1
|
Koirala N, Manning J, Neumann S, Anderson C, Deroche MLD, Wolfe J, Pugh K, Landi N, Muthuraman M, Gracco VL. The neural characteristics influencing literacy outcome in children with cochlear implants. Brain Commun 2025; 7:fcaf086. [PMID: 40046341 PMCID: PMC11881800 DOI: 10.1093/braincomms/fcaf086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 01/20/2025] [Accepted: 02/19/2025] [Indexed: 03/16/2025] Open
Abstract
Early hearing intervention in children with congenital hearing loss is critical for improving auditory development, speech recognition and both expressive and receptive language, which translates into better educational outcomes and quality of life. In children receiving hearing aids or cochlear implants, both adaptive and potentially maladaptive neural reorganization can mitigate higher-level functions that impact reading. The focus of the present study was to dissect the neural underpinnings of the reading networks in children with cochlear implants and assess how these networks mediate the reading ability in children with cochlear implants. Cortical activity was obtained using naturalistic stimuli from 75 children (50 cochlear implant recipients, aged 7-17, and 25 age-matched children with typical hearing) using functional near-infrared spectroscopy. Assessment of basic reading skill was completed using the Reading Inventory and Scholastic Evaluation. We computed directed functional connectivity of the haemodynamic activity in reading-associated anterior and posterior brain regions using the time-frequency causality estimation method known as temporal partial directed coherence. The influence of the cochlear implant-related clinical measures on reading outcome and the extent to which neural connectivity mediated these effects were examined using structural equation modelling. Our findings reveal that the timing of intervention (e.g. age of first cochlear implants, age of first hearing aid) in children with cochlear implants significantly influenced their reading ability. Furthermore, reading-related processes (word recognition and decoding, vocabulary, morphology and sentence processing) were substantially mediated by the directed functional connectivity within reading-related neural circuits. Notably, the impact of these effects differed across various reading skills. Hearing age, defined as the age at which a participant received adequate access to sound, and age of initial implantation emerged as robust predictors of reading proficiency. The current study is one of the first to identify the influence of neural characteristics on reading outcomes for children with cochlear implants. The findings emphasize the importance of the duration of deafness and early intervention for enhancing outcomes and strengthening neural network connections. However, the neural evidence further suggested that such positive influences cannot fully offset the detrimental impact of early auditory deprivation. Consequently, additional, perhaps more specialized, interventions might be necessary to maximize the benefits of early prosthetic hearing intervention.
Collapse
Affiliation(s)
- Nabin Koirala
- Child Study Center, School of Medicine, Yale University, New Haven, CT 06511, USA
- Brain Imaging Research Core, University of Connecticut, Storrs, CT 06269, USA
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Jacy Manning
- Hearts for Hearing Foundation, Oklahoma City, OK 73120, USA
| | - Sara Neumann
- Hearts for Hearing Foundation, Oklahoma City, OK 73120, USA
| | | | - Mickael L D Deroche
- Department of Psychology, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Jace Wolfe
- Oberkotter Foundation, Philadelphia, PA 19102, USA
| | - Kenneth Pugh
- Child Study Center, School of Medicine, Yale University, New Haven, CT 06511, USA
- Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Nicole Landi
- Child Study Center, School of Medicine, Yale University, New Haven, CT 06511, USA
- Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269, USA
| | | | - Vincent L Gracco
- Child Study Center, School of Medicine, Yale University, New Haven, CT 06511, USA
- School of Communication Sciences and Disorders, McGill University, Montreal, QC H3A 0G4, Canada
| |
Collapse
|
2
|
Yin Y, Lyu X, Zhou J, Yu K, Huang M, Shen G, Hao C, Wang Z, Yu H, Gao B. Cerebral cortex functional reorganization in preschool children with congenital sensorineural hearing loss: a resting-state fMRI study. Front Neurol 2024; 15:1423956. [PMID: 38988601 PMCID: PMC11234816 DOI: 10.3389/fneur.2024.1423956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/07/2024] [Indexed: 07/12/2024] Open
Abstract
Purpose How cortical functional reorganization occurs after hearing loss in preschool children with congenital sensorineural hearing loss (CSNHL) is poorly understood. Therefore, we used resting-state functional MRI (rs-fMRI) to explore the characteristics of cortical reorganization in these patents. Methods Sixty-three preschool children with CSNHL and 32 healthy controls (HCs) were recruited, and the Categories of Auditory Performance (CAP) scores were determined at the 6-month follow-up after cochlear implantation (CI). First, rs-fMRI data were preprocessed, and amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) were calculated. Second, whole-brain functional connectivity (FC) analysis was performed using bilateral primary auditory cortex as seed points. Finally, Spearman correlation analysis was performed between the differential ALFF, ReHo and FC values and the CAP score. Results ALFF analysis showed that preschool children with CSNHL had lower ALFF values in the bilateral prefrontal cortex and superior temporal gyrus than HCs, but higher ALFF values in the bilateral thalamus and calcarine gyrus. And correlation analysis showed that some abnormal brain regions were weak negatively correlated with CAP score (p < 0.05). The ReHo values in the bilateral superior temporal gyrus, part of the prefrontal cortex and left insular gyrus were lower, whereas ReHo values in the bilateral thalamus, right caudate nucleus and right precentral gyrus were higher, in children with CSNHL than HCs. However, there was no correlation between ReHo values and the CAP scores (p < 0.05). Using primary auditory cortex (PAC) as seed-based FC further analysis revealed enhanced FC in the visual cortex, proprioceptive cortex and motor cortex. And there were weak negative correlations between the FC values in the bilateral superior temporal gyrus, occipital lobe, left postcentral gyrus and right thalamus were weakly negatively correlated and the CAP score (p < 0.05). Conclusion After auditory deprivation in preschool children with CSNHL, the local functions of auditory cortex, visual cortex, prefrontal cortex and somatic motor cortex are changed, and the prefrontal cortex plays a regulatory role in this process. There is functional reorganization or compensation between children's hearing and these areas, which may not be conducive to auditory language recovery after CI in deaf children.
Collapse
Affiliation(s)
- Yi Yin
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xinyue Lyu
- Guizhou Medical University, Guiyang, China
| | - Jian Zhou
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Kunlin Yu
- The Key Laboratory for Chemistry of Natural Product of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Mingming Huang
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Guiquan Shen
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Cheng Hao
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhengfu Wang
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hui Yu
- Department of Radiology, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Bo Gao
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Key Laboratory of Brain Imaging, Guizhou Medical University, Guiyang, China
| |
Collapse
|
3
|
Landry C, Nazar R, Simon M, Genest F, Giguère FL, Lepore F, Frasnelli J. Behavioural evidence for enhanced olfactory and trigeminal perception in congenital hearing loss. Eur J Neurosci 2024; 59:434-445. [PMID: 38185810 DOI: 10.1111/ejn.16216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/05/2023] [Accepted: 11/20/2023] [Indexed: 01/09/2024]
Abstract
Sensory deprivation, especially hearing loss (HL), offers a valuable model for studying neuroplasticity in the human brain and adaptive behaviours that support the daily lives of those with limited or absent sensory input. The study of olfactory function is particularly important as it is an understudied aspect of sensory deprivation. This study aimed to compare the effects of congenital HL on olfactory capacity by using psychophysical tasks. Methodological concerns from previous studies regarding the onset of HL and cognitive assessments were addressed. We recruited 11 individuals with severe-to-profound sensorineural HL (SNHL) since birth and 11 age- and sex-matched typical hearing non-signers. We used standardized neuropsychological tests to assess typical cognition among participants with SNHL. We evaluated olfactory functions by assessing olfactory detection threshold, odour discrimination and odour identification. Hearing-impaired participants outperformed their typical hearing counterparts in olfactory tasks. We further evaluated the accuracy and response time in identifying and localizing odours to disentangle olfactory sensitivity from trigeminal system sensitivity. Participants with SNHL demonstrated higher sensitivity to both the identification and localization tasks. These findings suggest that congenital SNHL is associated with enhanced higher-level olfactory processing and increased trigeminal sensitivity.
Collapse
Affiliation(s)
- Catherine Landry
- Département de Psychologie, Université de Montréal, Montréal, QC, Canada
| | - Rim Nazar
- Département de Psychologie, Université de Montréal, Montréal, QC, Canada
- Research Institute of the MUHC, Montréal, QC, Canada
| | - Marie Simon
- Département de Psychologie, Université de Montréal, Montréal, QC, Canada
| | - François Genest
- Département de Psychologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Fanny Lécuyer Giguère
- Département de Psychologie, Université de Montréal, Montréal, QC, Canada
- Centre de recherche de l'hôpital Sacré-Coeur de Montréal, Montréal, QC, Canada
| | - Franco Lepore
- Département de Psychologie, Université de Montréal, Montréal, QC, Canada
| | - Johannes Frasnelli
- Département de Psychologie, Université de Montréal, Montréal, QC, Canada
- Centre de recherche de l'hôpital Sacré-Coeur de Montréal, Montréal, QC, Canada
- Département d'anatomie, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| |
Collapse
|