1
|
Miccoli A, Pianese V, Bidoli C, Fausto AM, Scapigliati G, Picchietti S. Transcriptome profiling of microdissected cortex and medulla unravels functional regionalization in the European sea bass Dicentrarchus labrax thymus. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109319. [PMID: 38145782 DOI: 10.1016/j.fsi.2023.109319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023]
Abstract
The thymus is a sophisticated primary lymphoid organ in jawed vertebrates, but knowledge on teleost thymus remains scarce. In this study, for the first time in the European sea bass, laser capture microdissection was leveraged to collect two thymic regions based on histological features, namely the cortex and the medulla. The two regions were then processed by RNAseq and in-depth functional transcriptome analyses with the aim of revealing differential gene expression patterns and gene sets enrichments, ultimately unraveling unique microenvironments imperative for the development of functional T cells. The sea bass cortex emerged as a hub of T cell commitment, somatic recombination, chromatin remodeling, cell cycle regulation, and presentation of self antigens from autophagy-, proteasome- or proteases-processed proteins. The cortex therefore accommodated extensive thymocyte proliferation and differentiation up to the checkpoint of positive selection. The medulla instead appeared as the center stage in autoimmune regulation by negative selection and deletion of autoreactive T cells, central tolerance mechanisms and extracellular matrix organization. Region-specific canonical markers of T and non-T lineage cells as well as signals for migration to/from, and trafficking within, the thymus were identified, shedding light on the highly coordinated and exquisitely complex bi-directional interactions among thymocytes and stromal components. Markers ascribable to thymic nurse cells and poorly characterized post-aire mTEC populations were found in the cortex and medulla, respectively. An in-depth data mining also exposed previously un-annotated genomic resources with differential signatures. Overall, our findings contribute to a broader understanding of the relationship between regional organization and function in the European sea bass thymus, and provide essential insights into the molecular mechanisms underlying T-cell mediated adaptive immune responses in teleosts.
Collapse
Affiliation(s)
- A Miccoli
- National Research Council, Institute for Marine Biological Resources and Biotechnology (IRBIM), 60125, Ancona, Italy
| | - V Pianese
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo Dell'Università Snc, 01100, Viterbo, Italy
| | - C Bidoli
- Dept. of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - A M Fausto
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo Dell'Università Snc, 01100, Viterbo, Italy
| | - G Scapigliati
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo Dell'Università Snc, 01100, Viterbo, Italy
| | - S Picchietti
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo Dell'Università Snc, 01100, Viterbo, Italy.
| |
Collapse
|
2
|
Chen X, Qiu J, Gao Z, Liu B, Zhang C, Yu W, Yang J, Shen Y, Qi L, Yao X, Sun H, Yang X. Myasthenia gravis: Molecular mechanisms and promising therapeutic strategies. Biochem Pharmacol 2023; 218:115872. [PMID: 37865142 DOI: 10.1016/j.bcp.2023.115872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Myasthenia gravis (MG) is a type of autoimmune disease caused by the blockage of neuromuscular junction transmission owing to the attack of autoantibodies on transmission-related proteins. Related antibodies, such as anti-AChR, anti-MuSK and anti-LRP4 antibodies, can be detected in most patients with MG. Although traditional therapies can control most symptoms, several challenges remain to be addressed, necessitating the development of more effective and safe treatment strategies for MG. With the in-depth exploration on the mechanism and immune targets of MG, effective therapies, especially therapies using biologicals, have been reported recently. Given the important roles of immune cells, cytokines and intercellular interactions in the pathological process of MG, B-cell targeted therapy, T-cell targeted therapy, proteasome inhibitors targeting plasma cell, complement inhibitors, FcRn inhibitors have been developed for the treatment of MG. Although these novel therapies exert good therapeutic effects, they may weaken the immunity and increase the risk of infection in MG patients. This review elaborates on the pathogenesis of MG and discusses the advantages and disadvantages of the strategies of traditional treatment and biologicals. In addition, this review emphasises that combined therapy may have better therapeutic effects and reducing the risk of side effects of treatments, which has great prospects for the treatment of MG. With the deepening of research on immunotherapy targets in MG, novel opportunities and challenges in the treatment of MG will be introduced.
Collapse
Affiliation(s)
- Xin Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Jiayi Qiu
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Zihui Gao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Boya Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Chen Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Weiran Yu
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Jiawen Yang
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Lei Qi
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province 226001, PR China.
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province 226001, PR China.
| | - Xiaoming Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province 226001, PR China.
| |
Collapse
|
3
|
Perrino M, Cordua N, De Vincenzo F, Borea F, Aliprandi M, Cecchi LG, Fazio R, Airoldi M, Santoro A, Zucali PA. Thymic Epithelial Tumor and Immune System: The Role of Immunotherapy. Cancers (Basel) 2023; 15:5574. [PMID: 38067278 PMCID: PMC10705681 DOI: 10.3390/cancers15235574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 10/16/2024] Open
Abstract
Thymic epithelial tumors (TETs) comprise a rare group of thoracic cancers, classified as thymomas and thymic carcinomas (TC). To date, chemotherapy is still the standard treatment for advanced disease. Unfortunately, few therapeutic options are available for relapsed/refractory tumors. Unlike other solid cancers, the development of targeted biologic and/or immunologic therapies in TETs remains in its nascent stages. Moreover, since the thymus plays a key role in the development of immune tolerance, thymic tumors have a unique biology, which can confer susceptibility to autoimmune diseases and ultimately influence the risk-benefit balance of immunotherapy, especially for patients with thymoma. Indeed, early results from single-arm studies have shown interesting clinical activity, albeit at a cost of a higher incidence of immune-related side effects. The lack of knowledge of the immune mechanisms associated with TETs and the absence of biomarkers predictive of response or toxicity to immunotherapy risk limiting the evolution of immunotherapeutic strategies for managing these rare tumors. The aim of this review is to summarize the existing literature about the thymus's immune biology and its association with autoimmune paraneoplastic diseases, as well as the results of the available studies with immune checkpoint inhibitors and cancer vaccines.
Collapse
Affiliation(s)
- Matteo Perrino
- Department of Oncology, IRCCS Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (M.P.); (N.C.); (F.D.V.); (A.S.)
| | - Nadia Cordua
- Department of Oncology, IRCCS Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (M.P.); (N.C.); (F.D.V.); (A.S.)
| | - Fabio De Vincenzo
- Department of Oncology, IRCCS Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (M.P.); (N.C.); (F.D.V.); (A.S.)
| | - Federica Borea
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy; (F.B.); (M.A.); (L.G.C.); (R.F.); (M.A.)
| | - Marta Aliprandi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy; (F.B.); (M.A.); (L.G.C.); (R.F.); (M.A.)
| | - Luigi Giovanni Cecchi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy; (F.B.); (M.A.); (L.G.C.); (R.F.); (M.A.)
| | - Roberta Fazio
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy; (F.B.); (M.A.); (L.G.C.); (R.F.); (M.A.)
| | - Marco Airoldi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy; (F.B.); (M.A.); (L.G.C.); (R.F.); (M.A.)
| | - Armando Santoro
- Department of Oncology, IRCCS Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (M.P.); (N.C.); (F.D.V.); (A.S.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy; (F.B.); (M.A.); (L.G.C.); (R.F.); (M.A.)
| | - Paolo Andrea Zucali
- Department of Oncology, IRCCS Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (M.P.); (N.C.); (F.D.V.); (A.S.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy; (F.B.); (M.A.); (L.G.C.); (R.F.); (M.A.)
| |
Collapse
|
4
|
Chen H, Han Z, Fan Y, Chen L, Peng F, Cheng X, Wang Y, Su J, Li D. CD4+ T-cell subsets in autoimmune hepatitis: A review. Hepatol Commun 2023; 7:e0269. [PMID: 37695088 PMCID: PMC10497257 DOI: 10.1097/hc9.0000000000000269] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/02/2023] [Indexed: 09/12/2023] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic autoimmune liver disease that can lead to hepatocyte destruction, inflammation, liver fibrosis, cirrhosis, and liver failure. The diagnosis of AIH requires the identification of lymphoblast cell interface hepatitis and serum biochemical abnormalities, as well as the exclusion of related diseases. According to different specific autoantibodies, AIH can be divided into AIH-1 and AIH-2. The first-line treatment for AIH is a corticosteroid and azathioprine regimen, and patients with liver failure require liver transplantation. However, the long-term use of corticosteroids has obvious side effects, and patients are prone to relapse after drug withdrawal. Autoimmune diseases are characterized by an imbalance in immune tolerance of self-antigens, activation of autoreactive T cells, overactivity of B cells, and increased production of autoantibodies. CD4+ T cells are key players in adaptive immunity and can secrete cytokines, activate B cells to produce antibodies, and influence the cytotoxicity of CD8+ T cells. According to their characteristics, CD4+ T cells can be divided into different subsets. In this review, we discuss the changes in T helper (Th)1, Th2, Th17, Th9, Th22, regulatory T cell, T follicular helper, and T peripheral helper cells and their related factors in AIH and discuss the therapeutic potential of targeting CD4+ T-cell subsets in AIH.
Collapse
Affiliation(s)
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiyue Fan
- Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Liuyan Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Peng
- Chengdu Xinhua Hospital, Chengdu, China
| | | | - Yi Wang
- Chengdu Xinhua Hospital, Chengdu, China
| | - Junyan Su
- The First People’s Hospital of Longquanyi District, Chengdu, China
| | | |
Collapse
|
5
|
Lee CH, Huh J, Buckley PR, Jang M, Pinho MP, Fernandes RA, Antanaviciute A, Simmons A, Koohy H. A robust deep learning workflow to predict CD8 + T-cell epitopes. Genome Med 2023; 15:70. [PMID: 37705109 PMCID: PMC10498576 DOI: 10.1186/s13073-023-01225-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND T-cells play a crucial role in the adaptive immune system by triggering responses against cancer cells and pathogens, while maintaining tolerance against self-antigens, which has sparked interest in the development of various T-cell-focused immunotherapies. However, the identification of antigens recognised by T-cells is low-throughput and laborious. To overcome some of these limitations, computational methods for predicting CD8 + T-cell epitopes have emerged. Despite recent developments, most immunogenicity algorithms struggle to learn features of peptide immunogenicity from small datasets, suffer from HLA bias and are unable to reliably predict pathology-specific CD8 + T-cell epitopes. METHODS We developed TRAP (T-cell recognition potential of HLA-I presented peptides), a robust deep learning workflow for predicting CD8 + T-cell epitopes from MHC-I presented pathogenic and self-peptides. TRAP uses transfer learning, deep learning architecture and MHC binding information to make context-specific predictions of CD8 + T-cell epitopes. TRAP also detects low-confidence predictions for peptides that differ significantly from those in the training datasets to abstain from making incorrect predictions. To estimate the immunogenicity of pathogenic peptides with low-confidence predictions, we further developed a novel metric, RSAT (relative similarity to autoantigens and tumour-associated antigens), as a complementary to 'dissimilarity to self' from cancer studies. RESULTS TRAP was used to identify epitopes from glioblastoma patients as well as SARS-CoV-2 peptides, and it outperformed other algorithms in both cancer and pathogenic settings. TRAP was especially effective at extracting immunogenicity-associated properties from restricted data of emerging pathogens and translating them onto related species, as well as minimising the loss of likely epitopes in imbalanced datasets. We also demonstrated that the novel metric termed RSAT was able to estimate immunogenic of pathogenic peptides of various lengths and species. TRAP implementation is available at: https://github.com/ChloeHJ/TRAP . CONCLUSIONS This study presents a novel computational workflow for accurately predicting CD8 + T-cell epitopes to foster a better understanding of antigen-specific T-cell response and the development of effective clinical therapeutics.
Collapse
Affiliation(s)
- Chloe H Lee
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Jaesung Huh
- Visual Geometry Group, Department of Engineering Science, University of Oxford, Oxford, OX2 6NN, UK
| | - Paul R Buckley
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Myeongjun Jang
- Intelligent Systems Lab, Department of Computer Science, University of Oxford, Oxford, OX1 3QG, UK
| | - Mariana Pereira Pinho
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Ricardo A Fernandes
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Oxford, OX3 7BN, UK
| | - Agne Antanaviciute
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Alison Simmons
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Hashem Koohy
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK.
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK.
- Alan Turning Fellow in Health and Medicine, The Alan Turing Institute, London, UK.
| |
Collapse
|
6
|
Dong X, Liang Z, Zhang J, Zhang Q, Xu Y, Zhang Z, Zhang L, Zhang B, Zhao Y. Trappc1 deficiency impairs thymic epithelial cell development by breaking endoplasmic reticulum homeostasis. Eur J Immunol 2022; 52:1789-1804. [PMID: 35908180 DOI: 10.1002/eji.202249915] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/28/2022] [Accepted: 07/26/2022] [Indexed: 11/05/2022]
Abstract
Thymic epithelial cells (TECs) are important for T cell development and immune tolerance establishment. Although comprehensive molecular regulation of TEC development has been studied, the role of transport protein particle complexes (Trappcs) in TECs is not clear. Using TEC-specific homozygous or heterozygous Trappc1 deleted mice model, we found that Trappc1 deficiency caused severe thymus atrophy with decreased cell number and blocked maturation of TECs. Mice with a TEC-specific Trappc1 deletion show poor thymic T cell output and have a greater percentage of activated/memory T cells, suffered from spontaneous autoimmune disorders. Our RNA-seq and molecular studies indicated that the decreased endoplasmic reticulum (ER) and Golgi apparatus, enhanced unfolded protein response (UPR) and subsequent Atf4-CHOP-mediated apoptosis, and reactive oxygen species (ROS)-mediated ferroptosis coordinately contributed to the reduction of Trappc1-deleted TECs. Additionally, reduced Aire+ mTECs accompanied by the decreased expression of Irf4, Irf8, and Tbx21 in Trappc1 deficiency mTECs, may further coordinately block the tissue-restricted antigen expression. In this study, we reveal that Trappc1 plays an indispensable role in TEC development and maturation and provide evidence for the importance of inter-organelle traffic and ER homeostasis in TEC development. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xue Dong
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences.,University of Chinese Academy of Sciences
| | - Zhanfeng Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences.,University of Chinese Academy of Sciences.,Beijing Institute for Stem Cell and Regeneration
| | - Jiayu Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences.,University of Chinese Academy of Sciences
| | - Qian Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences.,University of Chinese Academy of Sciences
| | - Yanan Xu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences.,University of Chinese Academy of Sciences
| | - Zhaoqi Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences.,University of Chinese Academy of Sciences
| | - Lianfeng Zhang
- Key Laboratory of Human Diseases and Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences.,University of Chinese Academy of Sciences.,Beijing Institute for Stem Cell and Regeneration
| |
Collapse
|
7
|
Johnson SA, Seale SL, Gittelman RM, Rytlewski JA, Robins HS, Fields PA. Impact of HLA type, age and chronic viral infection on peripheral T-cell receptor sharing between unrelated individuals. PLoS One 2021; 16:e0249484. [PMID: 34460826 PMCID: PMC8405014 DOI: 10.1371/journal.pone.0249484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/29/2021] [Indexed: 11/19/2022] Open
Abstract
The human adaptive immune system must generate extraordinary diversity to be able to respond to all possible pathogens. The T-cell repertoire derives this high diversity through somatic recombination of the T-cell receptor (TCR) locus, a random process that results in repertoires that are largely private to each individual. However, factors such as thymic selection and T-cell proliferation upon antigen exposure can affect TCR sharing among individuals. By immunosequencing the TCRβ variable region of 426 healthy individuals, we find that, on average, fewer than 1% of TCRβ clones are shared between individuals, consistent with largely private TCRβ repertoires. However, we detect a significant correlation between increased HLA allele sharing and increased number of shared TCRβ clones, with each additional shared HLA allele contributing to an increase in ~0.01% of the total shared TCRβ clones, supporting a key role for HLA type in shaping the immune repertoire. Surprisingly, we find that shared antigen exposure to CMV leads to fewer shared TCRβ clones, even after controlling for HLA, indicative of a largely private response to major viral antigenic exposure. Consistent with this hypothesis, we find that increased age is correlated with decreased overall TCRβ clone sharing, indicating that the pattern of private TCRβ clonal expansion is a general feature of the T-cell response to other infectious antigens as well. However, increased age also correlates with increased sharing among the lowest frequency clones, consistent with decreased repertoire diversity in older individuals. Together, all of these factors contribute to shaping the TCRβ repertoire, and understanding their interplay has important implications for the use of T cells for therapeutics and diagnostics.
Collapse
Affiliation(s)
- Sarah A. Johnson
- Adaptive Biotechnologies, Seattle, Washington, United States of America
| | - Spencer L. Seale
- Adaptive Biotechnologies, Seattle, Washington, United States of America
| | | | | | - Harlan S. Robins
- Adaptive Biotechnologies, Seattle, Washington, United States of America
| | - Paul A. Fields
- Adaptive Biotechnologies, Seattle, Washington, United States of America
| |
Collapse
|
8
|
Abstract
In all human cells, human leukocyte antigen (HLA) class I glycoproteins assemble with a peptide and take it to the cell surface for surveillance by lymphocytes. These include natural killer (NK) cells and γδ T cells of innate immunity and αβ T cells of adaptive immunity. In healthy cells, the presented peptides derive from human proteins, to which lymphocytes are tolerant. In pathogen-infected cells, HLA class I expression is perturbed. Reduced HLA class I expression is detected by KIR and CD94:NKG2A receptors of NK cells. Almost any change in peptide presentation can be detected by αβ CD8+ T cells. In responding to extracellular pathogens, HLA class II glycoproteins, expressed by specialized antigen-presenting cells, present peptides to αβ CD4+ T cells. In comparison to the families of major histocompatibility complex (MHC) class I, MHC class II and αβ T cell receptors, the antigenic specificity of the γδ T cell receptors is incompletely understood.
Collapse
Affiliation(s)
- Zakia Djaoud
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA; ,
| | - Peter Parham
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA; ,
| |
Collapse
|
9
|
Nam JH, Lee JH, Choi SY, Jung NC, Song JY, Seo HG, Lim DS. Functional Ambivalence of Dendritic Cells: Tolerogenicity and Immunogenicity. Int J Mol Sci 2021; 22:ijms22094430. [PMID: 33922658 PMCID: PMC8122871 DOI: 10.3390/ijms22094430] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are the most potent professional antigen-presenting cells (APCs) and inducers of T cell-mediated immunity. Although DCs play a central role in promoting adaptive immune responses against growing tumors, they also establish and maintain peripheral tolerance. DC activity depends on the method of induction and/or the presence of immunosuppressive agents. Tolerogenic dendritic cells (tDCs) induce immune tolerance by activating CD4+CD25+Foxp3+ regulatory T (Treg) cells and/or by producing cytokines that inhibit T cell activation. These findings suggest that tDCs may be an effective treatment for autoimmune diseases, inflammatory diseases, and infertility.
Collapse
Affiliation(s)
- Ji-Hee Nam
- Department of Biotechnology, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, Gyeonggi-do 13488, Korea; (J.-H.N.); (S.-Y.C.)
| | - Jun-Ho Lee
- Pharos Vaccine Inc., 14 Galmachiro 288 bun-gil, Jungwon-gu, Seongnam, Gyeonggi-do 13201, Korea; (J.-H.L.); (N.-C.J.)
| | - So-Yeon Choi
- Department of Biotechnology, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, Gyeonggi-do 13488, Korea; (J.-H.N.); (S.-Y.C.)
| | - Nam-Chul Jung
- Pharos Vaccine Inc., 14 Galmachiro 288 bun-gil, Jungwon-gu, Seongnam, Gyeonggi-do 13201, Korea; (J.-H.L.); (N.-C.J.)
| | - Jie-Young Song
- Department of Radiation Cancer Sciences, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Korea;
| | - Han-Geuk Seo
- Department of Food Science and Biotechnology of Animal Products, Sanghuh College of Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea;
| | - Dae-Seog Lim
- Department of Biotechnology, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, Gyeonggi-do 13488, Korea; (J.-H.N.); (S.-Y.C.)
- Correspondence: ; Tel.: +82-10-2770-4777
| |
Collapse
|
10
|
Kasahara M. Role of immunoproteasomes and thymoproteasomes in health and disease. Pathol Int 2021; 71:371-382. [PMID: 33657242 DOI: 10.1111/pin.13088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/11/2021] [Indexed: 12/14/2022]
Abstract
The proteasome is a multisubunit protease that degrades intracellular proteins into small peptides. Besides playing a pivotal role in many cellular processes indispensable for survival, it is involved in the production of peptides presented by major histocompatibility complex class I molecules. In addition to the standard proteasome shared in all eukaryotes, jawed vertebrates have two specialized forms of proteasome known as immunoproteasomes and thymoproteasomes. The immunoproteasome, which contains cytokine-inducible catalytic subunits with distinct cleavage specificities, produces peptides presented by class I molecules more efficiently than the standard proteasome. The thymoproteasome, which contains a unique catalytic subunit β5t, is a tissue-specific proteasome expressed exclusively in cortical thymic epithelial cells. It plays a critical role in CD8+ cytotoxic T cell development via positive selection. This review provides a brief overview on the structure and function of these specialized forms of proteasome and their involvement in human disease.
Collapse
Affiliation(s)
- Masanori Kasahara
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
11
|
Shi C, Han W, Zhang M, Zang R, Du K, Li L, Xu X, Li C, Wang S, Qiu P, Guan H, Yang J, Xiao S, Wang X. Sulfated polymannuroguluronate TGC161 ameliorates leukopenia by inhibiting CD4 + T cell apoptosis. Carbohydr Polym 2020; 247:116728. [PMID: 32829850 PMCID: PMC7336955 DOI: 10.1016/j.carbpol.2020.116728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/23/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023]
Abstract
Polysaccharides have aroused considerable interest due to their diverse biological activities and low toxicity. In this study, we evaluated the effect of marine polysaccharide sulfated polymannuroguluronate (TGC161) on the leukopenia induced by chemotherapy. It is found that TGC161 ameliorates the leukopenia. Besides, TGC161 would promote CD4+ T cell differentiation and maturation in the thymus, but does not have a significant effect on precursor cells in bone marrow. Furthermore, TGC161 inhibits CD4+ T cell apoptosis in vitro. Collectively, our findings offer a natural and harmless polysaccharide to ameliorate leukopenia.
Collapse
Affiliation(s)
- Chuanqin Shi
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Wenwei Han
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Meifang Zhang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Ruochen Zang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Kaixin Du
- Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China
| | - Li Li
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China
| | - Ximing Xu
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China
| | - Chunxia Li
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China
| | - Shixin Wang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China
| | - Peiju Qiu
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China
| | - Huashi Guan
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China
| | - Jinbo Yang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China
| | - Shuai Xiao
- Department of Gastrointestinal Surgery and Institute of Clinical Medicine, the First Affiliated Hospital, University of South China, Hengyang, 421001, China.
| | - Xin Wang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China.
| |
Collapse
|
12
|
Asahi Y, Hatanaka KC, Hatanaka Y, Kamiyama T, Orimo T, Shimada S, Nagatsu A, Sakamoto Y, Kamachi H, Kobayashi N, Fukai M, Taketomi A. Prognostic impact of CD8+ T cell distribution and its association with the HLA class I expression in intrahepatic cholangiocarcinoma. Surg Today 2020; 50:931-940. [PMID: 32040618 DOI: 10.1007/s00595-020-01967-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE A lack of effective systemic therapy is one reason for the poor prognosis of intrahepatic cholangiocarcinoma. Newly developed immune checkpoint inhibitors function by minimizing CD8+ T cell suppression to improve tumor-specific responses. This study aimed to examine the characteristics of CD8+ T cells in intrahepatic cholangiocarcinoma. METHODS Clinicopathological data, including the overall survival, of 69 cases of postoperative intrahepatic cholangiocarcinoma were prospectively investigated. We then immunohistochemically stained for CD8, Foxp3, CD163, PD-L1, and human leukocyte antigen (HLA) class I and counted the number of CD8+ T cells, Foxp3+ T cells, and CD163+ macrophages in different areas (outer border, interborder, and intratumor). RESULTS A significant difference was found in the 5-year overall survival between the CD8+ T cell high group (45.5%) and low group (24.7%) in the outer border area (p = 0.0103). Furthermore, the number of CD8+ T cells and the high expression of HLA class I were positively correlated (p = 0.0341). CONCLUSION The number of CD8+ T cells in the outer border area of the tumor correlated with the HLA class I expression of intrahepatic cholangiocarcinoma and may therefore be a prognostic factor for patients with postoperative intrahepatic cholangiocarcinoma.
Collapse
Affiliation(s)
- Yoh Asahi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Kita-ku, Kita 15, Nishi 7, Sapporo, Hokkaido, 060-8638, Japan
| | - Kanako C Hatanaka
- Clinical Biobank, Clinical Research and Medical Innovation Center, Hokkaido University Hospital, Kita-ku, Kita 15, Nishi 7, Sapporo, Hokkaido, 060-8638, Japan
| | - Yutaka Hatanaka
- Research Division of Genome Companion Diagnostics, Hokkaido University Hospital, Kita-ku, Kita 15, Nishi 7, Sapporo, Hokkaido, 060-8638, Japan
| | - Toshiya Kamiyama
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Kita-ku, Kita 15, Nishi 7, Sapporo, Hokkaido, 060-8638, Japan
| | - Tatsuya Orimo
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Kita-ku, Kita 15, Nishi 7, Sapporo, Hokkaido, 060-8638, Japan
| | - Shingo Shimada
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Kita-ku, Kita 15, Nishi 7, Sapporo, Hokkaido, 060-8638, Japan
| | - Akihisa Nagatsu
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Kita-ku, Kita 15, Nishi 7, Sapporo, Hokkaido, 060-8638, Japan
| | - Yuzuru Sakamoto
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Kita-ku, Kita 15, Nishi 7, Sapporo, Hokkaido, 060-8638, Japan
| | - Hirofumi Kamachi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Kita-ku, Kita 15, Nishi 7, Sapporo, Hokkaido, 060-8638, Japan
| | - Nozomi Kobayashi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Kita-ku, Kita 15, Nishi 7, Sapporo, Hokkaido, 060-8638, Japan
| | - Moto Fukai
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Kita-ku, Kita 15, Nishi 7, Sapporo, Hokkaido, 060-8638, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Kita-ku, Kita 15, Nishi 7, Sapporo, Hokkaido, 060-8638, Japan.
| |
Collapse
|
13
|
Kondo K, Ohigashi I, Takahama Y. Thymus machinery for T-cell selection. Int Immunol 2020; 31:119-125. [PMID: 30476234 DOI: 10.1093/intimm/dxy081] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 11/20/2018] [Indexed: 01/01/2023] Open
Abstract
An immunocompetent and self-tolerant pool of naive T cells is formed in the thymus through the process of repertoire selection. T cells that are potentially capable of responding to foreign antigens are positively selected in the thymic cortex and are further selected in the thymic medulla to help prevent self-reactivity. The affinity between T-cell antigen receptors expressed by newly generated T cells and self-peptide-major histocompatibility complexes displayed in the thymic microenvironments plays a key role in determining the fate of developing T cells during thymic selection. Recent advances in our knowledge of the biology of thymic epithelial cells have revealed unique machinery that contributes to positive and negative selection in the thymus. In this article, we summarize recent findings on thymic T-cell selection, focusing on the machinery unique to thymic epithelial cells.
Collapse
Affiliation(s)
- Kenta Kondo
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Kuramoto, Tokushima, Japan
| | - Izumi Ohigashi
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Kuramoto, Tokushima, Japan
| | - Yousuke Takahama
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Kuramoto, Tokushima, Japan
| |
Collapse
|
14
|
Merrheim J, Villegas J, Van Wassenhove J, Khansa R, Berrih-Aknin S, le Panse R, Dragin N. Estrogen, estrogen-like molecules and autoimmune diseases. Autoimmun Rev 2020; 19:102468. [PMID: 31927086 DOI: 10.1016/j.autrev.2020.102468] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022]
Abstract
In western countries, the slope of autoimmune disease (AD) incidence is increasing and affects 5-8% of the population. Mainly prevalent in women, these pathologies are due to thymic tolerance processes breakdown. The female sex hormone, estrogen, is involved in this AD female susceptibility. However, predisposition factors have to act in concert with unknown triggering environmental factors (virus, microbiota, pollution) to initiate AD. Individuals are exposed to various environmental compounds that display endocrine disruption abilities. The cellular effects of some of these molecules may be mediated through the aryl hydrocarbon receptor (AhR). Here, we review the effects of these molecules on the homeostasis of the thymic cells, the immune tolerance intrinsic factors (transcription factors, epigenetic marks) and on the immune tolerance extrinsic factors (microbiota, virus sensibility). This review highlights the contribution of estrogen and endocrine disruptors on the dysregulation of mechanisms sustaining AD development.
Collapse
Affiliation(s)
- Judith Merrheim
- Sorbonne Université, Paris, France; Inserm UMRS 974, Paris, France; AIM, Institute of Myology, Paris, France; Centre de Recherche en Myologie, Sorbonne Université, Inserm UMRS 974, Hôpital La Pitié- Salpêtrière, 105 Bd de l'hôpital, 75013 Paris, France
| | - José Villegas
- Sorbonne Université, Paris, France; Inserm UMRS 974, Paris, France; AIM, Institute of Myology, Paris, France; Centre de Recherche en Myologie, Sorbonne Université, Inserm UMRS 974, Hôpital La Pitié- Salpêtrière, 105 Bd de l'hôpital, 75013 Paris, France
| | - Jérôme Van Wassenhove
- Sorbonne Université, Paris, France; Inserm UMRS 974, Paris, France; AIM, Institute of Myology, Paris, France; Centre de Recherche en Myologie, Sorbonne Université, Inserm UMRS 974, Hôpital La Pitié- Salpêtrière, 105 Bd de l'hôpital, 75013 Paris, France
| | - Rémi Khansa
- Sorbonne Université, Paris, France; Inserm UMRS 974, Paris, France; AIM, Institute of Myology, Paris, France; Centre de Recherche en Myologie, Sorbonne Université, Inserm UMRS 974, Hôpital La Pitié- Salpêtrière, 105 Bd de l'hôpital, 75013 Paris, France
| | - Sonia Berrih-Aknin
- Sorbonne Université, Paris, France; Inserm UMRS 974, Paris, France; AIM, Institute of Myology, Paris, France; Centre de Recherche en Myologie, Sorbonne Université, Inserm UMRS 974, Hôpital La Pitié- Salpêtrière, 105 Bd de l'hôpital, 75013 Paris, France
| | - Rozen le Panse
- Sorbonne Université, Paris, France; Inserm UMRS 974, Paris, France; AIM, Institute of Myology, Paris, France; Centre de Recherche en Myologie, Sorbonne Université, Inserm UMRS 974, Hôpital La Pitié- Salpêtrière, 105 Bd de l'hôpital, 75013 Paris, France
| | - Nadine Dragin
- Sorbonne Université, Paris, France; Inserm UMRS 974, Paris, France; Inovarion, Paris, France; Centre de Recherche en Myologie, Sorbonne Université, Inserm UMRS 974, Hôpital La Pitié- Salpêtrière, 105 Bd de l'hôpital, 75013 Paris, France.
| |
Collapse
|
15
|
Insights into Thymus Development and Viral Thymic Infections. Viruses 2019; 11:v11090836. [PMID: 31505755 PMCID: PMC6784209 DOI: 10.3390/v11090836] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 12/16/2022] Open
Abstract
T-cell development in the thymus is a complex and highly regulated process, involving a wide variety of cells and molecules which orchestrate thymocyte maturation into either CD4+ or CD8+ single-positive (SP) T cells. Here, we briefly review the process regulating T-cell differentiation, which includes the latest advances in this field. In particular, we highlight how, starting from a pool of hematopoietic stem cells in the bone marrow, the sequential action of transcriptional factors and cytokines dictates the proliferation, restriction of lineage potential, T-cell antigen receptors (TCR) gene rearrangements, and selection events on the T-cell progenitors, ultimately leading to the generation of mature T cells. Moreover, this review discusses paradigmatic examples of viral infections affecting the thymus that, by inducing functional changes within this lymphoid gland, consequently influence the behavior of peripheral mature T-lymphocytes.
Collapse
|
16
|
Luan R, Liang Z, Zhang Q, Sun L, Zhao Y. Molecular regulatory networks of thymic epithelial cell differentiation. Differentiation 2019; 107:42-49. [PMID: 31238242 DOI: 10.1016/j.diff.2019.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 06/04/2019] [Accepted: 06/12/2019] [Indexed: 01/15/2023]
Abstract
Functional mature T cells are generated in the thymus. Thymic epithelial cells (TECs) provide the essential microenvironment for T cell development and maturation. According to their function and localization, TECs are roughly divided into cortical TECs (cTECs) and medullary TECs (mTECs), which are responsible for positive and negative selection, respectively. This review summarizes the current understanding of TEC biology, the identification of fetal and adult bipotent TEC progenitors, and the signaling pathways that control the development and maturation of TECs. The understanding of the ontogeny, differentiation, maturation and function of cTECs lags behind that of mTECs. Better understanding TEC biology will provide clues about TEC development and the applications of thymus engineering.
Collapse
Affiliation(s)
- Rong Luan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhanfeng Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qian Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Liguang Sun
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, Jilin, China.
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
17
|
Spetz J, Presser AG, Sarosiek KA. T Cells and Regulated Cell Death: Kill or Be Killed. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 342:27-71. [PMID: 30635093 DOI: 10.1016/bs.ircmb.2018.07.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell death plays two major complementary roles in T cell biology: mediating the removal of cells that are targeted by T cells and the removal of T cells themselves. T cells serve as major actors in the adaptive immune response and function by selectively killing cells which are infected or dysfunctional. This feature is highly involved during homeostatic maintenance, and is relied upon and modulated in the context of cancer immunotherapy. The vital recognition and elimination of both autoreactive T cells and cells which are unable to recognize threats is a highly selective and regulated process. Moreover, detection of potential threats will result in the activation and expansion of T cells, which on resolution of the immune response will need to be eliminated. The culling of these T cells can be executed via a multitude of cell death pathways which are used in context-specific manners. Failure of these processes may result in an accumulation of misdirected or dysfunctional T cells, leading to complications such as autoimmunity or cancer. This review will focus on the role of cell death regulation in the maintenance of T cell homeostasis, as well as T cell-mediated elimination of infected or dysfunctional cells, and will summarize and discuss the current knowledge of the cellular mechanisms which are implicated in these processes.
Collapse
Affiliation(s)
- Johan Spetz
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| | - Adam G Presser
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| | - Kristopher A Sarosiek
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
18
|
Villegas JA, Gradolatto A, Truffault F, Roussin R, Berrih-Aknin S, Le Panse R, Dragin N. Cultured Human Thymic-Derived Cells Display Medullary Thymic Epithelial Cell Phenotype and Functionality. Front Immunol 2018; 9:1663. [PMID: 30083154 PMCID: PMC6064927 DOI: 10.3389/fimmu.2018.01663] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/04/2018] [Indexed: 12/13/2022] Open
Abstract
Thymic epithelial cells are one of the main components of the thymic microenvironment required for T-cell development. In this work, we describe an efficient method free of enzymatic and Facs-sorted methods to culture human medullary thymic epithelial cells without affecting the cell phenotypic, physiologic and functional features. Human medulla thymic epithelial cells (mTECs) are obtained by culturing thymic biopsies explants. After 7 days of primo-culture, mTECs keep their ability to express key molecules involved in immune tolerance processes such as autoimmune regulator, tissue-specific antigens, chemokines, and cytokines. In addition, the cells sensor their cultured environment and consequently adjust their gene expression network. Therefore, we describe and provide a human mTEC model that may be used to test the effect of various molecules on thymic epithelial cell homeostasis and physiology. This method should allow the investigations of the specificities and the knowledge of human mTECs in normal or pathological conditions and therefore discontinue the extrapolations done on the murine models.
Collapse
Affiliation(s)
- José A Villegas
- INSERM, AIM, Center of Research in Myology, UMRS974, Sorbonne University, Paris, France
| | - Angeline Gradolatto
- INSERM, AIM, Center of Research in Myology, UMRS974, Sorbonne University, Paris, France
| | - Frédérique Truffault
- INSERM, AIM, Center of Research in Myology, UMRS974, Sorbonne University, Paris, France
| | | | - Sonia Berrih-Aknin
- INSERM, AIM, Center of Research in Myology, UMRS974, Sorbonne University, Paris, France
| | - Rozen Le Panse
- INSERM, AIM, Center of Research in Myology, UMRS974, Sorbonne University, Paris, France
| | - Nadine Dragin
- INSERM, AIM, Center of Research in Myology, UMRS974, Sorbonne University, Paris, France.,Inovarion, Paris, France
| |
Collapse
|
19
|
Bornstein C, Nevo S, Giladi A, Kadouri N, Pouzolles M, Gerbe F, David E, Machado A, Chuprin A, Tóth B, Goldberg O, Itzkovitz S, Taylor N, Jay P, Zimmermann VS, Abramson J, Amit I. Single-cell mapping of the thymic stroma identifies IL-25-producing tuft epithelial cells. Nature 2018; 559:622-626. [PMID: 30022162 DOI: 10.1038/s41586-018-0346-1] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 06/06/2018] [Indexed: 12/18/2022]
Abstract
T cell development and selection are coordinated in the thymus by a specialized niche of diverse stromal populations1-3. Although much progress has been made over the years in identifying the functions of the different cell types of the thymic stromal compartment, there is no comprehensive characterization of their diversity and heterogeneity. Here we combined massively parallel single-cell RNA-sequencing4,5, spatial mapping, chromatin profiling and gene targeting to characterize de novo the entire stromal compartment of the mouse thymus. We identified dozens of cell states, with thymic epithelial cells (TECs) showing the highest degree of heterogeneity. Our analysis highlights four major medullary TEC (mTEC I-IV) populations, with distinct molecular functions, epigenetic landscapes and lineage regulators. Specifically, mTEC IV constitutes a new and highly divergent TEC lineage with molecular characteristics of the gut chemosensory epithelial tuft cells. Mice deficient in Pou2f3, a master regulator of tuft cells, have complete and specific depletion of mTEC IV cells, which results in increased levels of thymus-resident type-2 innate lymphoid cells. Overall, our study provides a comprehensive characterization of the thymic stroma and identifies a new tuft-like TEC population, which is critical for shaping the immune niche in the thymus.
Collapse
Affiliation(s)
- Chamutal Bornstein
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Shir Nevo
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Amir Giladi
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Noam Kadouri
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Marie Pouzolles
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - François Gerbe
- IGF, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Eyal David
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Alice Machado
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Anna Chuprin
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Beáta Tóth
- Department of Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ori Goldberg
- Department of Pediatrics, Schneider Children's Medical Center, Petach Tikva, Israel
| | - Shalev Itzkovitz
- Department of Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Naomi Taylor
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Philippe Jay
- IGF, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Valérie S Zimmermann
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Jakub Abramson
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
20
|
Takaba H, Takayanagi H. The Mechanisms of T Cell Selection in the Thymus. Trends Immunol 2017; 38:805-816. [PMID: 28830733 DOI: 10.1016/j.it.2017.07.010] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/25/2017] [Accepted: 07/25/2017] [Indexed: 12/17/2022]
Abstract
T cells undergo positive and negative selection in the thymic cortex and medulla, respectively. A promiscuous expression of a wide array of self-antigens in the thymus is essential for the negative selection of self-reactive T cells and the establishment of central tolerance. Aire was originally thought to be the exclusive factor regulating the expression of tissue-restricted antigens, but Fezf2 recently emerged as a critical transcription factor in this regulatory activity. Fezf2 is selectively expressed in thymic medullary epithelial cells, regulates a large number of tissue-restricted antigens and suppresses the onset of autoimmune responses. Here, we discuss novel findings on the transcriptional mechanisms of tissue restricted-antigen expression in the medullary thymic epithelial cells and its effects on T cell selection.
Collapse
Affiliation(s)
- Hiroyuki Takaba
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
21
|
Azizi G, Ghanavatinejad A, Abolhassani H, Yazdani R, Rezaei N, Mirshafiey A, Aghamohammadi A. Autoimmunity in primary T-cell immunodeficiencies. Expert Rev Clin Immunol 2016; 12:989-1006. [PMID: 27063703 DOI: 10.1080/1744666x.2016.1177458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Primary immunodeficiency diseases (PID) are a genetically heterogeneous group of more than 270 disorders that affect distinct components of both humoral and cellular arms of the immune system. Primary T cell immunodeficiencies affect subjects at the early age of life. In most cases, T-cell PIDs become apparent as combined T- and B-cell deficiencies. Patients with T-cell PID are prone to life-threatening infections. On the other hand, non-infectious complications such as lymphoproliferative diseases, cancers and autoimmunity seem to be associated with the primary T-cell immunodeficiencies. Autoimmune disorders of all kinds (organ specific or systemic ones) could be subjected to this class of PIDs; however, the most frequent autoimmune disorders are immune thrombocytopenic purpura (ITP) and autoimmune hemolytic anemia (AIHA). In this review, we discuss the proposed mechanisms of autoimmunity and review the literature reported on autoimmune disorder in each type of primary T-cell immunodeficiencies.
Collapse
Affiliation(s)
- Gholamreza Azizi
- a Department of Laboratory Medicine , Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences , Karaj , Iran.,b Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Alireza Ghanavatinejad
- c Department of Immunology, School of Public Health , Tehran University of Medical Sciences , Tehran , Iran
| | - Hassan Abolhassani
- b Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,d Division of Clinical Immunology, Department of Laboratory Medicine , Karolinska Institute at Karolinska University Hospital Huddinge , Stockholm , Sweden
| | - Reza Yazdani
- e Department of Immunology, School of Medicine , Isfahan University of Medical Sciences , Isfahan , Iran
| | - Nima Rezaei
- b Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Abbas Mirshafiey
- c Department of Immunology, School of Public Health , Tehran University of Medical Sciences , Tehran , Iran
| | - Asghar Aghamohammadi
- b Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
22
|
Ohigashi I, Kozai M, Takahama Y. Development and developmental potential of cortical thymic epithelial cells. Immunol Rev 2016; 271:10-22. [DOI: 10.1111/imr.12404] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Izumi Ohigashi
- Division of Experimental Immunology; Institute for Genome Research; University of Tokushima; Tokushima Japan
| | - Mina Kozai
- Division of Experimental Immunology; Institute for Genome Research; University of Tokushima; Tokushima Japan
| | - Yousuke Takahama
- Division of Experimental Immunology; Institute for Genome Research; University of Tokushima; Tokushima Japan
| |
Collapse
|
23
|
Baik S, Sekai M, Hamazaki Y, Jenkinson WE, Anderson G. Relb acts downstream of medullary thymic epithelial stem cells and is essential for the emergence of RANK(+) medullary epithelial progenitors. Eur J Immunol 2016; 46:857-62. [PMID: 26806881 PMCID: PMC5102679 DOI: 10.1002/eji.201546253] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/15/2016] [Accepted: 01/21/2016] [Indexed: 11/11/2022]
Abstract
Thymic epithelial cells (TECs) provide essential signals for αβT-cell development, and medullary TECs (mTECs) control T-cell tolerance through both negative selection and Foxp3(+) regulatory T (Treg) cell development. Although heterogeneity within the mTEC compartment is well studied, the molecular regulators of specific stages of mTEC development are still poorly understood. Given the importance of the RANK-RANKL axis in thymus medulla formation, we have used RANK Venus reporter mice to analyze the ontogeny of RANK(+) TECs during development and correlated RANK expression with mTEC stem cells defined by SSEA-1. In addition, we have investigated how requirements for the key regulators Foxn1 and Relb map to specific stages of mTEC development. Here, we show SSEA-1(+) mTEC stem cells emerge prior to RANK expression and are present in both nude and Relb(-/-) mice, providing direct evidence that mTEC lineage specification occurs independently of Foxn1 and Relb. In contrast, we show that Relb is necessary for the effective production of downstream RANK(+) mTEC progenitors. Collectively, our work defines stage-specific requirements for critical TEC regulators during medulla development, including the timing of Relb dependency, and provides new information on mechanisms controlling mTEC specification.
Collapse
Affiliation(s)
- Song Baik
- MRC Centre for Immune Regulation, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Miho Sekai
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Yoko Hamazaki
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - William E Jenkinson
- MRC Centre for Immune Regulation, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Graham Anderson
- MRC Centre for Immune Regulation, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| |
Collapse
|
24
|
Takada K, Van Laethem F, Xing Y, Akane K, Suzuki H, Murata S, Tanaka K, Jameson SC, Singer A, Takahama Y. TCR affinity for thymoproteasome-dependent positively selecting peptides conditions antigen responsiveness in CD8(+) T cells. Nat Immunol 2015; 16:1069-76. [PMID: 26301566 DOI: 10.1038/ni.3237] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/01/2015] [Indexed: 12/12/2022]
Abstract
In the thymus, low-affinity T cell antigen receptor (TCR) engagement facilitates positive selection of a useful T cell repertoire. Here we report that TCR responsiveness of mature CD8(+) T cells is fine tuned by their affinity for positively selecting peptides in the thymus and that optimal TCR responsiveness requires positive selection on major histocompatibility complex class I-associated peptides produced by the thymoproteasome, which is specifically expressed in the thymic cortical epithelium. Thymoproteasome-independent positive selection of monoclonal CD8(+) T cells results in aberrant TCR responsiveness, homeostatic maintenance and immune responses to infection. These results demonstrate a novel aspect of positive selection, in which TCR affinity for positively selecting peptides produced by thymic epithelium determines the subsequent antigen responsiveness of mature CD8(+) T cells in the periphery.
Collapse
Affiliation(s)
- Kensuke Takada
- Division of Experimental Immunology, Institute for Genome Research, University of Tokushima, Tokushima, Japan
| | - Francois Van Laethem
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yan Xing
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kazuyuki Akane
- Department of Immunology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Haruhiko Suzuki
- Department of Immunology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Shigeo Murata
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Keiji Tanaka
- Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Stephen C Jameson
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Alfred Singer
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yousuke Takahama
- Division of Experimental Immunology, Institute for Genome Research, University of Tokushima, Tokushima, Japan
| |
Collapse
|