1
|
Thomas MG, Blanc S, Le Bechec M, Pigot T, C. M. Fernandes S. Effect of Reactive Oxygen Species Photoproduced in Different Water Matrices on the Photostability of Gadusolate and Mycosporine-Serinol. Mar Drugs 2024; 22:473. [PMID: 39452881 PMCID: PMC11509266 DOI: 10.3390/md22100473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/08/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
In the past few years, there has been an increasing interest in mycosporines-UV-absorbing molecules-bringing important insights into their intrinsic properties as natural sunscreens. Herein, mycosporine-serinol and gadusol (enolate form)/gadusolate were exposed to UV radiation via a solar simulator and the photostability was assessed in pure water and different natural matrices like river, estuary and ocean water. In general, this study revealed that the photodegradation of gadusolate and mycosporine-serinol was higher in natural matrices than in pure water due to the generation of singlet oxygen on UV irradiation. In pure water, in terms of photostability, both gadusolate and mycosporine-serinol were found to offer good protection and high performance in terms of photodegradation quantum yield ((0.8 ± 0.2) × 10-4 and (1.1 ± 0.6) × 10-4, respectively). Nonetheless, the photostability of mycosporine-serinol was found to be superior to that of gadusolate in natural water, namely, ocean, estuary and river. The present work highlights how mycosporine-serinol and gadusolate resist photodegradation, and supports their role as effective and stable UV-B sunscreens.
Collapse
Affiliation(s)
| | | | | | - Thierry Pigot
- IPREM—Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials, Universite de Pau et des Pays de l’Adour, E2S UPPA, CNRS, 64000 Pau, France; (M.G.T.); (S.B.); (M.L.B.)
| | - Susana C. M. Fernandes
- IPREM—Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials, Universite de Pau et des Pays de l’Adour, E2S UPPA, CNRS, 64000 Pau, France; (M.G.T.); (S.B.); (M.L.B.)
| |
Collapse
|
2
|
Najar-Almanzor CE, Velasco-Iglesias KD, Nunez-Ramos R, Uribe-Velázquez T, Solis-Bañuelos M, Fuentes-Carrasco OJ, Chairez I, García-Cayuela T, Carrillo-Nieves D. Microalgae-assisted green bioremediation of food-processing wastewater: A sustainable approach toward a circular economy concept. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118774. [PMID: 37619389 DOI: 10.1016/j.jenvman.2023.118774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/23/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
Wastewater disposal is a major environmental issue that pollutes water, causing eutrophication, habitat destruction, and economic impact. In Mexico, food-processing effluents pose a huge environmental threat due to their excessive nutrient content and their large volume discharged every year. Some of the most harmful residues are tequila vinasses, nejayote, and cheese whey. Each liter of tequila generates 13-15 L of vinasses, each kilogram of cheese produces approximately 9 kg of cheese whey, and each kilogram of nixtamalized maize results in the production of 2.5-3.3 L of nejayote. A promising strategy to reduce the contamination derived from wastewater is through microalgae-based wastewater treatment. Microalgae have a high adaptability to hostile environments and they can feed on the nutrients in the effluents to grow. Moreover, to increase the viability, profitability, and value of wastewater treatments, a microalgae biorefinery could be proposed. This review will focus on the circular bioeconomy scheme focused on the simultaneous food-processing wastewater treatment and its use to grow microalgae biomass to produce added-value compounds. This strategy allows for the revalorization of wastewater, decreases contamination of water sources, and produces valuable compounds that promote human health such as phycobiliproteins, carotenoids, omega-3 fatty acids, exopolysaccharides, mycosporine-like amino acids, and as a source of clean energy: biodiesel, biogas, and bioethanol.
Collapse
Affiliation(s)
- Cesar E Najar-Almanzor
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona No. 2514, 45201, Zapopan, Jal., Mexico
| | - Karla D Velasco-Iglesias
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona No. 2514, 45201, Zapopan, Jal., Mexico
| | - Regina Nunez-Ramos
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona No. 2514, 45201, Zapopan, Jal., Mexico
| | - Tlalli Uribe-Velázquez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona No. 2514, 45201, Zapopan, Jal., Mexico
| | - Minerva Solis-Bañuelos
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona No. 2514, 45201, Zapopan, Jal., Mexico
| | - Oscar J Fuentes-Carrasco
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona No. 2514, 45201, Zapopan, Jal., Mexico
| | - Isaac Chairez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona No. 2514, 45201, Zapopan, Jal., Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for the Sustainable Manufacturing, Av. General Ramón Corona No. 2514, 45201, Zapopan, Jal., Mexico
| | - Tomás García-Cayuela
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona No. 2514, 45201, Zapopan, Jal., Mexico
| | - Danay Carrillo-Nieves
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona No. 2514, 45201, Zapopan, Jal., Mexico.
| |
Collapse
|
3
|
Babele PK, Srivastava A, Young JD. Metabolic flux phenotyping of secondary metabolism in cyanobacteria. Trends Microbiol 2023; 31:1118-1130. [PMID: 37331829 DOI: 10.1016/j.tim.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023]
Abstract
Cyanobacteria generate energy from photosynthesis and produce various secondary metabolites with diverse commercial and pharmaceutical applications. Unique metabolic and regulatory pathways in cyanobacteria present new challenges for researchers to enhance their product yields, titers, and rates. Therefore, further advancements are critically needed to establish cyanobacteria as a preferred bioproduction platform. Metabolic flux analysis (MFA) quantitatively determines the intracellular flows of carbon within complex biochemical networks, which elucidate the control of metabolic pathways by transcriptional, translational, and allosteric regulatory mechanisms. The emerging field of systems metabolic engineering (SME) involves the use of MFA and other omics technologies to guide the rational development of microbial production strains. This review highlights the potential of MFA and SME to optimize the production of cyanobacterial secondary metabolites and discusses the technical challenges that lie ahead.
Collapse
Affiliation(s)
- Piyoosh K Babele
- College of Agriculture, Rani Lakshmi Bai Central Agricultural University Jhansi, 284003, Uttar Pradesh, India.
| | - Amit Srivastava
- University of Jyväskylä, Nanoscience Centre, Department of Biological and Environmental Science, 40014 Jyväskylä, Finland
| | - Jamey D Young
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, PMB 351604, Nashville, TN 37235-1604, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, PMB 351604, Nashville, TN 37235-1604, USA.
| |
Collapse
|
4
|
Orfanoudaki M, Alilou M, Hartmann A, Mayr J, Karsten U, Nguyen-Ngoc H, Ganzera M. Isolation and Structure Elucidation of Novel Mycosporine-like Amino Acids from the Two Intertidal Red Macroalgae Bostrychia scorpioides and Catenella caespitosa. Mar Drugs 2023; 21:543. [PMID: 37888478 PMCID: PMC10608480 DOI: 10.3390/md21100543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/12/2023] [Accepted: 10/15/2023] [Indexed: 10/28/2023] Open
Abstract
This study presents a phytochemical survey of two common intertidal red algal species, Bostrychia scorpioides and Catenella caespitosa, regarding their MAA (mycosporine-like amino acid) composition, which are known as biogenic sunscreen compounds. Six novel MAAs from Bostrychia scorpioides named bostrychines and two novel MAAs from Catenella caespitosa named catenellines were isolated using a protocol which included silica gel column chromatography, flash chromatography on reversed phase material and semipreparative HPLC (High-Performance Liquid Chromatography). The structure of the novel MAAs was elucidated using NMR (Nuclear Magnetic Resonance) and HR-MS (High-Resolution Mass Spectrometry), and their absolute configuration was confirmed by ECD (Electronic Circular Dichroism). All isolated MAAs possess a cyclohexenimine scaffold, and the metabolites from B. scorpioides are related to the known MAAs bostrychines A-F, which contain glutamine, glutamic acid and/or threonine in their side chains. The new MAAs from C. caespitosa contain taurine, an amino sulfonic acid that is also present in another MAA isolated from this species, namely, catenelline. Previous and new data confirm that intertidal red algae are chemically rich in MAAs, which explains their high tolerance against biologically harmful ultraviolet radiation.
Collapse
Affiliation(s)
- Maria Orfanoudaki
- Institute of Pharmacy, Pharmacognosy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (M.O.); (M.A.); (A.H.); (J.M.); (H.N.-N.)
| | - Mostafa Alilou
- Institute of Pharmacy, Pharmacognosy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (M.O.); (M.A.); (A.H.); (J.M.); (H.N.-N.)
| | - Anja Hartmann
- Institute of Pharmacy, Pharmacognosy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (M.O.); (M.A.); (A.H.); (J.M.); (H.N.-N.)
| | - Julia Mayr
- Institute of Pharmacy, Pharmacognosy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (M.O.); (M.A.); (A.H.); (J.M.); (H.N.-N.)
| | - Ulf Karsten
- Institute of Biological Sciences, Applied Ecology & Phycology, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany;
| | - Hieu Nguyen-Ngoc
- Institute of Pharmacy, Pharmacognosy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (M.O.); (M.A.); (A.H.); (J.M.); (H.N.-N.)
- Faculty of Pharmacy, Phenikaa University, Hanoi 12116, Vietnam
- A&A Green Phoenix Group JSC, Phenikaa Research and Technology Institute (PRATI), No.167 Hoang Ngan, Trung Hoa, Cau Giay, Hanoi 11313, Vietnam
| | - Markus Ganzera
- Institute of Pharmacy, Pharmacognosy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (M.O.); (M.A.); (A.H.); (J.M.); (H.N.-N.)
| |
Collapse
|
5
|
Halotolerance, stress mechanisms, and circadian clock of salt-tolerant cyanobacteria. Appl Microbiol Biotechnol 2023; 107:1129-1141. [PMID: 36700967 DOI: 10.1007/s00253-023-12390-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/27/2023]
Abstract
Cyanobacteria harbor a high level of physiological flexibility, which enables them to reside in virtually all available environmental niches, including extreme environments. In this review, we summarize the recent advancements in stress mechanisms of salt-tolerant (a.k.a. halotolerant) cyanobacteria. Omics approaches have been extensively employed in recent years to decipher mechanisms of halotolerance and to understand the relevance of halotolerance-associated gene regulatory networks. The vast knowledge from genome mining disclosed that halotolerant cyanobacteria possess extended gene families and/or clusters, encoding enzymes that synthesize unique osmoprotectants, including glycine betaine (GB), betaine derivatives, and mycosporine-like amino acids (MAAs). Comprehensive transcriptomic analyses were conducted using Halothece sp. PCC7418 (hereafter referred to as Halothece), a cyanobacterium that exhibits remarkable halotolerance. These studies revealed a specific transcriptional response when Halothece was subjected to salt stress, whereas salt and osmotic stresses were found to share a common transcriptomic response. Transcriptome and metabolite analyses of Halothece illustrated a complex dynamic relationship between the biosyntheses of osmoprotectants, as well as corresponding and ancillary pathways. Lastly, novel insights highlight the relationship between the molecular regulation of the circadian rhythm and salt stress tolerance. Since the circadian rhythm of gene expression was distorted under salt stress, halotolerant cyanobacteria may prioritize the adaptation to salt stress by attenuation of circadian rhythmicity. KEY POINTS: • Recent advancements in the understanding of stress mechanisms in halotolerant cyanobacteria are described based on omics analyses. • Transcriptome and metabolite analyses of Halothece illustrated a complex dynamic relationship between the biosyntheses of osmoprotectants, as well as corresponding and ancillary pathways. • Since salt stress affects the molecular regulation among clock-related proteins, salt stress may attenuate circadian rhythmicity.
Collapse
|
6
|
Waditee-Sirisattha R, Ito H, Kageyama H. Global transcriptional and circadian regulation in a halotolerant cyanobacterium Halothece sp. PCC7418. Sci Rep 2022; 12:13190. [PMID: 35962002 PMCID: PMC9374696 DOI: 10.1038/s41598-022-17406-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022] Open
Abstract
Substantial evidence has been accumulated about the molecular basis underlying halotolerance; however, insights into the regulatory networks for relevant genes and mechanisms of their interplay remain elusive. Here, we present a comprehensive transcriptome investigation, using RNA sequencing, of specific metabolic pathways and networks in a halotolerant cyanobacterium, Halothece sp. PCC7418, including the circadian rhythm profile. Dissecting the transcriptome presented the intracellular regulation of gene expressions, which was linked with ion homeostasis, protein homeostasis, biosynthesis of compatible solutes, and signal transduction, for adaptations to high-salinity environments. The efficient production and distribution of energy were also implicated in this acclimation process. Furthermore, we found that high-salinity environments had a dramatic effect on the global transcriptional expression regulated by the circadian clock. Our findings can provide a comprehensive transcriptome for elucidating the molecular mechanisms underlying halotolerance in cyanobacteria.
Collapse
Affiliation(s)
- Rungaroon Waditee-Sirisattha
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.
| | - Hiroshi Ito
- Faculty of Design, Kyushu University, Fukuoka, 815-8540, Japan.
| | - Hakuto Kageyama
- Department of Chemistry, Faculty of Science and Technology, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi, 468-8502, Japan. .,Graduate School of Environmental and Human Sciences, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi, 468-8502, Japan.
| |
Collapse
|
7
|
Raj S, Kuniyil AM, Sreenikethanam A, Gugulothu P, Jeyakumar RB, Bajhaiya AK. Microalgae as a Source of Mycosporine-like Amino Acids (MAAs); Advances and Future Prospects. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:12402. [PMID: 34886126 PMCID: PMC8656575 DOI: 10.3390/ijerph182312402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/16/2021] [Accepted: 11/21/2021] [Indexed: 12/14/2022]
Abstract
Mycosporine-like amino acids (MAAs), are secondary metabolites, first reported in 1960 and found to be associated with the light-stimulated sporulation in terrestrial fungi. MAAs are nitrogenous, low molecular weight, water soluble compounds, which are highly stable with cyclohexenone or cycloheximine rings to store the free radicals. Microalgae are considered as a good source of different kinds of MAAs, which in turn, has its own applications in various industries due to its UV absorbing, anti-oxidant and therapeutic properties. Microalgae can be easily cultivated and requires a very short generation time, which makes them environment friendly source of biomolecules such as mycosporine-like amino acids. Modifying the cultural conditions along withmanipulation of genes associated with mycosporine-like amino acids biosynthesis can help to enhance MAAs synthesis and, in turn, can make microalgae suitable bio-refinery for large scale MAAs production. This review focuses on properties and therapeutic applications of mycosporine like amino acids derived from microalgae. Further attention is drawn on various culture and genetic engineering approaches to enhance the MAAs production in microalgae.
Collapse
Affiliation(s)
- Subhisha Raj
- Algal Biotechnology Lab, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur 610104, Tamil Nadu, India; (S.R.); (A.M.K.); (A.S.)
| | - Anusree M. Kuniyil
- Algal Biotechnology Lab, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur 610104, Tamil Nadu, India; (S.R.); (A.M.K.); (A.S.)
| | - Arathi Sreenikethanam
- Algal Biotechnology Lab, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur 610104, Tamil Nadu, India; (S.R.); (A.M.K.); (A.S.)
| | - Poornachandar Gugulothu
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610104, Tamil Nadu, India; (P.G.); (R.B.J.)
| | - Rajesh Banu Jeyakumar
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610104, Tamil Nadu, India; (P.G.); (R.B.J.)
| | - Amit K. Bajhaiya
- Algal Biotechnology Lab, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur 610104, Tamil Nadu, India; (S.R.); (A.M.K.); (A.S.)
| |
Collapse
|
8
|
Nandagopal P, Steven AN, Chan LW, Rahmat Z, Jamaluddin H, Mohd Noh NI. Bioactive Metabolites Produced by Cyanobacteria for Growth Adaptation and Their Pharmacological Properties. BIOLOGY 2021; 10:1061. [PMID: 34681158 PMCID: PMC8533319 DOI: 10.3390/biology10101061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 02/08/2023]
Abstract
Cyanobacteria are the most abundant oxygenic photosynthetic organisms inhabiting various ecosystems on earth. As with all other photosynthetic organisms, cyanobacteria release oxygen as a byproduct during photosynthesis. In fact, some cyanobacterial species are involved in the global nitrogen cycles by fixing atmospheric nitrogen. Environmental factors influence the dynamic, physiological characteristics, and metabolic profiles of cyanobacteria, which results in their great adaptation ability to survive in diverse ecosystems. The evolution of these primitive bacteria resulted from the unique settings of photosynthetic machineries and the production of bioactive compounds. Specifically, bioactive compounds play roles as regulators to provide protection against extrinsic factors and act as intracellular signaling molecules to promote colonization. In addition to the roles of bioactive metabolites as indole alkaloids, terpenoids, mycosporine-like amino acids, non-ribosomal peptides, polyketides, ribosomal peptides, phenolic acid, flavonoids, vitamins, and antimetabolites for cyanobacterial survival in numerous habitats, which is the focus of this review, the bioactivities of these compounds for the treatment of various diseases are also discussed.
Collapse
Affiliation(s)
- Pavitra Nandagopal
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (P.N.); (L.-W.C.); (Z.R.); (H.J.)
| | - Anthony Nyangson Steven
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia;
| | - Liong-Wai Chan
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (P.N.); (L.-W.C.); (Z.R.); (H.J.)
| | - Zaidah Rahmat
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (P.N.); (L.-W.C.); (Z.R.); (H.J.)
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, Skudai 81310, Malaysia
| | - Haryati Jamaluddin
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (P.N.); (L.-W.C.); (Z.R.); (H.J.)
| | - Nur Izzati Mohd Noh
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (P.N.); (L.-W.C.); (Z.R.); (H.J.)
| |
Collapse
|
9
|
Waditee-Sirisattha R, Kageyama H. Protective effects of mycosporine-like amino acid-containing emulsions on UV-treated mouse ear tissue from the viewpoints of antioxidation and antiglycation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2021; 223:112296. [PMID: 34450363 DOI: 10.1016/j.jphotobiol.2021.112296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/20/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
Mycosporine-like amino acids (MAAs) are promising natural antioxidative compounds with cosmetic applications for the prevention of skin aging. In this study, we evaluated the protective effects of natural resources-derived MAA-containing emulsions on mouse ear tissue exposed to UV irradiation. DBA/2CrSlc male mice were irradiated by UV light at 120 mJ/cm2/day for 9 days. MAA-containing emulsions were prepared using mycosporine-2-glycine (M2G), shinorine (SHI), or porphyra-334 (P334) and applied to mice ears at a dose of 50 mg/ear/day. After that, collected ear skin tissues were subjected to the observation of melanocytes, investigation for antioxidative stress markers, and measurement of advanced glycation-end products (AGEs). In addition, the antiglycative effects of MAAs were investigated in vitro. MAA-containing emulsions prepared in this study upregulated the activities of total superoxide dismutase (SOD) and catalase (CAT) in mouse ear tissue exposed to UV irradiation. Increased accumulation of copper/zinc (Cu/Zn) -SOD and/or CAT was also found in mouse ear tissue on which M2G- or P334-containing emulsion had been applied. Furthermore, P334 exhibited an antiglycative effect on elastin in vitro. Although MAA-containing emulsions have antioxidative effects as well as in vitro antiglycation, a protective effect by the accumulation of AGEs in mice ears exposed to UV was not observed. Thus, application of MAA-containing emulsions stimulated or protected the expression of antioxidant-associated proteins, thereby leading to upregulation of antioxidative activities in mouse ear skin samples tissues under UV irradiation. Additional optimization of MAA-containing emulsions, including composition, process, and dosage should be considered for further improvement of efficacy.
Collapse
Affiliation(s)
- Rungaroon Waditee-Sirisattha
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Payathai Road, Patumwan, Bangkok 10330, Thailand.
| | - Hakuto Kageyama
- Department of Chemistry, Faculty of Science and Technology, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi 468-8502, Japan; Graduate School of Environmental and Human Sciences, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi 468-8502, Japan.
| |
Collapse
|
10
|
Del Castillo D, Arroyo G, Escorza J, Angulo Y, Debut A, Vizuete K, Izquierdo A, Arias M. Development of a hybrid cell for energy production. NANOTECHNOLOGY 2021; 32:415401. [PMID: 34285145 DOI: 10.1088/1361-6528/ac0c3e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
This study focuses on the development of a new hybrid biological material to be applied in the production of electrical energy. These organo-metallic cells are constituted by cyanobacteria (Fischerella muscicola) and silver nanoparticles (AgNPs). AgNPs were obtained by green synthesis using the extract of the fruit of theBerberis halliiplant as reducing agent with two different concentrations of silver nitrate (AgNO3), 1 and 10 mM. The morphology, physicochemical and electrical properties of the cyanobacteria with and without AgNPs were evaluated. To verify the efficacy of this new material, and the effect of the medium used, Nitrofoska or BG-11, the growth kinetics was evaluated by UV-vis up tot= 63 d with and without renewal of the culture medium and O2/CO2exchange. Through morphological characterizations ofFischerella muscicolait was possible to identify the presence of an associated bacterium identified using molecular techniques asPseudomona guguanensithat could act as a supporting organism in the growth of this cyanobacteria. The studies carried out did not shown cell toxicity for the cultures that have AgNPs and on the other hand, it was observed that the hybrid cells (Cy-AgNPs) are electron carriers recording an increase of up to 57% and 18% in their electrical potential with BG-11 and Nitrofoska culture media, respectively and an increase in the anodic current peak of 6.5% of Cy-AgNPs respect to onlyF. musicola.
Collapse
Affiliation(s)
- D Del Castillo
- Carrera de Ingeniería en Biotecnología, Departamento de Ciencias de la Vida, Universidad de las Fuerzas Armadas ESPE, PO BOX 231B, Sangolquí, Ecuador
| | - G Arroyo
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, PO BOX 231B, Sangolquí, Ecuador
| | - J Escorza
- Maestría de Nanotecnología, Centro de Postgrado, Universidad de las Fuerzas Armadas ESPE, PO BOX 231B, Sangolquí, Ecuador
| | - Y Angulo
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, PO BOX 231B, Sangolquí, Ecuador
| | - A Debut
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, PO BOX 231B, Sangolquí, Ecuador
| | - K Vizuete
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, PO BOX 231B, Sangolquí, Ecuador
| | - A Izquierdo
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, PO BOX 231B, Sangolquí, Ecuador
| | - M Arias
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, PO BOX 231B, Sangolquí, Ecuador
| |
Collapse
|
11
|
Liu T, Huang Z, Gui X, Xiang W, Jin Y, Chen J, Zhao J. Multi-omics Comparative Analysis of Streptomyces Mutants Obtained by Iterative Atmosphere and Room-Temperature Plasma Mutagenesis. Front Microbiol 2021; 11:630309. [PMID: 33584595 PMCID: PMC7876522 DOI: 10.3389/fmicb.2020.630309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/28/2020] [Indexed: 11/13/2022] Open
Abstract
Sponges, the most primitive multicellular animals, contain a large number of unique microbial communities. Sponge-associated microorganisms, particularly actinomyces, have the potential to produce diverse active natural products. However, a large number of silent secondary metabolic gene clusters have failed to be revived under laboratory culture conditions. In this study, iterative atmospheric room-temperature plasma. (ARTP) mutagenesis coupled with multi-omics conjoint analysis was adopted to activate the inactive wild Streptomyces strain. The desirable exposure time employed in this study was 75 s to obtain the appropriate lethality rate (94%) and mutation positive rate (40.94%). After three iterations of ARTP mutagenesis, the proportion of mutants exhibiting antibacterial activities significantly increased by 75%. Transcriptome analysis further demonstrated that the differential gene expression levels of encoding type I lasso peptide aborycin had a significant upward trend in active mutants compared with wild-type strains, which was confirmed by LC-MS results with a relative molecular mass of 1082.43 ([M + 2H]2+ at m/z = 2164.86). Moreover, metabolome comparative analysis of the mutant and wild-type strains showed that four spectra or mass peaks presented obvious differences in terms of the total ion count or extracting ion current profiles with each peak corresponding to a specific compound exhibiting moderate antibacterial activity against Gram-positive indicators. Taken together, our data suggest that the ARTP treatment method coupled with multi-omics profiling analysis could be used to estimate the valid active molecules of metabolites from microbial crudes without requiring a time-consuming isolation process.
Collapse
Affiliation(s)
- Tan Liu
- College of Ocean and Earth Science, Xiamen University, Xiamen, China
| | - Zhiyong Huang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xi Gui
- College of Ocean and Earth Science, Xiamen University, Xiamen, China
| | - Wei Xiang
- College of Ocean and Earth Science, Xiamen University, Xiamen, China
| | - Yubo Jin
- College of Ocean and Earth Science, Xiamen University, Xiamen, China
| | - Jun Chen
- College of Ocean and Earth Science, Xiamen University, Xiamen, China
| | - Jing Zhao
- College of Ocean and Earth Science, Xiamen University, Xiamen, China.,Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, China
| |
Collapse
|
12
|
Kageyama H, Waditee-Sirisattha R. Antioxidative, Anti-Inflammatory, and Anti-Aging Properties of Mycosporine-Like Amino Acids: Molecular and Cellular Mechanisms in the Protection of Skin-Aging. Mar Drugs 2019; 17:E222. [PMID: 31013795 PMCID: PMC6521297 DOI: 10.3390/md17040222] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/02/2019] [Accepted: 04/10/2019] [Indexed: 12/17/2022] Open
Abstract
Prolonged exposure to ultraviolet (UV) radiation causes photoaging of the skin and induces a number of disorders, including sunburn, fine and coarse wrinkles, and skin cancer risk. Therefore, the application of sunscreen has gained much attention to reduce the harmful effects of UV irradiation on our skin. Recently, there has been a growing demand for the replacement of chemical sunscreens with natural UV-absorbing compounds. Mycosporine-like amino acids (MAAs), promising alternative natural UV-absorbing compounds, are a group of widely distributed, low molecular-weight, water-soluble molecules that can absorb UV radiation and disperse the absorbed energy as heat, without generating reactive oxygen species (ROS). More than 30 MAAs have been characterized, from a variety of organisms. In addition to their UV-absorbing properties, there is substantial evidence that MAAs have the potential to protect against skin aging, including antioxidative activity, anti-inflammatory activity, inhibition of protein-glycation, and inhibition of collagenase activity. This review will provide an overview of MAAs, as potential anti-aging ingredients, beginning with their structure, before moving on to discuss the most recent experimental observations, including the molecular and cellular mechanisms through which MAAs might protect the skin. In particular, we focus on the potential anti-aging activity of mycosporine-2-glycine (M2G).
Collapse
Affiliation(s)
- Hakuto Kageyama
- Department of Chemistry, Faculty of Science and Technology, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi 468-8502, Japan.
| | - Rungaroon Waditee-Sirisattha
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand.
| |
Collapse
|
13
|
Álvarez-Gómez F, Korbee N, Casas-Arrojo V, Abdala-Díaz RT, Figueroa FL. UV Photoprotection, Cytotoxicity and Immunology Capacity of Red Algae Extracts. Molecules 2019; 24:molecules24020341. [PMID: 30669361 PMCID: PMC6359249 DOI: 10.3390/molecules24020341] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 12/30/2022] Open
Abstract
This study was designed to evaluate the potential use of algal extracts in cosmeceuticals, including factors related to biosecurity. The aqueous crude extracts of Hydropuntia cornea and Gracilariopsis longissima showed a good photoprotective capacity (Sun Protection Factor, SPF) due to, among other reasons, the presence of five types of mycosporine-like amino acids (MAAs) detected by high pressure liquid chromatography-photodiode array detector (HPLC-PDA) and electrospray ionization mass spectrometry (ESI-MS) (Palythine, Asterina-330, Shinorine, Porphyra-334, and Palythinol). The toxicity of the extracts was evaluated by the MTT assay, which is based on the metabolic reduction of MTT [3-(4,5-dimethylthiazol-2yl)-diphenyl tetrazolium bromide] by the action of the mitochondrial enzyme succinate dehydrogenase. This assay was carried out in vitro in three cell lines: one related to the immune system (murine macrophages of the immune system: RAW264.7) and two human cell lines related to the skin (gingival fibroblasts: HGF, and immortalized human keratinocytes: HaCaT). Both extracts showed no cytotoxic activity in both types of human cells, whereas they showed cytotoxicity in murine tumor cells of the immune system (macrophages: RAW264.7). On the other hand, the immunological activity in the murine macrophage RAW264.7 was studied at a concentration lower than 100 μg mL-1 and lower than the EC50, and evaluated by the production of pro-inflammatory compounds through an immunosorbent assay linked to enzymes such as tumor necrosis factor-α (TNF-α) or anti-inflammatory/proinflammatory enzymes such as interleukin-6 (IL-6). Both algae extracts induced the biosynthesis of TNF-α and IL-6. The production of TNF-α was much higher than that observed in the control (at a concentration of the aqueous extract higher than 5 μg mL-1). These results support the theory that the extracts of H. cornea and G. longissima actively induce the production of cytokines. In summary, the extracts of these species did not show cytotoxicity in human cells, and they present with immunomodulatory and photoprotection capacity.
Collapse
Affiliation(s)
- Félix Álvarez-Gómez
- Department of Ecology, Faculty of Sciences, Campus Universitario de Teatinos s/n, Malaga University, 29071 Malaga, Spain.
| | - Nathalie Korbee
- Department of Ecology, Faculty of Sciences, Campus Universitario de Teatinos s/n, Malaga University, 29071 Malaga, Spain.
| | - Virginia Casas-Arrojo
- Department of Ecology, Faculty of Sciences, Campus Universitario de Teatinos s/n, Malaga University, 29071 Malaga, Spain.
| | - Roberto T Abdala-Díaz
- Department of Ecology, Faculty of Sciences, Campus Universitario de Teatinos s/n, Malaga University, 29071 Malaga, Spain.
| | - Félix L Figueroa
- Department of Ecology, Faculty of Sciences, Campus Universitario de Teatinos s/n, Malaga University, 29071 Malaga, Spain.
| |
Collapse
|