerin, or supradural infusion of inflammatory mediators, involves GFRα3. In addition, neutralization of circulating artemin reduces the nitroglycerin phenotype, demonstrating the importance of this neurotrophic pathway. Further, we show TRPM8 expression in the meninges and that direct supradural infusion of either a TRPM8-specific agonist or artemin itself produces mechanical allodynia, the latter dependent on TRPM8 and ameliorated by concurrent treatment with sumatriptan. Conclusions These results indicate that neuroinflammatory events in the meninges can produce migraine-like pain in mice via artemin and GFRα3, likely acting upstream of TRPM8, providing a novel pathway that may contribute to migraine pathogenesis.
Collapse
Affiliation(s)
- Chenyu Yang
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
- Molecular and Computational Biology Graduate Program, University of Southern California, Los Angeles, CA 90089
| | - Chao Wei
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
- Department of Anesthesia and Critical Care, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215
| | - Sanaa Alam
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
| | - Xunyang Chen
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
| | - David D. McKemy
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
- Molecular and Computational Biology Graduate Program, University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
4
|
Wei C, Kim B, McKemy DD. Transient receptor potential melastatin 8 is required for nitroglycerin- and calcitonin gene-related peptide-induced migraine-like pain behaviors in mice. Pain 2022; 163:2380-2389. [PMID: 35353773 PMCID: PMC9519811 DOI: 10.1097/j.pain.0000000000002635] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/10/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT Migraine is a complex neurovascular disorder that is one of the leading causes of disability and a reduced quality of life. Even with such a high societal impact, our understanding of the cellular and molecular mechanisms that contribute to migraine headaches is limited. To address this complex disorder, several groups have performed genome-wide association studies to elucidate migraine susceptibility genes, with many identifying transient receptor potential melastatin 8 (TRPM8), a cold-sensitive cation channel expressed in peripheral afferents innervating the trigeminovascular system, and the principal mediator of cold and cold pain associated with injury and disease. Interestingly, these migraine-associated single-nucleotide polymorphisms reside in noncoding regions of TRPM8, with those correlated with reduced migraine risk exhibiting lower TRPM8 expression and decreased cold sensitivity. Nonetheless, as a role for TRPM8 in migraine has yet to be defined, we sought to address this gap in our knowledge using mouse genetics and TRPM8 antagonism to determine whether TRPM8 channels or neurons are required for migraine-like pain (mechanical allodynia and facial grimace) in inducible migraine models. Our results show that both evoked and spontaneous pain behaviors are dependent on both TRPM8 channels and neurons, as well as required in both acute and chronic migraine models. Moreover, inhibition of TRPM8 channels prevented acute but not established chronic migraine-like pain. These results are consistent with its association with migraine in genetic analyses and establish that TRPM8 channels are a component of the underlying mechanisms of migraine.
Collapse
Affiliation(s)
- Chao Wei
- Neuroscience Graduate Program; University of Southern California, 3641 Watt Way / HNB 201, Los Angeles, CA 90089 U.S.A
| | - Brian Kim
- Neurobiology Section; Department of Biological Sciences, University of Southern California, 3641 Watt Way / HNB 201, Los Angeles, CA 90089 U.S.A
| | - David D. McKemy
- Neuroscience Graduate Program; University of Southern California, 3641 Watt Way / HNB 201, Los Angeles, CA 90089 U.S.A
- Neurobiology Section; Department of Biological Sciences, University of Southern California, 3641 Watt Way / HNB 201, Los Angeles, CA 90089 U.S.A
| |
Collapse
|
5
|
Kittel-Schneider S, Arteaga-Henriquez G, Vasquez AA, Asherson P, Banaschewski T, Brikell I, Buitelaar J, Cormand B, Faraone SV, Freitag CM, Ginsberg Y, Haavik J, Hartman CA, Kuntsi J, Larsson H, Matura S, McNeill RV, Ramos-Quiroga JA, Ribases M, Romanos M, Vainieri I, Franke B, Reif A. Non-mental diseases associated with ADHD across the lifespan: Fidgety Philipp and Pippi Longstocking at risk of multimorbidity? Neurosci Biobehav Rev 2021; 132:1157-1180. [PMID: 34757108 DOI: 10.1016/j.neubiorev.2021.10.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 12/16/2022]
Abstract
Several non-mental diseases seem to be associated with an increased risk of ADHD and ADHD seems to be associated with increased risk for non-mental diseases. The underlying trajectories leading to such brain-body co-occurrences are often unclear - are there direct causal relationships from one disorder to the other, or does the sharing of genetic and/or environmental risk factors lead to their occurring together more frequently or both? Our goal with this narrative review was to provide a conceptual synthesis of the associations between ADHD and non-mental disease across the lifespan. We discuss potential shared pathologic mechanisms, genetic background and treatments in co-occurring diseases. For those co-occurrences for which published studies with sufficient sample sizes exist, meta-analyses have been published by others and we discuss those in detail. We conclude that non-mental diseases are common in ADHD and vice versa and add to the disease burden of the patient across the lifespan. Insufficient attention to such co-occurring conditions may result in missed diagnoses and suboptimal treatment in the affected individuals.
Collapse
Affiliation(s)
- Sarah Kittel-Schneider
- Center of Mental Health, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Würzburg, Margarete-Höppel-Platz 1, D-97080 Würzburg, Germany; Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Heinrich-Hoffmann-Str. 10, D-60528 Frankfurt am Main, Germany.
| | - Gara Arteaga-Henriquez
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain; Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain; Department of Psychiatry and Forensic Medicine, Universitat Autonoma de Barcelona, Barcelona, Catalonia, Spain
| | - Alejandro Arias Vasquez
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Departments of Psychiatry and Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Phil Asherson
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, SE5 8AF, London, UK
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Heidelberg University, Medical Faculty Mannheim, Mannheim, Germany
| | - Isabell Brikell
- National Centre for Register-based Research, Department of Economics and Business Economics Aarhus BSS, Aarhus University, Fuglesangs Allé 26, DK-8210 Aarhus V, Aarhus, Denmark; iPSYCH - The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen and Aarhus, Denmark; Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Box 281, 171 77, Stockholm, Sweden
| | - Jan Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Karakter Child and Adolescent Psychiatry University Center, Nijmegen, the Netherlands
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Catalonia, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Stephen V Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Goethe University, Deutschordenstraße 50, D-60528 Frankfurt am Main, Germany
| | - Ylva Ginsberg
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, Region Stockholm, Norra Stationsgatan 69, SE-113 64 Stockholm, Sweden
| | - Jan Haavik
- Bergen Center of Brain Plasticity, Division of Psychiatry, Haukeland University Hospital, Postboks 1400, 5021 Bergen, Norway; Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Catharina A Hartman
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, Interdisciplinary Center Psychopathology and Emotion Regulation (ICPE), PO Box 30.001, 9700 RB, Groningen, the Netherlands
| | - Jonna Kuntsi
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, SE5 8AF, London, UK
| | - Henrik Larsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Box 281, 171 77, Stockholm, Sweden; Örebro University, School of Medical Sciences, Campus USÖ, S-701 82 Örebro, Sweden
| | - Silke Matura
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Heinrich-Hoffmann-Str. 10, D-60528 Frankfurt am Main, Germany
| | - Rhiannon V McNeill
- Center of Mental Health, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Würzburg, Margarete-Höppel-Platz 1, D-97080 Würzburg, Germany
| | - J Antoni Ramos-Quiroga
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain; Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain; Department of Psychiatry and Forensic Medicine, Universitat Autonoma de Barcelona, Barcelona, Catalonia, Spain
| | - Marta Ribases
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Catalonia, Spain; Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain; Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Catalonia, Spain
| | - Marcel Romanos
- Center of Mental Health, Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital of Würzburg, Margarete-Höppel-Platz 1, D-97080 Würzburg, Germany
| | - Isabella Vainieri
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, SE5 8AF, London, UK
| | - Barbara Franke
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Departments of Psychiatry and Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Heinrich-Hoffmann-Str. 10, D-60528 Frankfurt am Main, Germany
| |
Collapse
|
6
|
Different forms of traumatic brain injuries cause different tactile hypersensitivity profiles. Pain 2021; 162:1163-1175. [PMID: 33027220 DOI: 10.1097/j.pain.0000000000002103] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/28/2020] [Indexed: 12/21/2022]
Abstract
ABSTRACT Chronic complications of traumatic brain injury represent one of the greatest financial burdens and sources of suffering in the society today. A substantial number of these patients suffer from posttraumatic headache (PTH), which is typically associated with tactile allodynia. Unfortunately, this phenomenon has been understudied, in large part because of the lack of well-characterized laboratory animal models. We have addressed this gap in the field by characterizing the tactile sensory profile of 2 nonpenetrating models of PTH. We show that multimodal traumatic brain injury, administered by a jet-flow overpressure chamber that delivers a severe compressive impulse accompanied by a variable shock front and acceleration-deceleration insult, produces long-term tactile hypersensitivity and widespread sensitization. These are phenotypes reminiscent of PTH in patients, in both cephalic and extracephalic regions. By contrast, closed head injury induces only transient cephalic tactile hypersensitivity, with no extracephalic consequences. Both models show a more severe phenotype with repetitive daily injury for 3 days, compared with either 1 or 3 successive injuries in a single day, providing new insight into patterns of injury that may place patients at a greater risk of developing PTH. After recovery from transient cephalic tactile hypersensitivity, mice subjected to closed head injury demonstrate persistent hypersensitivity to established migraine triggers, including calcitonin gene-related peptide and sodium nitroprusside, a nitric oxide donor. Our results offer the field new tools for studying PTH and preclinical support for a pathophysiologic role of calcitonin gene-related peptide in this condition.
Collapse
|
7
|
Familial and Genetic Influences on the Common Pediatric Primary Pain Disorders: A Twin Family Study. CHILDREN-BASEL 2021; 8:children8020089. [PMID: 33525537 PMCID: PMC7911833 DOI: 10.3390/children8020089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 11/17/2022]
Abstract
The primary pain disorders of childhood are highly prevalent but have infrequently been studied collectively. Genetic influences have been suggested to be causally implicated. Surveys were sent to 3909 Australian twin families, assessing the lifetime prevalence of growing pains, migraine, headache, recurrent abdominal pain, low back pain, and persistent pain (not otherwise specified) in pediatric twins and their immediate family members. Comparisons between monozygous (MZ) and dizygous (DZ) twin pair correlations, concordances and odds ratios were performed to assess the contribution of additive genetic influences. Random-effects logistic regression modelling was used to evaluate relationships between twin individuals and their co-twins, mothers, fathers and oldest siblings with the subject conditions. Twin analyses of responses from 1016 families revealed significant influence of additive genetic effects on the presence of growing pains, migraine, and recurrent abdominal pain. The analyses for headache, low back pain, and persistent pain overall did not conclusively demonstrate that genetic influences were implicated more than shared environmental factors. Regression analyses demonstrated varying levels of significance in relationships between family members and twin individuals for the tested conditions, with strongest support for genetic influences in growing pains and migraine. These data, together with previously published association analyses, suggest common causal influences including genes.
Collapse
|
8
|
Bolay H, Özge A, Uludüz D, Baykan B. Are Migraine Patients at Increased Risk for Symptomatic Coronavirus Disease 2019 Due to Shared Comorbidities? Headache 2020; 60:2508-2521. [PMID: 33124044 DOI: 10.1111/head.13998] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/24/2020] [Accepted: 10/02/2020] [Indexed: 01/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has rapidly transformed the whole world and forced us to look through comorbid diseases and risk factors from a different perspective. COVID-19 shows some inherent risk factors like cardiovascular comorbidities independent from age, gender, and geographic location. One of the most peculiar features of the COVID-19 pandemic is that severe acute respiratory syndrome coronavirus 2 respiratory infections disproportionately impact patients with hypertension, diabetes, and other cardiovascular comorbidities rather than those with allergic respiratory diseases and immune-compromised conditions. Migraine is a complex neuro-vasculo-inflammatory disorder that is also packed frequently with certain medical conditions including vascular disorders, hypertension, allergic diseases such as asthma and systemic inflammatory disorders. Accordingly, 2 different questions arise during the pandemic: (1) Do share comorbidities of cardiovascular diseases and hypertension increase the risk of symptomatic COVID-19 for migraine patients? (2) Do comorbid allergic and atopic diseases, including asthma act as opposite influencers alongside with female gender? This paper focuses on the co-existence of comorbidities of COVID-19, in comparison with migraine, based on a wide clinical dataset and available reports. Discussed mechanisms include potential strategic roles of angiotensin-converting enzyme 2, angiotensin-II, and nucleotide oligomerization domain-like receptor family, pyrin domain containing 3 inflammasome, playing remarkable parts in the pathogenesis of COVID-19 and migraine. There are also some clues about the importance of endothelial and pericyte dysfunction and neuroinflammation in COVID-19 infection, related to complications and survival of the patients. The large epidemiological studies as well as basic research, focusing on migraine patients with COVID-19 will clarify these vital questions during the upcoming periods.
Collapse
Affiliation(s)
- Hayrunnisa Bolay
- Department of Neurology and Algology, Medical Faculty, Gazi University, Ankara, Turkey
| | - Aynur Özge
- Department of Neurology and Algology, Medical Faculty, Mersin University, Mersin, Turkey
| | - Derya Uludüz
- Department of Neurology and Algology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Betül Baykan
- Department of Neurology, Headache Center, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
9
|
Uçar HN, Tekin U, Tekin E. Irritability and its relationships with psychological symptoms in adolescents with migraine: a case-control study. Neurol Sci 2020; 41:2461-2470. [PMID: 32212010 DOI: 10.1007/s10072-020-04331-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/05/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The aim of this study was to investigate self- and parent-reported irritability in adolescents with migraine and to evaluate the relationship between self- and parent-reported irritability and psychological symptoms in adolescents with migraine. METHODS The sample of this single-center cross-sectional case-control study consisted of 71 adolescents with migraine (who were followed in a pediatric neurology clinic) and their parents. The control group consisted of 41 age- and sex-matched healthy adolescents and their parents. RESULTS It was observed that there were significant differences in both self- (p < 0.001) and parent-reported (p < 0.001) irritability scores between the migraine and control groups. When the two groups were compared in terms of psychological symptoms, adolescents with migraine had significantly higher levels of anxiety (p < 0.001) and emotional problems (p < 0.001) than their healthy peers. This significant difference persisted even after controlling for confounding factors such as age, gender, family income, and maternal and paternal educational level. Our results revealed a moderate positive correlation between irritability scores and anxiety scores (r = 0.522, p < 0.001) and between irritability scores and emotional/behavioral problem scores (r = 0.487, p < 0.001) in the migraine group. In addition to these results, the odds ratios of self-reported irritability scores and emotional problem scores for migraine were 1.31 and 1.41, respectively. CONCLUSION The levels of anxiety, emotional/behavioral, and attention deficit/hyperactivity problems increased as the levels of irritability increased in the migraine group, suggesting that the psychosocial functionality of these adolescents may be impaired. Therefore, all adolescents with migraine (especially those with irritability) may have need of psychosocial support.
Collapse
Affiliation(s)
- Halit Necmi Uçar
- Department of Child and Adolescent Psychiatry, Selçuk University Medical School, Konya, Turkey.
| | - Uğur Tekin
- Department of Child and Adolescent Psychiatry, Bakırköy Dr. Sadi Konuk Training and Research Hospital, İstanbul, Turkey
| | - Emine Tekin
- Department of Child Neurology, Giresun University Medical School, Giresun, Turkey
| |
Collapse
|
10
|
Cacabelos R. Pharmacogenomics of drugs used to treat brain disorders. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1738217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ramon Cacabelos
- International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Corunna, Spain
| |
Collapse
|
11
|
Other primary headaches-thunderclap-, cough-, exertional-, and sexual headache. J Neurol 2020; 267:1554-1566. [PMID: 32130497 PMCID: PMC7184054 DOI: 10.1007/s00415-020-09728-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/22/2022]
Abstract
This article reviews the disorders of thunderclap, cough, exertional and sexual headache. These are a group of paroxysmal and precipitated headaches, which often occur in bouts with prolonged remissions. Indometacin seems to be the most effective preventative. Each can occur in primary and secondary form. Thunderclap headache is the most frequently reported headache syndrome associated with a secondary pathology. Discussed are the complexities of whether all patients with thunderclap headache should have further investigation if timely computerised tomography is normal and, the relevance of abnormal imaging in these disorders, differentiating what is deemed to be secondary and managing the pain.
Collapse
|
12
|
Børte S, Zwart JA, Skogholt AH, Gabrielsen ME, Thomas LF, Fritsche LG, Surakka I, Nielsen JB, Zhou W, Wolford BN, Vigeland MD, Hagen K, Kristoffersen ES, Nyholt DR, Chasman DI, Brumpton BM, Willer CJ, Winsvold BS. Mitochondrial genome-wide association study of migraine - the HUNT Study. Cephalalgia 2020; 40:625-634. [PMID: 32056457 PMCID: PMC7243449 DOI: 10.1177/0333102420906835] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Variation in mitochondrial DNA (mtDNA) has been indicated in migraine pathogenesis, but genetic studies to date have focused on candidate variants, with sparse findings. We aimed to perform the first mitochondrial genome-wide association study of migraine, examining both single variants and mitochondrial haplogroups. METHODS In total, 71,860 participants from the population-based Nord-Trøndelag Health Study were genotyped. We excluded samples not passing quality control for nuclear genotypes, in addition to samples with low call rate and closely maternally related. We analysed 775 mitochondrial DNA variants in 4021 migraine cases and 14,288 headache-free controls, using logistic regression. In addition, we analysed 3831 cases and 13,584 controls who could be reliably assigned to a mitochondrial haplogroup. Lastly, we attempted to replicate previously reported mitochondrial DNA candidate variants. RESULTS Neither of the mitochondrial variants or haplogroups were associated with migraine. In addition, none of the previously reported mtDNA candidate variants replicated in our data. CONCLUSIONS Our findings do not support a major role of mitochondrial genetic variation in migraine pathophysiology, but a larger sample is needed to detect rare variants and future studies should also examine heteroplasmic variation, epigenetic changes and copy-number variation.
Collapse
Affiliation(s)
- Sigrid Børte
- Research and Communication Unit for Musculoskeletal Health, Division of Clinical Neuroscience, Oslo University Hospital, Ullevaal, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - John-Anker Zwart
- Research and Communication Unit for Musculoskeletal Health, Division of Clinical Neuroscience, Oslo University Hospital, Ullevaal, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Anne Heidi Skogholt
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Maiken Elvestad Gabrielsen
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Laurent F Thomas
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Lars G Fritsche
- HUNT Research Centre, Department of Public Health and General Practice, Norwegian University of Science and Technology, Levanger, Norway.,Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Ida Surakka
- Department of Internal Medicine, Division of Cardiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jonas B Nielsen
- Department of Internal Medicine, Division of Cardiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Wei Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Brooke N Wolford
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Magnus D Vigeland
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Knut Hagen
- Department of Neuromedicine and Movement Science, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Norwegian Advisory Unit on Headache, Department of Neurology and Clinical Neurophysiology, St. Olavs University Hospital, Trondheim, Norway
| | - Espen Saxhaug Kristoffersen
- Research and Communication Unit for Musculoskeletal Health, Division of Clinical Neuroscience, Oslo University Hospital, Ullevaal, Oslo, Norway.,Department of Neurology, Akershus University Hospital, Lorenskog, Norway.,Department of General Practice, Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Dale R Nyholt
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Ben M Brumpton
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Cristen J Willer
- Department of Internal Medicine, Division of Cardiology, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.,Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Bendik S Winsvold
- Research and Communication Unit for Musculoskeletal Health, Division of Clinical Neuroscience, Oslo University Hospital, Ullevaal, Oslo, Norway.,K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
13
|
Rainero I, Roveta F, Vacca A, Noviello C, Rubino E. Migraine pathways and the identification of novel therapeutic targets. Expert Opin Ther Targets 2020; 24:245-253. [PMID: 32054351 DOI: 10.1080/14728222.2020.1728255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Migraine is a chronic neurovascular disorder characterized by recurrent headache attacks associated with neurological and autonomic symptoms. The pathophysiological mechanisms of the disease are extremely complex, involving hypothalamic and trigeminovascular activation, cortical spreading depression, release of pro-inflammatory peptides, peripheral and central sensitization. The underlying cellular and molecular mechanisms have been scarcely investigated. Recently, genetic studies have suggested that different metabolic pathways could be involved in the pathogenesis of migraine.Areas covered: This review focuses on cellular and molecular mechanisms involved in migraine, suggesting a role for circadian clocks, ion channels, synaptic plasticity, vascular factors, ion metal homeostasis, and impaired glucose metabolism in the pathogenesis of the disease. Accordingly, the article proposes new therapeutic targets that may be of particular relevance for disease prevention.Expert opinion: Several complex molecular mechanisms are involved in setting the genetic threshold for migraine and the pathogenesis of headache attacks. Most promising new therapeutic targets are the modulation of hypothalamic activity and ion channels involved in pain transmission. Further studies in animals and humans are necessary to enhance the elucidation of the molecular mechanisms of migraine and open new avenues for disease prevention.
Collapse
Affiliation(s)
- Innocenzo Rainero
- Headache Center Department of Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy
| | - Fausto Roveta
- Department of Neuroscience, University of Torino, Torino, Italy
| | - Alessandro Vacca
- Department of Neuroscience and Mental Health, Città della Salute e della Scienza di Torino, Torino, Italy
| | | | - Elisa Rubino
- Department of Neuroscience and Mental Health, Città della Salute e della Scienza di Torino, Torino, Italy
| |
Collapse
|
14
|
Rainero I, Vacca A, Govone F, Gai A, Pinessi L, Rubino E. Migraine: Genetic Variants and Clinical Phenotypes. Curr Med Chem 2019; 26:6207-6221. [DOI: 10.2174/0929867325666180719120215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/21/2018] [Accepted: 06/26/2018] [Indexed: 12/16/2022]
Abstract
Migraine is a common, chronic neurovascular disorder caused by a complex interaction
between genetic and environmental risk factors. In the last two decades, molecular genetics
of migraine have been intensively investigated. In a few cases, migraine is transmitted as a
monogenic disorder, and the disease phenotype cosegregates with mutations in different genes
like CACNA1A, ATP1A2, SCN1A, KCNK18, and NOTCH3. In the common forms of migraine,
candidate genes as well as genome-wide association studies have shown that a large number of
genetic variants may increase the risk of developing migraine. At present, few studies investigated
the genotype-phenotype correlation in patients with migraine. The purpose of this review
was to discuss recent studies investigating the relationship between different genetic variants
and the clinical characteristics of migraine. Analysis of genotype-phenotype correlations in
migraineurs is complicated by several confounding factors and, to date, only polymorphisms
of the MTHFR gene have been shown to have an effect on migraine phenotype. Additional
genomic studies and network analyses are needed to clarify the complex pathways underlying
migraine and its clinical phenotypes.
Collapse
Affiliation(s)
- Innocenzo Rainero
- Headache Center, Neurology I, Department of Neuroscience “Rita Levi Montalcini”, University of Torino, Torino, Italy
| | - Alessandro Vacca
- Headache Center, Neurology I, Department of Neuroscience “Rita Levi Montalcini”, University of Torino, Torino, Italy
| | - Flora Govone
- Headache Center, Neurology I, Department of Neuroscience “Rita Levi Montalcini”, University of Torino, Torino, Italy
| | - Annalisa Gai
- Headache Center, Neurology I, Department of Neuroscience “Rita Levi Montalcini”, University of Torino, Torino, Italy
| | - Lorenzo Pinessi
- Headache Center, Neurology I, Department of Neuroscience “Rita Levi Montalcini”, University of Torino, Torino, Italy
| | - Elisa Rubino
- Headache Center, Neurology I, Department of Neuroscience “Rita Levi Montalcini”, University of Torino, Torino, Italy
| |
Collapse
|
15
|
Li M, Zheng X, Zhong R, Zhao Q, Lu Y, Wang Z, Lin W. Familial Hemiplegic Migraine With Progressive Cerebellar Ataxia Caused by a p.Thr666Met CACNA1A Gene Mutation in a Chinese Family. Front Neurol 2019; 10:1221. [PMID: 31824404 PMCID: PMC6882281 DOI: 10.3389/fneur.2019.01221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/01/2019] [Indexed: 11/13/2022] Open
Abstract
Here, we describe the first case of familial hemiplegic migraine type 1 (FHM1) resulting from a T666M mutation in the CACNA1A gene of a Chinese individual. A 54-year-old female patient demonstrated extensive clinical manifestations, including transient paropsia, hemianesthesia, logaphasia, hemiplegia, migraine, fever, impaired consciousness, and progressive cerebellar ataxia. At admission, neurological examination showed a fever of 38.6°C, coma, bilateral pupillary constriction, left-sided deviation of both eyes, meningeal irritation, and bilateral positive Chaddock's sign. Brain magnetic resonance imaging (MRI) displayed only cerebellar atrophy. The pressure and white blood cells of the cerebrospinal fluid (CSF) were elevated. Her nine relatives also had similar clinical spectra. To further clarify the diagnosis, we conducted a genetic analysis on the family. The results of genetic testing showed that all seven living affected members carried the T666M mutation in the CACNA1A gene. This case report indicates that the diagnosis of FHM should be taken into account when a patient manifests migraine accompanied with hemiplegia, acute encephalopathy, and abnormal CSF. In addition, genetic testing is indispensable for the identification of some atypical attacks of hemiplegic migraine.
Collapse
Affiliation(s)
- Mengmeng Li
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Xiangyu Zheng
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Rui Zhong
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Qian Zhao
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yingxue Lu
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Zan Wang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Weihong Lin
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
16
|
Pyykkö I, Manchaiah V, Färkkilä M, Kentala E, Zou J. Association between Ménière’s disease and vestibular migraine. Auris Nasus Larynx 2019; 46:724-733. [DOI: 10.1016/j.anl.2019.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/16/2019] [Accepted: 02/03/2019] [Indexed: 12/17/2022]
|
17
|
Abstract
BACKGROUND Migraine is a complex neurological disorder that affects a significant percentage of the human species, from all geographic areas and cultures. Cognitive symptoms and dysfunctions are interim and disabling components of this disorder and may be related to the brain processes underlying the pathophysiology. Yet they are often undervalued by clinicians. In this review, we present the different types of cognitive dysfunctions associated with migraine and the mechanisms that are potentially causing them. FINDINGS While reversible attack-related cognitive dysfunction seems extremely consistent and likely related to functional cortical and subcortical brain changes occurring during attacks, interictal cognitive dysfunction is less consistent and might become more relevant as attack frequency and disease complexity increase. Migraine traits do not seem a predisposition to long-term cognitive decline. Cognitive dysfunction is a frequent manifestation of migraine attacks and may be specific to this disorder; it is important to understand if it could be useful in migraine diagnosis. Attack-related cognitive dysfunction is clinically relevant and contributes to disability, so it should be perceived as a therapeutic target. While there is no evidence to support that migraine increases the risk of long-term or persistent cognitive dysfunction, the fact that it occurs during the attacks and may persist in subjects with frequent or complicated attacks should prompt the understanding of the mechanisms related to its pathophysiology for it may also clarify the processes underlying migraine.
Collapse
|
18
|
Abstract
The term vestibular migraine designates recurrent vertigo that is caused by migraine. Vestibular migraine presents with episodes of spontaneous or positional vertigo lasting seconds to days that are accompanied by migraine symptoms. Because headache is often absent during acute attacks, other migraine features have to be identified by thorough history taking. In contrast, vestibular testing serves mainly for the exclusion of other diagnoses. Treatment still lacks solid evidence. It is targeted at the underlying migraine and comprises explanation and reassurance, lifestyle modifications, and drugs.
Collapse
Affiliation(s)
- Thomas Lempert
- Department of Neurology, Schlosspark-Klinik, Heubnerweg 2, Berlin 14059, Germany.
| | | |
Collapse
|
19
|
Takayama Y, Derouiche S, Maruyama K, Tominaga M. Emerging Perspectives on Pain Management by Modulation of TRP Channels and ANO1. Int J Mol Sci 2019; 20:E3411. [PMID: 31336748 PMCID: PMC6678529 DOI: 10.3390/ijms20143411] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/01/2019] [Accepted: 07/09/2019] [Indexed: 12/27/2022] Open
Abstract
Receptor-type ion channels are critical for detection of noxious stimuli in primary sensory neurons. Transient receptor potential (TRP) channels mediate pain sensations and promote a variety of neuronal signals that elicit secondary neural functions (such as calcitonin gene-related peptide [CGRP] secretion), which are important for physiological functions throughout the body. In this review, we focus on the involvement of TRP channels in sensing acute pain, inflammatory pain, headache, migraine, pain due to fungal infections, and osteo-inflammation. Furthermore, action potentials mediated via interactions between TRP channels and the chloride channel, anoctamin 1 (ANO1), can also generate strong pain sensations in primary sensory neurons. Thus, we also discuss mechanisms that enhance neuronal excitation and are dependent on ANO1, and consider modulation of pain sensation from the perspective of both cation and anion dynamics.
Collapse
Affiliation(s)
- Yasunori Takayama
- Department of Physiology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan.
| | - Sandra Derouiche
- Thermal Biology group, Exploratory Research Center on Life and Living Systems, National Institutes for Natural Sciences, 5-1 Aza-higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.
| | - Kenta Maruyama
- National Institute for Physiological Sciences, National Institutes for Natural Sciences, 5-1 Aza-higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.
| | - Makoto Tominaga
- Thermal Biology group, Exploratory Research Center on Life and Living Systems, National Institutes for Natural Sciences, 5-1 Aza-higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.
| |
Collapse
|
20
|
|
21
|
Does the migraine attack start in the cortex and is the cortex critical in the migraine process? Neurol Sci 2019; 40:31-37. [DOI: 10.1007/s10072-019-03838-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Peres MF, Oliveira AB, Mercante JP, Kamei HH, Tobo PR, Rozen TD, Levin M, Buse DC, Lucchetti G. Optimism, Pessimism, and Migraine: A Cross-Sectional, Population-Based Study. Headache 2019; 59:205-214. [DOI: 10.1111/head.13471] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Mario F.P. Peres
- Hospital Israelita Albert Einstein; São Paulo Brazil
- Instituto de Psiquiatria; Faculdade de Medicina da Universidade de São Paulo; São Paulo Brazil
| | | | | | - Helder H. Kamei
- Sciences of Well-Being; Natura Innovation and Technology of Products; Cajamar Brazil
| | | | | | - Morris Levin
- Department of Neurology; University of California San Francisco; CA USA
| | - Dawn C. Buse
- Department of Neurology; Albert Einstein College of Medicine; New York NY USA
| | | |
Collapse
|
23
|
van den Maagdenberg AMJM, Nyholt DR, Anttila V. Novel hypotheses emerging from GWAS in migraine? J Headache Pain 2019; 20:5. [PMID: 30634909 PMCID: PMC6734558 DOI: 10.1186/s10194-018-0956-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/27/2018] [Indexed: 12/23/2022] Open
Abstract
Recent technical advances in genetics made large-scale genome-wide association studies (GWAS) in migraine feasible and have identified over 40 common DNA sequence variants that affect risk for migraine types. Most of the variants, which are all single nucleotide polymorphisms (SNPs), show robust association with migraine as evidenced by the fact that the vast majority replicate in subsequent independent studies. However, despite thorough bioinformatic efforts aimed at linking the migraine risk SNPs with genes and their molecular pathways, there remains quite some discussion as to how successful this endeavour has been, and their current practical use for the diagnosis and treatment of migraine patients. Although existing genetic information seems to favour involvement of vascular mechanisms, but also neuronal and other mechanisms such as metal ion homeostasis and neuronal migration, the complexity of the underlying genetic pathophysiology presents challenges to advancing genetic knowledge to clinical use. A major issue is to what extent one can rely on bioinformatics to pinpoint the actual disease genes, and from this the linked pathways. In this Commentary, we will provide an overview of findings from GWAS in migraine, current hypotheses of the disease pathways that emerged from these findings, and some of the major drawbacks of the approaches used to identify the genes and pathways. We argue that more functional research is urgently needed to turn the hypotheses that emerge from GWAS in migraine to clinically useful information.
Collapse
Affiliation(s)
- Arn M. J. M. van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
- Department of Neurology, Leiden University Medical Centre, 9600, 2300 RC Leiden, The Netherlands
| | - Dale R. Nyholt
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD Australia
| | - Verneri Anttila
- Analytical and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA USA
| |
Collapse
|
24
|
Rainero I, Vacca A, Roveta F, Govone F, Gai A, Rubino E. Targeting MTHFR for the treatment of migraines. Expert Opin Ther Targets 2018; 23:29-37. [PMID: 30451038 DOI: 10.1080/14728222.2019.1549544] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Migraine is a common neurovascular disorder classified by the World Health Organization as one of the most debilitating diseases. Migraine is a complex disease and is a consequence of an interaction between genetic, epigenetic and environmental factors. The MTHFR gene is one of the few replicated genetic risk factors for migraine and encodes an enzyme that is crucial for the folate and the methionine cycles. Individuals carrying the T allele of the MTHFR C677T polymorphism have increased plasma concentrations of homocysteine which leads to endothelial cell injury and alterations in coagulant properties of blood. Areas covered: This review focuses on the recent advances in genetics and the role of the MTHFR gene and homocysteine metabolism in migraine etiopathogenesis. The article summarizes the potential of targeting MTHFR and homocysteine for disease prevention. Expert opinion: Determination of MTHFR C677T polymorphisms as well as measurement of homocysteine concentrations may be useful to migraine patients, particularly those suffering from migraine with aura. Preliminary studies support the use of folate, vitamin B6 and vitamin B12 for the prevention of migraine. However, the results of these studies await replication in larger randomized controlled clinical trials.
Collapse
Affiliation(s)
- Innocenzo Rainero
- a Headache Center, Department of Neuroscience "Rita Levi Montalcini" , University of Torino , Torino , Italy
| | - Alessandro Vacca
- a Headache Center, Department of Neuroscience "Rita Levi Montalcini" , University of Torino , Torino , Italy
| | - Fausto Roveta
- a Headache Center, Department of Neuroscience "Rita Levi Montalcini" , University of Torino , Torino , Italy
| | - Flora Govone
- a Headache Center, Department of Neuroscience "Rita Levi Montalcini" , University of Torino , Torino , Italy
| | - Annalisa Gai
- a Headache Center, Department of Neuroscience "Rita Levi Montalcini" , University of Torino , Torino , Italy
| | - Elisa Rubino
- a Headache Center, Department of Neuroscience "Rita Levi Montalcini" , University of Torino , Torino , Italy
| |
Collapse
|