1
|
Centeno-Delphia RE, Long EA, Ellis AC, Hofmann S, Mosier K, Ulloa N, Cheng JJ, Richards A, Boerman JP, Koziol J, Verma MS, Johnson TA. Nasal pathobiont abundance does not differ between dairy cattle with or without clinical symptoms of bovine respiratory disease. Anim Microbiome 2025; 7:16. [PMID: 39966965 PMCID: PMC11837595 DOI: 10.1186/s42523-025-00382-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/07/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Bovine respiratory disease (BRD) remains a significant health and economic problem to the dairy cattle industry. Multiple risk factors contribute to BRD susceptibility including the bacterial pathobionts Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, and Mycoplasma bovis. Studies have characterized and quantified the abundance of these bacteria in the nasal cavity of cattle to infer and help disease diagnosis; nonetheless, there is still discrepancy in the results observed of when these microbes are commensal or pathogenic. Additionally, some of these studies are limited to a specific farm. The goal of this study is to compare the nasal microbiome community (diversity and composition) and the abundance of the four bacterial pathogens (by qPCR) in the nasal cavity to identify differences between dairy calves that are apparently healthy and those identified to have BRD. Nasal swabs were collected from approximately 50 apparently healthy and 50 BRD-affected calves sampled from five different dairy farms in the US (CA, IN, NY (two farms), and TX). RESULTS Calves diagnosed with BRD in NY, and TX had lower nasal microbiome diversity compared to the apparently healthy calves. Differences in the nasal microbiome composition were observed between the different farms predicted by Bray-Curtis and weighted UniFrac dissimilarities. Commensal and pathobiont genera Acinetobacter, Moraxella, Psychrobacter, Histophilus, Mannheimia, Mycoplasma, and Pasteurella were prevalent in the bovine nasal microbiome regardless of farm or disease status. The BRD-pathobiont H. somni was the most prevalent pathobiont among all the samples and M. bovis the least prevalent. Only in CA was the abundance of a pathobiont different according to disease status, where M. haemolytica was significantly more abundant in the BRD-affected animals than apparently healthy animals. CONCLUSIONS This study offers insight into the nasal microbiome community composition in both animals diagnosed with BRD and healthy animals, and shows that the farm effect plays a more significant role in determining the microbiome community than disease status in young dairy calves.
Collapse
Affiliation(s)
| | - Erica A Long
- Department of Animal Science, Purdue University, 270 S Russell St, West Lafayette, IN, USA
| | - Audrey C Ellis
- Department of Animal Science, Purdue University, 270 S Russell St, West Lafayette, IN, USA
| | - Sarah Hofmann
- Department of Animal Science, Purdue University, 270 S Russell St, West Lafayette, IN, USA
| | - Kara Mosier
- Department of Animal Science, Purdue University, 270 S Russell St, West Lafayette, IN, USA
| | - Noelmi Ulloa
- Escuela Agrícola Panamericana Zamorano, Valle del Yeguare, Honduras
| | - Johnnie Junior Cheng
- Department of Animal Science, Purdue University, 270 S Russell St, West Lafayette, IN, USA
| | - Andrew Richards
- Department of Animal Science, Purdue University, 270 S Russell St, West Lafayette, IN, USA
| | - Jacquelyn P Boerman
- Department of Animal Science, Purdue University, 270 S Russell St, West Lafayette, IN, USA
| | - Jennifer Koziol
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, USA
| | - Mohit S Verma
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- Brick Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | - Timothy A Johnson
- Department of Animal Science, Purdue University, 270 S Russell St, West Lafayette, IN, USA.
| |
Collapse
|
2
|
Cornejo S, Barber C, Thoresen M, Lawrence M, Seo KS, Woolums A. Synthetic antimicrobial peptides Bac-5, BMAP-28, and Syn-1 can inhibit bovine respiratory disease pathogens in vitro. Front Vet Sci 2024; 11:1430919. [PMID: 39188903 PMCID: PMC11345158 DOI: 10.3389/fvets.2024.1430919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/25/2024] [Indexed: 08/28/2024] Open
Abstract
Mass treatment with antibiotics at arrival has been the mainstay for bovine respiratory disease (BRD) control but there is an increase in antimicrobial-resistant bacteria being shed from treated cattle. BRD is a disease complex that results from the interaction of viruses or bacteria and susceptible animals with inappropriate immunity. With bacteria being the only feasibly treatable agent and the emergence of antimicrobial resistance, decreased efficacy of commonly used antibiotics could threaten livestock health. There is a need for new antimicrobial alternatives that could be used to control disease. Naturally occurring antimicrobial peptides (AMP) have been proposed to address this need. Here we tested the effect of bovine myeloid antimicrobial peptide-28 (BMAP-28), a synthetic BMAP-28 analog Syn-1, and bactenecin 5 (Bac-5) on Mannheimia haemolytica (Mh) using a quantitative culture method and the broth microdilution method to determine minimum inhibitory and bactericidal concentrations (MIC and MBC). We also tested the antiviral effect of these AMP against bovine herpes-1 (BHV-1) and bovine respiratory syncytial virus (BRSV) using the Reed and Muench method to calculate the viral titers after treatment. We demonstrated that BMAP-28 and Syn-1 can inhibit Mh growth and BMAP-28 can inhibit replication of BHV-1 and BRSV. Moreover, we showed that BMAP-28 and Bac-5 can be used together to inhibit Mh growth. When used alone, the MIC of BMAP-28 and Bac-5 was 64 and 128 μg/mL respectively, but when applied together, their MIC ranged from 0.25-16 for BMAP-28 and 8-64 μg/mL for Bac-5, resulting in a decrease in concentration of up to 256 and 16-fold, respectively. The synergistic interaction between those peptides resulted in concentrations that could be well tolerated by cells. Our results demonstrate that bovine cathelicidins could be used as alternatives to antimicrobials against BRD pathogens. These findings introduce a path to discovering new antimicrobials and determining how these peptides could be tailored to improve cattle health.
Collapse
Affiliation(s)
- Santiago Cornejo
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Cassandra Barber
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Merrilee Thoresen
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Mark Lawrence
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Keun Seok Seo
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Amelia Woolums
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| |
Collapse
|
3
|
Bellido D, Gumina ER, Rodríguez Senes GJ, Chiariotti FM, Audrito M, Sueldo PM, Sueldo GM, Wigdorovitz A. First evaluation of the impact of a targeted subunit vaccine against bovine viral diarrhea virus in feedlot cattle. Transl Anim Sci 2024; 8:txae046. [PMID: 38665216 PMCID: PMC11044702 DOI: 10.1093/tas/txae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Bovine respiratory disease (BRD) is a serious health and economic problem in the beef industry, which is often associated with transportation and caused by different pathogens. In this study, we evaluated the effect of a novel subunit targeted vaccine against bovine viral diarrhea virus (BVDV) in feedlot cattle, a major viral agent of BRD. The core of this novel vaccine is the fusion of the BVDV structural glycoprotein, E2, to a single-chain antibody, APCH, together termed, APCH-E2. The APCH antibody targets the E2 antigen to the major histocompatibility type II molecule (MHC-II) present in antigen-presenting cells. To evaluate the vaccine, 2,992 animals were randomly allocated into two groups, control group (N = 1,491) and treatment group (N = 1,501). Animals of both groups received the routine sanitary plan: two doses of clostridial, respiratory, and rabies vaccines. Animals within the treatment group also received two doses of a targeted subunit vaccine against BVDV. Serum samples were taken on the day of the first inoculation (T0) and 90 d later (T90). Viral circulation was monitored using an anti-P80 ELISA (virus-specific) and immune response was evaluated by anti-E2 ELISA (detects virus and vaccine immune responses). Only animals treated for respiratory disease were considered positive cases of BRD. Results demonstrate that the control group had significantly more animals treated for BRD cases compared to the treatment group (5.9% vs. 3.7%, P = 0.02). The control group had a greater number of animals positive for anti-P80 antibodies and significantly fewer animals positive for anti-E2 antibodies compared to the treatment group (69% vs. 61% and 71% vs. 99%, respectively, P = 0.003), consistent with natural viral circulation within this group. The treatment group, conversely, had fewer animals positive for anti-P80 antibodies and a greater number of animals positive for anti-E2 antibodies, consistent with a robust vaccine-induced antibody response and a reduction of the BVDV circulation within this group. The data indicate the new subunit targeted vaccine induced greater anti-E2 antibodies and reduced the amount of BVD virus circulation within the treatment group leading to a fewer number of animals needing to be treated for BRD.
Collapse
Affiliation(s)
- Demian Bellido
- Vetanco SA, Chile 33, Villa Martelli, Buenos Aires, ArgentinaB1603CMA
- Bioinnovo SA, Dr Nicolas Repetto y Los Reseros S/N, Hurlingham, Buenos Aires, ArgentinaB1681FUU
| | - Emanuel R Gumina
- Vetanco SA, Chile 33, Villa Martelli, Buenos Aires, ArgentinaB1603CMA
| | | | | | | | - Pedro M Sueldo
- Vetanco SA, Chile 33, Villa Martelli, Buenos Aires, ArgentinaB1603CMA
| | - Gustavo M Sueldo
- Agro sin Fronteras, JJ Paso 452, Marcos Juarez, Córdoba, ArgentinaX2580DML
| | - Andrés Wigdorovitz
- Vetanco SA, Chile 33, Villa Martelli, Buenos Aires, ArgentinaB1603CMA
- Incuinta, IVIT INTA, Dr N. Repetto y Los Reseros S/N, Hurlingham, Buenos Aires, ArgentinaB1681FUU
| |
Collapse
|
4
|
Centeno-Martinez RE, Mohan S, Davidson JL, Schoonmaker JP, Ault A, Verma MS, Johnson TA. The bovine nasal fungal community and associations with bovine respiratory disease. Front Vet Sci 2023; 10:1165994. [PMID: 37441557 PMCID: PMC10335396 DOI: 10.3389/fvets.2023.1165994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction Effective identification and treatment of bovine respiratory disease (BRD) is an ongoing health and economic issue for the dairy and beef cattle industries. Bacteria pathogens Pasteurellamultocida, Mycoplasmabovis, Mannheimia haemolytica, and Histophilus somni and the virus Bovine herpesvirus-1 (BHV-1), Bovine parainfluenza-3 virus (BPIV-3), Bovine respiratory syncytial virus (BRSV), Bovine adenovirus 3 (BAdV3), bovine coronavirus (BoCV) and Bovine viral diarrhea virus (BVDV) have commonly been identified in BRD cattle; however, no studies have investigated the fungal community and how it may also relate to BRD. Methods The objective of this study was to understand if the nasal mycobiome differs between a BRD-affected (n = 56) and visually healthy (n = 73) Holstein steers. Fungal nasal community was determined by using Internal Transcribed Spacer (ITS) sequencing. Results The phyla, Ascomycota and Basidiomycota, and the genera, Trichosporon and Issatchenkia, were the most abundant among all animals, regardless of health status. We identified differences between healthy and BRD animals in abundance of Trichosporon and Issatchenkia orientalis at a sub-species level that could be a potential indicator of BRD. No differences were observed in the nasal fungal alpha and beta diversity between BRD and healthy animals. However, the fungal community structure was affected based on season, specifically when comparing samples collected in the summer to the winter season. We then performed a random forest model, based on the fungal community and abundance of the BRD-pathobionts (qPCR data generated from a previous study using the same animals), to classify healthy and BRD animals and determine the agreement with visual diagnosis. Classification of BRD or healthy animals using ITS sequencing was low and agreed with the visual diagnosis with an accuracy of 51.9%. A portion of the ITS-predicted BRD animals were not predicted based on the abundance of BRD pathobionts. Lastly, fungal and bacterial co-occurrence were more common in BRD animals than healthy animals. Discussion The results from this novel study provide a baseline understanding of the fungal diversity and composition in the nasal cavity of BRD and healthy animals, upon which future interaction studies, including other nasal microbiome members to further understand and accurately diagnose BRD, can be designed.
Collapse
Affiliation(s)
| | - Suraj Mohan
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, United States
| | - Josiah Levi Davidson
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, United States
| | - Jon P. Schoonmaker
- Department of Animal Science, Purdue University, West Lafayette, IN, United States
| | - Aaron Ault
- Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, United States
| | - Mohit S. Verma
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, United States
| | - Timothy A. Johnson
- Department of Animal Science, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
5
|
Maya-Rodríguez LM, Carrillo-Casas EM, Rojas-Trejo V, Trigo-Tavera F, Miranda-Morales RE. Prevalence of three Mycoplasma sp. by multiplex PCR in cattle with and without respiratory disease in central Mexico. Trop Anim Health Prod 2022; 54:394. [PMID: 36417039 PMCID: PMC9685072 DOI: 10.1007/s11250-022-03398-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 11/09/2022] [Indexed: 11/24/2022]
Abstract
This study aimed to identify Mycoplasma bovis, Myc. dispar, and Myc. bovirhinis, which are involved in bovine respiratory disease through a multiplex PCR as an alternative to culture's features that hamper Mycoplasma isolation. Nasal swabs were taken from 335 cattle with and without respiratory disease background (RDB) from dairy herds in the central region of Mexico. Each sample was divided in two; the first part was processed for the direct DNA extraction of the nasal swab and the second for Mycoplasma isolation, culture, and then the multiplex PCR was performed. In the nasal swabs, Myc. bovis was identified in 21.1%; Myc. dispar, in 11.8%; and Myc. bovirhinis, in 10.8% in cattle with RDB. Isolates were identified as Myc. bovis, 20.1%; Myc. dispar, 11.8%; and Myc. bovirhinis, 6.1%. There is a strong correlation between the presence of Mycoplasma identified by PCR and the clinical history of the disease (ρ < 0.0000). In animals without RDB, Myc. bovirhinis was the only species detected in 6.1% of the samples processed directly for multiplex PCR, and in 2% of the isolates. There is an excellent correlation (kappa 0.803) between the isolation and the 16S PCR and a high correlation (kappa 0.75) between the isolation and the multiplex PCR. Therefore, we conclude that the PCR multiplex test is highly sensitive and may be used for the diagnosis and surveillance of the three species in biological samples and mycoplasma isolates.
Collapse
Affiliation(s)
- L. M. Maya-Rodríguez
- grid.9486.30000 0001 2159 0001Laboratorio de Mycoplasmas, Facultad de Medicina Veterinaria y Zootecnia UNAM, Departamento de Microbiología e Inmunología, Ciudad Universitaria, 04519 CDMX, CP Mexico
| | - E. M. Carrillo-Casas
- grid.414754.70000 0004 6020 7521Hospital General “Dr. Manuel Gea González”, Depto. de Biología Molecular e Histocompatibilidad, Dirección de Investigación, Calz. de Tlalpan 4800, Secc XVI, 14080 Tlalpan CDMX, CP Mexico
| | - V. Rojas-Trejo
- grid.9486.30000 0001 2159 0001Laboratorio de Mycoplasmas, Facultad de Medicina Veterinaria y Zootecnia UNAM, Departamento de Microbiología e Inmunología, Ciudad Universitaria, 04519 CDMX, CP Mexico
| | - F. Trigo-Tavera
- grid.9486.30000 0001 2159 0001Facultad de Medicina Veterinaria y Zootecnia UNAM, Departamento de Patología, Ciudad Universitaria, 04519 CDMX, CP Mexico
| | - R. E. Miranda-Morales
- grid.9486.30000 0001 2159 0001Laboratorio de Mycoplasmas, Facultad de Medicina Veterinaria y Zootecnia UNAM, Departamento de Microbiología e Inmunología, Ciudad Universitaria, 04519 CDMX, CP Mexico
| |
Collapse
|
6
|
Alhashimi M, Elkashif A, Sayedahmed EE, Mittal SK. Nonhuman Adenoviral Vector-Based Platforms and Their Utility in Designing Next Generation of Vaccines for Infectious Diseases. Viruses 2021; 13:1493. [PMID: 34452358 PMCID: PMC8402644 DOI: 10.3390/v13081493] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 01/01/2023] Open
Abstract
Several human adenoviral (Ad) vectors have been developed for vaccine delivery owing to their numerous advantages, including the feasibility of different vector designs, the robustness of elicited immune responses, safety, and scalability. To expand the repertoire of Ad vectors for receptor usage and circumvention of Ad vector immunity, the use of less prevalent human Ad types or nonhuman Ads were explored for vector design. Notably, many nonhuman Ad vectors have shown great promise in preclinical and clinical studies as vectors for vaccine delivery. This review describes the key features of several nonhuman Ad vector platforms and their implications in developing effective vaccines against infectious diseases.
Collapse
Affiliation(s)
| | | | | | - Suresh K. Mittal
- Immunology and Infectious Disease, and Purdue University Center for Cancer Research, Department of Comparative Pathobiology, Purdue Institute for Inflammation, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907-2027, USA; (M.A.); (A.E.); (E.E.S.)
| |
Collapse
|
7
|
Oliveira TES, Scuisato GS, Pelaquim IF, Cunha CW, Cunha LS, Flores EF, Pretto-Giordano LG, Lisbôa JAN, Alfieri AA, Saut JPE, Jorge da Cunha PH, Headley SA. The Participation of a Malignant Catarrhal Fever Virus and Mycoplasma bovis in the Development of Single and Mixed Infections in Beef and Dairy Cattle With Bovine Respiratory Disease. Front Vet Sci 2021; 8:691448. [PMID: 34368279 PMCID: PMC8339727 DOI: 10.3389/fvets.2021.691448] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
The bovine respiratory disease (BRD) complex is a multietiological and multifactorial disease associated with a wide range of viral and bacterial pathogens. This study evaluated the contribution of specific infectious disease agents in the development of BRD in cattle from Brazil and determined if a virus within the malignant catarrhal fever virus (MCFV) group and Mycoplasma bovis, acting individually or in conjunction, can be associated with the development of BRD. Formalin-fixed paraffin-embedded pulmonary sections were used in immunohistochemical assays to determine the intralesional presence of six antigens associated with BRD: bovine alphaherpesvirus 1 (BoHV-1), bovine parainfluenza virus 3 (BPIV-3), bovine viral diarrhea virus (BVDV), bovine respiratory syncytial virus (BRSV), MCFV, and M. bovis. Pneumonia was diagnosed in 82.7% (120/145) of all cattle evaluated. Interstitial pneumonia (60%, 72/120) and suppurative bronchopneumonia (25.8%, 31/120) were the most frequent patterns of pneumonia identified. Intralesional antigens of MCFV (53.3%, 64/120) were the most frequently associated with BRD, followed by M. bovis (47.5%, 57/120), BVDV (42.5%, 51/120), BoHV-1 (28.3%, 34/120), BRSV (24.2%, 29/120), and BPIV-3 (8.3%, 10/120). Additionally, antigens of BVDV, MCFV, and M. bovis were the most frequently identified agents associated with singular and concomitant infections. The MCFV identified during this study is more likely to be ovine gammaherpesvirus 2 (OvHV-2), since OvHV-2 is the only MCFV identified within the geographical region of this study. Interstitial pneumonia with proliferative vascular lesions may be a useful histologic feature to differentiate MCFV-induced pneumonia from other viral pneumonias of cattle. These results demonstrate that MCFV and M. bovis, in single or mixed infections, can produce pneumonia in cattle and should therefore be considered as primary agents in the development of BRD.
Collapse
Affiliation(s)
- Thalita Evani Silva Oliveira
- Laboratory of Animal Pathology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Brazil
- National Institutes of Science and Technology, Dairy Production Chain (INCT-Leite), Universidade Estadual de Londrina, Londrina, Brazil
| | - Gabriela Sanches Scuisato
- Laboratory of Animal Pathology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Brazil
| | - Isadora Fernanda Pelaquim
- Laboratory of Animal Pathology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Brazil
| | - Cristina Wetzel Cunha
- Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, WA, United States
- Department of Veterinary Microbiology and Pathology and Paul G. Alan School for Global Animal Health, Washington State University, Pullman, WA, United States
| | - Lucas Santana Cunha
- Department of Statistics, Universidade Estadual de Londrina, Londrina, Brazil
| | - Eduardo Furtado Flores
- Department of Preventive Veterinary Medicine, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Lucienne Garcia Pretto-Giordano
- Laboratory of Veterinary Microbiology and Infectious Diseases, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina, Brazil
| | - Júlio Augusto Naylor Lisbôa
- National Institutes of Science and Technology, Dairy Production Chain (INCT-Leite), Universidade Estadual de Londrina, Londrina, Brazil
- Large Animal Internal Medicine, Department of Veterinary Clinics, Universidade Estadual de Londrina, Londrina, Brazil
| | - Amauri Alcindo Alfieri
- National Institutes of Science and Technology, Dairy Production Chain (INCT-Leite), Universidade Estadual de Londrina, Londrina, Brazil
- Laboratory of Animal Virology, Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina, Brazil
| | - João Paulo Elsen Saut
- Large Animal Health Laboratory, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | | | - Selwyn Arlington Headley
- Laboratory of Animal Pathology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Brazil
- National Institutes of Science and Technology, Dairy Production Chain (INCT-Leite), Universidade Estadual de Londrina, Londrina, Brazil
- Programa de Pós-Graduação em Biociência Animal, Universidade de Cuiabá, Cuiabá, Brazil
| |
Collapse
|
8
|
Benaissa MH, Youngs CR, Mimoune N, Faye B, Mimouni FZ, Kaidi R. First serological evidence of BHV-1 virus in Algerian dromedary camels: Seroprevalence and associated risk factors. Comp Immunol Microbiol Infect Dis 2021; 76:101638. [PMID: 33684641 DOI: 10.1016/j.cimid.2021.101638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 11/29/2022]
Abstract
Infectious bovine rhinotracheitis (IBR), caused by bovine herpesvirus-1 (BHV-1), is a major livestock health concern in many countries of the world. The objectives of this cross-sectional study were (i) to estimate the seroprevalence of BHV-1 infection and (ii) to assess risk factors associated with this disease in dromedary camels in four districts of Algeria. Blood samples were taken from 865 camels from 84 randomly selected herds, and serum was analyzed for presence of antibodies against BHV-1 by indirect enzyme linked immunosorbent assay (ELISA). Logistic regression was used to determine associations between seroprevalence and potential risk factors (collected using a questionnaire). Antibodies against BHV-1 were detected in 3.7 % (32/865) of samples. Eighteen of 84 camel herds had at least one BHV-1 seropositive camel, giving a herd seroprevalence of 21.4 %. Based on univariate analysis, the introduction of purchased animals and contact with others animal herds appeared as major risk factors. By using multivariate analysis, the only important risk factor was introduction of new animals. This study provided, for the first time, evidence of BHV-1 infection in dromedary camels in Algeria; it also provided estimates of seroprevalence of this disease and suggests that camels may serve as a reservoir of BHV-1 for spread to other species.
Collapse
Affiliation(s)
- Mohammed Hocine Benaissa
- Scientific and Technical Research Centre for Arid Areas (CRSTRA), Biophysical Station, PB 30240, Nezla, Touggourt, Algeria.
| | - Curtis R Youngs
- Animal Science Department, Iowa State University, Ames, IA, 50011, USA
| | - Nora Mimoune
- Higher National Veterinary School, PB 161 Rue Issad Abbes, Oued Smar, Algiers, Algeria; Institute of Veterinary Sciences, LBRA, University of Blida 1, PB 270, Soumaa, Blida, Algeria
| | | | - Fatima Zohra Mimouni
- Scientific and Technical Research Centre for Arid Areas (CRSTRA), Biophysical Station, PB 30240, Nezla, Touggourt, Algeria
| | - Rachid Kaidi
- Institute of Veterinary Sciences, LBRA, University of Blida 1, PB 270, Soumaa, Blida, Algeria
| |
Collapse
|
9
|
Fulton RW, Ridpath JF, Burge LJ. Bovine coronaviruses from the respiratory tract: antigenic and genetic diversity. Vaccine 2012; 31:886-92. [PMID: 23246548 PMCID: PMC7115418 DOI: 10.1016/j.vaccine.2012.12.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/28/2012] [Accepted: 12/02/2012] [Indexed: 11/15/2022]
Abstract
BoCV isolated from respiratory tract, nasal swab and broncho alveolar washing fluid samples were evaluated for genetic and antigenic differences. These BoCV from the respiratory tract of healthy and clinically ill cattle with BRD signs were compared to reference and vaccine strains based on Spike protein coding sequences and VNT using convalescent antisera. Based on this study, the BoCV isolates belong to one of two genomic clades (clade 1 and 2) which can be differentiated antigenically. The respiratory isolates from Oklahoma in this study were further divided by genetic differences into three subclades, 2a, 2b, and 2c. Reference enteric BoCV strains and a vaccine strain were in clade 1. Currently available vaccines designed to control enteric disease are based on viruses from one clade while viruses isolated from respiratory tracts, in this study, belong to the other clade.
Collapse
Affiliation(s)
- R W Fulton
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA.
| | | | | |
Collapse
|
10
|
Roshtkhari F, Mohammadi G, Mayameei A. Serological evaluation of relationship between viral pathogens (BHV-1, BVDV, BRSV, PI-3V, and Adeno3) and dairy calf pneumonia by indirect ELISA. Trop Anim Health Prod 2011; 44:1105-10. [PMID: 22198538 PMCID: PMC7089136 DOI: 10.1007/s11250-011-0046-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2011] [Indexed: 11/29/2022]
Abstract
In this study, viral pathogens associated with nine outbreaks of naturally occurring dairy calf pneumonia in Mashhad area of Khorasan Razavi province from September 2008 to May 2009 were assessed. Five diseased calves from each farm were chosen for examination. Acute and convalescent serum samples were taken from calves with signs of respiratory disease. Sera were analyzed for antibodies to bovine viral diarrhea virus (BVDV), bovine herpesvirus type 1 (BHV-1), bovine respiratory syncytial virus (BRSV), parainfluenza virus type 3 (PI-3V), and bovine adenovirus-3 (BAV-3) by indirect ELISA kits. Among 42 serum samples collected at sample 1, seroprevalence values for viruses BHV-1, BVDV, BRSV, PI-3V, and BAV-3 were 61.9% (26), 57.1% (24), 64.2% (27), 90% (38), and 61.9% (26), respectively. Seroconversion to BVDV, BRSV, PI-3V, and BAV-3 occurred in 11.9% (5), 16.6% (7), 26.1% (11), and 21.4% (9) of animals, and 52.3% (22) had generated antibodies against one or more viral infections at sample 2. In addition, no significant relationship between seroprevalence of BHV-1, BVDV, BRSV, PI-3V, and BAV-3 and dairy herd size was observed (P > 0.05). According to serological findings, BHV-1, BVDV, BRSV, PI-3V, and BAV-3 are common pathogens of the dairy calf pneumonia in dairy herds in Mashhad area of Khorasan Razavi province, Iran.
Collapse
Affiliation(s)
- Fatemeh Roshtkhari
- School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | | |
Collapse
|