1
|
Abstract
Importance Liquid biopsy is an emerging tool with the potential to change oncologic care practices. Optimal clinical applications for its use are currently undefined for surgical patients. Observations Liquid biopsy analytes such as circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) have been the most clinically studied assays and were initially limited to advanced-stage disease. In the metastatic setting, CTCs and ctDNA levels are prognostic. Although their levels correlate with treatment response, CTC-guided systemic regimen switches for nonresponders have not been shown to improve clinical outcomes. ctDNA genomic profiling has succeeded, and there are now multiple plasma-based assays approved by the US Food and Drug Administration that can detect actionable mutations to guide systemic therapy. Technological advancements in assay sensitivity have expanded the use of ctDNA to early-stage and resectable disease, allowing for detection of minimal residual disease. Postoperative ctDNA levels are a strong predictor of disease recurrence, and ctDNA detection often precedes serum carcinoembryonic antigen elevation and radiographic changes. However, its use for surveillance has not been shown to improve clinical outcomes. A promising application of ctDNA is for adjuvant therapy escalation and de-escalation. A phase 2 clinical trial demonstrated that treatment de-escalation for patients with high-risk stage II colorectal cancer and negative postoperative ctDNA had similar recurrence-free survival as patients receiving standard-of-care chemotherapy. These results suggest that ctDNA may help select patients who will benefit from adjuvant chemotherapy, and multiple clinical trials are actively underway. Conclusions and Relevance Although uncertainties regarding the optimal use of liquid biopsy remain, it has the potential to significantly improve care for patients with cancer at all stages of disease. It is critical that surgeons understand how to use and interpret these assays, and they should be active participants in clinical trials to advance the field.
Collapse
Affiliation(s)
- Kelly M Mahuron
- Department of Surgery, City of Hope National Medical Center, Duarte, California
| | - Yuman Fong
- Department of Surgery, City of Hope National Medical Center, Duarte, California
| |
Collapse
|
2
|
Tanvir I, Hassan A, Albeladi F. DNA Methylation and Epigenetic Events Underlying Renal Cell Carcinomas. Cureus 2022; 14:e30743. [DOI: 10.7759/cureus.30743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2022] [Indexed: 11/05/2022] Open
|
3
|
Ye Z, Bennett MF, Bahlo M, Scheffer IE, Berkovic SF, Perucca P, Hildebrand MS. Cutting edge approaches to detecting brain mosaicism associated with common focal epilepsies: implications for diagnosis and potential therapies. Expert Rev Neurother 2021; 21:1309-1316. [PMID: 34519595 DOI: 10.1080/14737175.2021.1981288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Mosaic variants arising in brain tissue are increasingly being recognized as a hidden cause of focal epilepsy. This knowledge gain has been driven by new, highly sensitive genetic technologies and genome-wide analysis of brain tissue from surgical resection or autopsy in a small proportion of patients with focal epilepsy. Recently reported novel strategies to detect mosaic variants limited to brain have exploited trace brain DNA obtained from cerebrospinal fluid liquid biopsies or stereo-electroencephalography electrodes. AREAS COVERED The authors review the data on these innovative approaches published in PubMed before 12 June 2021, discuss the challenges associated with their application, and describe how they are likely to improve detection of mosaic variants to provide new molecular diagnoses and therapeutic targets for focal epilepsy, with potential utility in other nonmalignant neurological disorders. EXPERT OPINION These cutting-edge approaches may reveal the hidden genetic etiology of focal epilepsies and provide guidance for precision medicine.
Collapse
Affiliation(s)
- Zimeng Ye
- Department of Medicine (Austin Health), Epilepsy Research Centre, University of Melbourne, Heidelberg, Australia
| | - Mark F Bennett
- Department of Medicine (Austin Health), Epilepsy Research Centre, University of Melbourne, Heidelberg, Australia.,Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Ingrid E Scheffer
- Department of Medicine (Austin Health), Epilepsy Research Centre, University of Melbourne, Heidelberg, Australia.,Neuroscience Research Group, Murdoch Children's Research Institute, Parkville, Australia.,Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Australia.,Department of Neurology, Comprehensive Epilepsy Program, Austin Health, Heidelberg, Australia
| | - Samuel F Berkovic
- Department of Medicine (Austin Health), Epilepsy Research Centre, University of Melbourne, Heidelberg, Australia.,Department of Neurology, Comprehensive Epilepsy Program, Austin Health, Heidelberg, Australia
| | - Piero Perucca
- Department of Medicine (Austin Health), Epilepsy Research Centre, University of Melbourne, Heidelberg, Australia.,Department of Neurology, Comprehensive Epilepsy Program, Austin Health, Heidelberg, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia.,Department of Neurology, Alfred Health, Melbourne, Australia.,Department of Neurology, The Royal Melbourne Hospital, Parkville, Australia
| | - Michael S Hildebrand
- Department of Medicine (Austin Health), Epilepsy Research Centre, University of Melbourne, Heidelberg, Australia.,Neuroscience Research Group, Murdoch Children's Research Institute, Parkville, Australia
| |
Collapse
|
4
|
Tzanikou E, Haselmann V, Markou A, Duda A, Utikal J, Neumaier M, Lianidou ES. Direct comparison study between droplet digital PCR and a combination of allele-specific PCR, asymmetric rapid PCR and melting curve analysis for the detection of BRAF V600E mutation in plasma from melanoma patients. Clin Chem Lab Med 2021; 58:1799-1807. [PMID: 31953992 DOI: 10.1515/cclm-2019-0783] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022]
Abstract
Background In metastatic melanoma, 40%-50% of patients harbor a BRAF V600E mutation and are thereby eligible to receive a combined BRAF/MEK inhibitor therapy. Compared to standard-of-care tissue-based genetic testing, analysis of circulating tumor DNA (ctDNA) from blood enables a comprehensive assessment of tumor mutational status in real-time and can be used for monitoring response to therapy. The aim of our study was to directly compare the performance of two highly sensitive methodologies, droplet digital PCR (ddPCR) and a combination of ARMS/asymmetric-rapid PCR/melting curve analysis, for the detection of BRAF V600E in plasma from melanoma patients. Methods Cell-free DNA (cfDNA) was isolated from 120 plasma samples of stage I to IV melanoma patients. Identical plasma-cfDNA samples were subjected to BRAF V600E mutational analysis using in parallel, ddPCR and the combination of ARMS/asymmetric-rapid PCR/melting curve analysis. Results BRAF V600E mutation was detected in 9/117 (7.7%) ctDNA samples by ddPCR and in 22/117 (18.8%) ctDNA samples by the combination of ARMS/asymmetric- rapid PCR/melting curve analysis. The concordance between these two methodologies was 85.5% (100/117). The comparison of plasma-ctDNA analysis using ddPCR and tissue testing revealed an overall agreement of 79.4% (27/34), while the corresponding agreement using the combination of ARMS/asymmetric-rapid PCR/melting curve analysis was 73.5% (25/34). Moreover, comparing the detection of BRAF-mutant ctDNA with the clinics, overall agreement of 87.2% (48/55) for ddPCR and 79.2% (42/53) was demonstrated. Remarkably, the duration of sample storage was negatively correlated with correctness of genotyping results highlighting the importance of pre-analytical factors. Conclusions Our direct comparison study has shown a high level of concordance between ddPCR and the combination of ARMS/asymmetric-rapid PCR/melting curve analysis for the detection of BRAF V600E mutations in plasma.
Collapse
Affiliation(s)
- Eleni Tzanikou
- Analysis of Circulating Tumor Cells Lab, Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| | - Verena Haselmann
- Institute for Clinical Chemistry, University Medical Center, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
| | - Athina Markou
- Analysis of Circulating Tumor Cells Lab, Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| | - Angelika Duda
- Institute for Clinical Chemistry, University Medical Center, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
| | - Jochen Utikal
- Department of Dermatology, Venerology and Allergology, University Medical Center, Ruprecht-Karls University of Heidelberg, Mannheim, Germany.,Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Neumaier
- Institute for Clinical Chemistry, University Medical Center, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
| | - Evi S Lianidou
- Analysis of Circulating Tumor Cells Lab, Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| |
Collapse
|
5
|
Liu X, Wu Z, Lin X, Bu W, Qin L, Gai H. A homogeneous digital biosensor for circulating tumor DNA by the enumeration of a dual-color quantum dot complex. Analyst 2021; 146:3034-3040. [PMID: 33949439 DOI: 10.1039/d1an00299f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Monitoring ctDNA in blood is important for cancer management. Here, a one-step single particle counting approach was developed for directly quantifying ctDNA in plasma. Hairpin DNA containing a triple helix stem was immobilized onto QD 585 as a probe. The hairpin was opened by the target, and therefore hybridized with assistant DNA on QD 655, resulting in an aggregate of QD 585 and QD 655. The two-color QD aggregate was regarded as the target. Observed under a single particle transmission grating-based spectral microscope, the two-color QD aggregate was distinguished by a unique spectral pattern of two first-order streaks, and it was counted. The difference in the responses of the probes to perfect-match DNA, single-base mismatch DNA, and non-match DNA indicated that the probe had sufficient single-base discrimination capabilities. The success in plasma recovery tests demonstrated the feasibility of carrying out the direct detection of ctDNA in plasma.
Collapse
Affiliation(s)
- Xiaojun Liu
- School of Chemistry and Materials Science, Jiangsu Normal University, Shanghai Road 101, Xuzhou, Jiangsu, China.
| | - Zhangjian Wu
- School of Chemistry and Materials Science, Jiangsu Normal University, Shanghai Road 101, Xuzhou, Jiangsu, China.
| | - Xinyi Lin
- School of Chemistry and Materials Science, Jiangsu Normal University, Shanghai Road 101, Xuzhou, Jiangsu, China.
| | - Wei Bu
- Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China.
| | - Lei Qin
- Xuzhou Haichuan Institute of Life Science Co. Ltd, Xuzhou, Jiangsu, China
| | - Hongwei Gai
- School of Chemistry and Materials Science, Jiangsu Normal University, Shanghai Road 101, Xuzhou, Jiangsu, China.
| |
Collapse
|
6
|
Profiling Colorectal Cancer in the Landscape Personalized Testing-Advantages of Liquid Biopsy. Int J Mol Sci 2021; 22:ijms22094327. [PMID: 33919272 PMCID: PMC8122648 DOI: 10.3390/ijms22094327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 12/11/2022] Open
Abstract
Drug-specific therapeutic approaches for colorectal cancer (CRC) have contributed to significant improvements in patient health. Nevertheless, there is still a great need to improve the personalization of treatments based on genetic and epigenetic tumor profiles to maximize the quality and efficacy while limiting cytotoxicity. Currently, CEA and CA 19-9 are the only validated blood biomarkers in clinical practice. For this reason, laboratories are trying to identify new specific prognostics and, more importantly, predictive biomarkers for CRC patient profiling. Thus, the unique landscape of personalized biomarker data should have a clinical impact on CRC treatment strategies and molecular genetic screening tests should become the standard method for diagnosing CRC. This review concentrates on recent molecular testing in CRC and discusses the potential modifications in CRC assay methodology with the upcoming clinical application of novel genomic approaches. While mechanisms for analyzing circulating tumor DNA have been proven too inaccurate, detecting and analyzing circulating tumor cells and protein analysis of exosomes represent more promising options. Blood liquid biopsy offers good prospects for the future if the results align with pathologists’ tissue analyses. Overall, early detection, accurate diagnosis and treatment monitoring for CRC with specific markers and targeted molecular testing may benefit many patients.
Collapse
|
7
|
Naidoo M, Gibbs P, Tie J. ctDNA and Adjuvant Therapy for Colorectal Cancer: Time to Re-Invent Our Treatment Paradigm. Cancers (Basel) 2021; 13:346. [PMID: 33477814 PMCID: PMC7832902 DOI: 10.3390/cancers13020346] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths worldwide. While there have been significant developments in the treatments for patients with metastatic CRC in recent years, improving outcomes in the adjuvant setting has been more challenging. Recent technological advances in circulating tumour DNA (ctDNA) assay with the ability to detect minimal residual disease (MRD) after curative intent surgery will fundamentally change how we assess recurrence risk and conduct adjuvant trials. Studies in non-metastatic CRC have now demonstrated the prognostic impact of ctDNA analysis after curative intent surgery over and above current standard of care clinicopathological criteria. This ability of ctDNA analysis to stratify patients into low- and very-high-risk groups provides a window of opportunity to personalise adjuvant treatment where escalation/de-escalation of adjuvant systemic therapy could potentially increase cure rates and also reduce treatment-related physical and financial toxicity. Emerging data suggest that conversion of ctDNA from detectable to undetectable after adjuvant chemotherapy may reflect treatment efficacy. This real-time assessment of treatment benefit could be used as a surrogate endpoint for adjuvant novel drug development. Several ctDNA-based randomized adjuvant trials are ongoing internationally to confirm the clinical utility of ctDNA in colorectal cancer.
Collapse
Affiliation(s)
- Mahendra Naidoo
- Peter MacCallum Cancer Centre, Department of Medical Oncology, Melbourne, VIC 3000, Australia;
| | - Peter Gibbs
- Division of Personalised Oncology, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia;
- Western Health, Department of Medical Oncology, Melbourne, VIC 3021, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Jeanne Tie
- Peter MacCallum Cancer Centre, Department of Medical Oncology, Melbourne, VIC 3000, Australia;
- Division of Personalised Oncology, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia;
- Western Health, Department of Medical Oncology, Melbourne, VIC 3021, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
8
|
Assessment of Pre-Analytical Sample Handling Conditions for Comprehensive Liquid Biopsy Analysis. J Mol Diagn 2020; 22:1070-1086. [PMID: 32497717 DOI: 10.1016/j.jmoldx.2020.05.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 05/05/2020] [Accepted: 05/19/2020] [Indexed: 12/25/2022] Open
Abstract
Liquid biopsies as a minimally invasive approach have the potential to revolutionize molecular diagnostics. Yet, although protocols for sample handling and the isolation of circulating tumor DNA (ctDNA) are numerous, comprehensive guidelines for diagnostics and research considering all aspects of real-life multicenter clinical studies are currently not available. These include limitations in sample volume, transport, and blood collection tubes. We tested the impact of commonly used (EDTA and heparin) and specialized blood collection tubes and storage conditions on the yield and purity of cell-free DNA for the application in down-stream analysis. Moreover, we evaluated the feasibility of a combined workflow for ctDNA and tumor cell genomic testing and parallel flow cytometric analysis of leukocytes. For genomic analyses, EDTA tubes showed good results if stored for a maximum of 4 hours at room temperature or for up to 24 hours when stored at 4°C. Spike-in experiments revealed that EDTA tubes in combination with density gradient centrifugation allowed the parallel isolation of ctDNA, leukocytes, and low amounts of tumor cells (0.1%) and their immunophenotyping by flow cytometry and down-stream genomic analysis by whole genome sequencing. In conclusion, adhering to time and temperature limits allows the use of routine EDTA blood samples for liquid biopsy analyses. We further provide a workflow enabling the parallel analysis of cell-free and cellular features for disease monitoring and for clonal evolution studies.
Collapse
|
9
|
Aberrant Telomere Length in Circulating Cell-Free DNA as Possible Blood Biomarker with High Diagnostic Performance in Endometrial Cancer. Pathol Oncol Res 2020; 26:2281-2289. [PMID: 32462419 DOI: 10.1007/s12253-020-00819-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 05/12/2020] [Indexed: 02/07/2023]
Abstract
To investigate the diagnostic performance of relative telomere length (RTL) in cell-free DNA (cfDNA) for endometrioid endometrial cancer (EC). We measured RTL in cfDNA of 40 EC patients (65 ± 12 years) and 31 healthy controls (HC) (63 ± 13 years), excluding in both groups other oncologic and severe non-oncologic diseases to limit confounders. Circulating cfDNA was extracted from serum using the QIAamp DNA Blood Mini kit (Qiagen, Hilden, Germany). After the quantitative real-time polymerase chain reaction, telomere repeat copy number to single-gene copy number ratio was calculated. RTL in cfDNA was found to be significantly lower in EC patients than in HC (p < 0.0001). The diagnostic performance of cfDNA RTL was estimated with receiver operating characteristics (ROC) curve analysis, which showed a diagnostic accuracy for EC of 0.87 (95% CI: 0.79-0.95, p < 0.0001). The cutoff cfDNA RTL value of 2.505 (T/S copy ratio) reported a sensitivity of 80.0% (95% CI: 64.35-90.95) and a specificity of 80.65% (95% CI: 62.53-92.55). Significant differences of RTL among EC stages or grades (p = 0.85 and p = 0.89, respectively) were not observed. Our results suggest that cfDNA RTL analysis may be a diagnostic tool for EC detection since the early stage, whilst its diagnostic performance seems unsatisfactory for cancer progression, staging, and grading. However, further studies are needed to confirm these preliminary findings. In particular, future investigations should focus on high-risk patients (such as those with atypical endometrial hyperplasia) that may benefit from this tool, because TL shortening is not specific for EC and is influenced by other oncologic and non-oncologic diseases.
Collapse
|
10
|
Detection of Microsatellite Instability from Circulating Tumor DNA by Targeted Deep Sequencing. J Mol Diagn 2020; 22:860-870. [PMID: 32428677 DOI: 10.1016/j.jmoldx.2020.04.210] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/17/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023] Open
Abstract
Currently, microsatellite instability (MSI) detection is limited to tissue samples with sufficient tumor content. Detection of MSI from blood has been explored but confounded by low sensitivity due to limited circulating tumor DNA (ctDNA). We developed a next-generation sequencing-based algorithm, blood MSI signature enrichment analysis, to detect MSI from blood. Blood MSI signature enrichment analysis development involved three major steps. First, marker sites that can effectively distinguish high MSI (MSI-H) from microsatellite stable tumors were extracted. Second, MSI signature enrichment analysis was performed based on hypergeometric probability, under the null hypothesis that plasma samples have similar MSI-H and microsatellite stable read coverage patterns for particular marker sites as the white blood cells from the training data set. Finally, enrichment scores of marker sites were normalized, and all markers were collectively considered to determine the MSI status of a plasma sample. In vitro dilution experiments with cell lines and in silico simulation experiments based on mixtures of MSI-H plasma and paired white blood cell DNA demonstrated 98% sensitivity and 100% specificity at a minimum of 1% ctDNA and 91.8% sensitivity and 100% specificity with 0.4% ctDNA. An independent validation cohort of 87 colorectal cancer patients with orthogonal confirmation of MSI status of tissues confirmed performance, achieving 94.1% sensitivity (16/17) and 100% specificity (27/27) for samples with ctDNA >0.4%.
Collapse
|
11
|
Álvarez-Alegret R, Rojo Todo F, Garrido P, Bellosillo B, Rodríguez-Lescure Á, Rodríguez-Peralto JL, Vera R, de Álava E, García-Campelo R, Remon J. [Liquid biopsy in oncology: A consensus statement of the Spanish Society of Pathology and the Spanish Society of Medical Oncology]. REVISTA ESPAÑOLA DE PATOLOGÍA : PUBLICACIÓN OFICIAL DE LA SOCIEDAD ESPAÑOLA DE ANATOMÍA PATOLÓGICA Y DE LA SOCIEDAD ESPAÑOLA DE CITOLOGÍA 2020; 53:234-245. [PMID: 33012494 DOI: 10.1016/j.patol.2019.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/27/2019] [Accepted: 12/09/2019] [Indexed: 11/18/2022]
Abstract
The proportion of cancer patients with tumours that harbour a potentially targetable genomic alteration is increasing considerably. The diagnosis of these genomic alterations can lead to tailoring of treatment, at the onset of disease or during progression, as well as providing additional, predictive information on the efficacy of immunotherapy. However, in up to 25% of cases, the initial tissue biopsy is inadequate for precision oncology and, in many cases, tumour genomic profiling at progression is not possible due to technical limitations of obtaining new tumour tissue specimens. Efficient diagnostic alternatives are therefore required for molecular stratification, such as liquid biopsy. This technique enables the evaluation of the tumour genomic profile dynamically and as well as capturing intra-patient genomic heterogeneity. To date, there are several diagnostic techniques available for use in liquid biopsy, each with different precision and performance levels. The objective of this consensus statement of the Spanish Society of Pathology (SEAP) and the Spanish Society of Medical Oncology (SEOM) is to evaluate the viability and effectiveness of the different methodological approaches of liquid biopsy in cancer patients, and the potential application of this method to current clinical practice. The experts contributing to this consensus statement agree that, according to current evidence, liquid biopsy is an acceptable alternative to tumour tissue biopsy for the study of biomarkers in various clinical settings. It is therefore important to standardise pre-analytical and analytical procedures to ensure reproducibility and to generate structured and accessible clinical reports. It is essential to appoint multidisciplinary tumour molecular committees to oversee these processes and to enable the most suitable therapeutic decisions for each patient according to the genomic profile.
Collapse
Affiliation(s)
| | - Federico Rojo Todo
- Departamento de Patología, Fundación Universitaria Jiménez Díaz, CIBERONC, Madrid, España
| | - Pilar Garrido
- Universidad de Alcalá; Departamento de Oncología Médica, IRYCIS, Hospital Universitario Ramón y Cajal, CIBERONC, Madrid, España
| | - Beatriz Bellosillo
- Departamento de Patología, Hospital del Mar, CIBERONC, Barcelona, España
| | - Álvaro Rodríguez-Lescure
- Departamento de Oncología Médica, Hospital General Universitario de Elche y Vega Baja, GEICAM, Elche, España
| | | | - Ruth Vera
- Departamento de Oncología Médica, Complejo Hospitalario de Navarra, Navarra Institute for health research (IdiSNA), Pamplona, España
| | - Enrique de Álava
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, CIBERONC, Departamento de Citología e Histología Normal y Patológica, Sevilla, España
| | - Rosario García-Campelo
- Departamento de Oncología Médica, Complexo Hospitalario Universitario A Coruña, A Coruña, España
| | - Jordi Remon
- Departamento de Oncología Médica, Centro Integral Oncológico Clara Campal Barcelona (CIOCCB), HM Delfos, Barcelona, España
| |
Collapse
|
12
|
Abstract
ctDNA provided by liquid biopsy offers a promising alternative to tumor biopsy as it gives a non-invasive and «real-time» access to the cancer genome and reflects tumor intra and extra heterogeneity. ctDNA has shown growing clinical interest for cancer diagnosis, prognosis, theragnostics, therapeutic monitoring, and clonal evolution tracking. A major technical limit for ctDNA analysis from body fluids is the extremely low proportion of ctDNA compared to non-malignant cell-free DNA, underscoring the need for highly sensitive and specific detection techniques. The control of pre-analytical procedures appears essential for optimal ctDNA analysis and need to be standardized for clinical research applications. This chapter provides insights into major current technologies for ctDNA detection. Overall, PCR-based techniques are able to detect limited molecular alterations and have a high sensitivity suitable for monitoring purposes while NGS-based approaches are broad range molecular screening assays more specifically indicated for treatment selection. We briefly reviewed new technical innovations that are now available for ctDNA detection.
Collapse
Affiliation(s)
- Pauline Gilson
- Université de Lorraine, CNRS UMR 7039 CRAN, Institut de Cancérologie de Lorraine, Service de Biopathologie, 54000, Nancy, France.
| |
Collapse
|
13
|
Abstract
Breast cancer is a highly heterogeneous and dynamic disease, exhibiting unique somatic alterations that lead to disease recurrence and resistance. Tumor biopsy and conventional imaging approaches are not able to provide sufficient information regarding the early detection of recurrence and real time monitoring through tracking sensitive or resistance mechanisms to treatment. Circulating tumor DNA (ctDNA) analysis has emerged as an attractive noninvasive methodology to detect cancer-specific genetic aberrations in plasma including DNA mutations and DNA methylation patterns. Numerous studies have reported on the potential of ctDNA analysis in the management of early and advanced stages of breast cancer. Advances in high-throughput technologies, especially next generation sequencing and PCR-based assays, were highly important for the successful application of ctDNA analysis. However, before being integrated into clinical practice, ctDNA analysis needs to be standardized and validated through the performance of multicenter prospective and well-designed clinical studies. This review is focused on the clinical utility of ctDNA analysis, especially at the DNA mutation and methylation level, in breast cancer patients, incorporating the latest advances in technological approaches and involving key studies in the early and metastatic setting.
Collapse
Affiliation(s)
- Eleni Tzanikou
- Department of Chemistry, Analysis of Circulating Tumor Cells (ACTC) Lab, Laboratory of Analytical Chemistry, University of Athens, Athens, Greece
| | - Evi Lianidou
- Department of Chemistry, Analysis of Circulating Tumor Cells (ACTC) Lab, Laboratory of Analytical Chemistry, University of Athens, Athens, Greece
| |
Collapse
|
14
|
Liquid biopsy in oncology: a consensus statement of the Spanish Society of Pathology and the Spanish Society of Medical Oncology. Clin Transl Oncol 2019; 22:823-834. [PMID: 31559582 PMCID: PMC7854395 DOI: 10.1007/s12094-019-02211-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023]
Abstract
The proportion of cancer patients with tumours that harbour a potentially targetable genomic alteration is growing considerably. The diagnosis of these genomic alterations can lead to tailored treatment at the onset of disease or on progression and to obtaining additional predictive information on immunotherapy efficacy. However, in up to 25% of cases, the initial tissue biopsy is inadequate for precision oncology and, in many cases, tumour genomic profiling at progression is not possible due to technical limitations of obtaining new tumour tissue specimens. Efficient diagnostic alternatives are therefore required for molecular stratification, which includes liquid biopsy. This technique enables the evaluation of the tumour genomic profile dynamically and captures intra-patient genomic heterogeneity as well. To date, there are several diagnostic techniques available for use in liquid biopsy, each one of them with different precision and performance levels. The objective of this consensus statement of the Spanish Society of Pathology and the Spanish Society of Medical Oncology is to evaluate the viability and effectiveness of the different methodological approaches in liquid biopsy in cancer patients and the potential application of this method to current clinical practice. The experts contributing to this consensus statement agree that, according to current evidence, liquid biopsy is an acceptable alternative to tumour tissue biopsy for the study of biomarkers in various clinical settings. It is therefore important to standardise pre-analytical and analytical procedures, to ensure reproducibility and generate structured and accessible clinical reports. It is essential to appoint multidisciplinary tumour molecular boards to oversee these processes and to enable the most suitable therapeutic decisions for each patient according to the genomic profile.
Collapse
|
15
|
Abstract
In the context of oncology, liquid biopsies consist of harvesting cancer biomarkers, such as circulating tumor cells, tumor-derived cell-free DNA, and extracellular vesicles, from bodily fluids. These biomarkers provide a source of clinically actionable molecular information that can enable precision medicine. Herein, we review technologies for the molecular profiling of liquid biopsy markers with special emphasis on the analysis of low abundant markers from mixed populations.
Collapse
Affiliation(s)
- Camila D. M. Campos
- Department of Chemistry, The University of Kansas, Lawrence, KS 66047
- Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66047
| | - Joshua M. Jackson
- Department of Chemistry, The University of Kansas, Lawrence, KS 66047
- Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66047
| | - Małgorzata A. Witek
- Department of Chemistry, The University of Kansas, Lawrence, KS 66047
- Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66047
- Department of Biomedical Engineering, The University of North Carolina, Chapel Hill, NC 27599
| | - Steven A. Soper
- Department of Chemistry, The University of Kansas, Lawrence, KS 66047
- Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66047
- BioEngineering Program, The University of Kansas, Lawrence, KS 66047
- Department of Mechanical Engineering, The University of Kansas, Lawrence, KS 66047
- Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| |
Collapse
|
16
|
Koessler T, Addeo A, Nouspikel T. Implementing circulating tumor DNA analysis in a clinical laboratory: A user manual. Adv Clin Chem 2019; 89:131-188. [PMID: 30797468 DOI: 10.1016/bs.acc.2018.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Liquid biopsy, the analysis of cell-free circulating tumor DNA (ctDNA), is becoming one of the most promising tools in oncology. It has already shown its usefulness in selecting and modulating therapy via remote analysis of the tumor genome and holds important promises in cancer therapy and management, such as assessing the success of key therapeutic steps, monitoring residual disease, early detection of relapses, and establishing prognosis. Yet, ctDNA analysis is technically challenging and its implementation in the laboratory raises multiple strategic and practical issues. As for oncology clinics, integration of this novel test in well-established therapeutic protocols can also pose numerous questions. The current review is intended as a field guide for (1) diagnostic laboratories wishing to implement, validate and possibly accredit ctDNA testing and (2) clinical oncologists interested in integrating the various applications of liquid biopsies in their daily practice. We provide advice and practical recommendations based on our own experience with the technical validations of these methods and on a review of the current literature, with a focus toward gastro-intestinal, lung and breast cancers.
Collapse
Affiliation(s)
- Thibaud Koessler
- Department of Oncology, Geneva University Hospital, Geneva, Switzerland
| | - Alfredo Addeo
- Department of Oncology, Geneva University Hospital, Geneva, Switzerland
| | - Thierry Nouspikel
- Service of Medical Genetics, Diagnostics Department, Geneva University Hospital, Geneva, Switzerland.
| |
Collapse
|
17
|
The Dynamic Use of EGFR Mutation Analysis in Cell-Free DNA as a Follow-Up Biomarker during Different Treatment Lines in Non-Small-Cell Lung Cancer Patients. DISEASE MARKERS 2019; 2019:7954921. [PMID: 30809319 PMCID: PMC6364099 DOI: 10.1155/2019/7954921] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/27/2018] [Indexed: 12/13/2022]
Abstract
Epidermal growth factor receptor (EGFR) mutational testing in advanced non-small-cell lung cancer (NSCLC) is usually performed in tumor tissue, although cfDNA (cell-free DNA) could be an alternative. We evaluated EGFR mutations in cfDNA as a complementary tool in patients, who had already known EGFR mutations in tumor tissue and were treated with either EGFR-tyrosine kinase inhibitors (TKIs) or chemotherapy. We obtained plasma samples from 21 advanced NSCLC patients with known EGFR tumor mutations, before and during therapy with EGFR-TKIs and/or chemotherapy. cfDNA was isolated and EGFR mutations were analyzed with the multiple targeted cobas EGFR Mutation Test v2. EGFR mutations were detected at baseline in cfDNA from 57% of patients. The semiquantitative index (SQI) significantly decreased from the baseline (median = 11, IQR = 9.5-13) to the best response (median = 0, IQR = 0-0, p < 0.01), followed by a significant increase at progression (median = 11, IQR = 11-15, p < 0.01) in patients treated with either EGFR-TKIs or chemotherapy. The SQI obtained with the cobas EGFR Mutation Test v2 did not correlate with the concentration in copies/mL determined by droplet digital PCR. Resistance mutation p.T790M was observed at progression in patients with either type of treatment. In conclusion, cfDNA multiple targeted EGFR mutation analysis is useful for treatment monitoring in tissue of EGFR-positive NSCLC patients independently of the drug received.
Collapse
|
18
|
Campos CDM, Gamage SST, Jackson JM, Witek MA, Park DS, Murphy MC, Godwin AK, Soper SA. Microfluidic-based solid phase extraction of cell free DNA. LAB ON A CHIP 2018; 18:3459-3470. [PMID: 30339164 PMCID: PMC6391159 DOI: 10.1039/c8lc00716k] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cell-free DNA (cfDNA) is a liquid biopsy marker that can carry signatures (i.e., mutations) associated with certain pathological conditions. Therefore, the extraction of cfDNA from a variety of clinical samples can be an effective and minimally invasive source of markers for disease detection and subsequent management. In the oncological diseases, circulating tumor DNA (ctDNA), a cfDNA sub-class, can carry clinically actionable mutations and coupled with next generation sequencing or other mutation detection methods provide a venue for effective in vitro diagnostics. However, cfDNA mutational analyses require high quality inputs. This necessitates extraction platforms that provide high recovery over the entire ctDNA size range (50 → 150 bp) with minimal interferences (i.e., co-extraction of genomic DNA), and high reproducibility with a simple workflow. Herein, we present a novel microfluidic solid-phase extraction device (μSPE) consisting of a plastic chip that is activated with UV/O3 to generate surface-confined carboxylic acid functionalities for the μSPE of cfDNA. The μSPE uses an immobilization buffer (IB) consisting of polyethylene glycol and salts that induce cfDNA condensation onto the activated plastic microfluidic surface. The μSPE consists of an array of micropillars to increase extraction bed load (scalable to loads >700 ng of cfDNA) and can be produced at low-cost using replication-based techniques. The entire μSPE can be fabricated in a single molding step negating the need for adding additional extraction supports to the device simplifying production and keeping device and assay cost low. The μSPE allowed for recoveries >90% of model cfDNA fragments across a range of sizes (100-700 bp) and even the ability to extract efficiently short cfDNA fragments (50 bp, >70%). In addition, the composition of the IB allowed for reducing the interference of co-extracted genomic DNA. We demonstrated the clinical utility of the μSPE by quantifying the levels of cfDNA in healthy donors and patients with non-small-cell lung and colorectal cancers. μSPE extracted cfDNA from plasma samples was also subjected to a ligase detection reaction (LDR) for determining the presence of mutations in the KRAS gene for colorectal and non-small cell lung cancer patients.
Collapse
Affiliation(s)
- Camila D. M. Campos
- Department of Chemistry, University of Kansas, Lawrence, KS, USA.
- Center of Biomodular Multi-scale Systems for Precision Medicine, USA
| | - Sachindra S. T. Gamage
- Department of Chemistry, University of Kansas, Lawrence, KS, USA.
- Center of Biomodular Multi-scale Systems for Precision Medicine, USA
| | - Joshua M. Jackson
- Department of Chemistry, University of Kansas, Lawrence, KS, USA.
- Center of Biomodular Multi-scale Systems for Precision Medicine, USA
| | - Malgorzata A. Witek
- Department of Chemistry, University of Kansas, Lawrence, KS, USA.
- Center of Biomodular Multi-scale Systems for Precision Medicine, USA
- Department of Biomedical Engineering, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Daniel S. Park
- Center of Biomodular Multi-scale Systems for Precision Medicine, USA
- Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Michael C. Murphy
- Center of Biomodular Multi-scale Systems for Precision Medicine, USA
- Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Andrew K. Godwin
- University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Steven A. Soper
- Department of Chemistry, University of Kansas, Lawrence, KS, USA.
- Center of Biomodular Multi-scale Systems for Precision Medicine, USA
- University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA
- BioEngineering Program, The University of Kansas, Lawrence, KS 66047, USA
- Department of Mechanical Engineering, The University of Kansas, Lawrence, KS 66047, USA
- Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| |
Collapse
|
19
|
ctDNA and CTCs in Liquid Biopsy - Current Status and Where We Need to Progress. Comput Struct Biotechnol J 2018; 16:190-195. [PMID: 29977481 PMCID: PMC6024152 DOI: 10.1016/j.csbj.2018.05.002] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 12/12/2022] Open
Abstract
We discuss the current status of liquid biopsy and its advantages and challenges with a focus on pre-analytical sample handling, technologies and workflows. The potential of circulating tumor cells and circulating tumor DNA is pointed out and an overview of corresponding technologies is given.
Collapse
|
20
|
Hench IB, Hench J, Tolnay M. Liquid Biopsy in Clinical Management of Breast, Lung, and Colorectal Cancer. Front Med (Lausanne) 2018; 5:9. [PMID: 29441349 PMCID: PMC5797586 DOI: 10.3389/fmed.2018.00009] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/15/2018] [Indexed: 12/12/2022] Open
Abstract
Examination of tumor molecular characteristics by liquid biopsy is likely to greatly influence personalized cancer patient management. Analysis of circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), and tumor-derived exosomes, all collectively referred to as “liquid biopsies,” are not only a modality to monitor treatment efficacy, disease progression, and emerging therapy resistance mechanisms, but they also assess tumor heterogeneity and evolution in real time. We review the literature concerning the examination of ctDNA and CTC in a diagnostic setting, evaluating their prognostic, predictive, and monitoring capabilities. We discuss the advantages and limitations of various leading ctDNA/CTC analysis technologies. Finally, guided by the results of clinical trials, we discuss the readiness of cell-free DNA and CTC as routine biomarkers in the context of various common types of neoplastic disease. At this moment, one cannot conclude whether or not liquid biopsy will become a mainstay in oncology practice.
Collapse
Affiliation(s)
- Ivana Bratić Hench
- Institute for Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Jürgen Hench
- Institute for Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Markus Tolnay
- Institute for Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
21
|
Economopoulou P, Kotsantis I, Kyrodimos E, Lianidou E, Psyrri A. Liquid biopsy: An emerging prognostic and predictive tool in Head and Neck Squamous Cell Carcinoma (HNSCC). Focus on Circulating Tumor Cells (CTCs). Oral Oncol 2017; 74:83-89. [DOI: 10.1016/j.oraloncology.2017.09.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/07/2017] [Accepted: 09/14/2017] [Indexed: 01/17/2023]
|