1
|
The Immune Response to Nematode Infection. Int J Mol Sci 2023; 24:ijms24032283. [PMID: 36768605 PMCID: PMC9916427 DOI: 10.3390/ijms24032283] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Nematode infection is a major threat to the health of humans, domestic animals and wildlife. Nematodes vary in their effect on the host and in the mechanisms underlying immunity but the general features are becoming clear. There is considerable variation among individuals in resistance to infection and much of this variation is due to genetic variation in the immune response. The major histocompatibility complex has a strong influence on resistance to infection but other genes are collectively more important. Resistant individuals produce more IgA, eosinophils, IgE and mast cells than susceptible individuals and this is a consequence of stronger type 2 (Th2) immune responses. A variety of factors promote Th2 responses including genetic background, diet, molecules produced by the parasite and the location of the infection. A variety of cells and molecules including proteins, glycolipids and RNA act in concert to promote responses and to regulate the response. Nematodes themselves also modulate the host response and over 20 parasite-derived immunomodulatory molecules have been identified. Different species of nematodes modulate the immune response in different ways and probably use multiple molecules. The reasons for this are unclear and the interactions among immunomodulators have still to be investigated.
Collapse
|
2
|
Oettgen HC. Mast cells in food allergy: Inducing immediate reactions and shaping long-term immunity. J Allergy Clin Immunol 2023; 151:21-25. [PMID: 36328809 DOI: 10.1016/j.jaci.2022.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/08/2022] [Accepted: 10/04/2022] [Indexed: 11/11/2022]
Abstract
Mast cells are distributed throughout the gastrointestinal tract and function as the main effector cells of IgE-mediated allergic reactions to foods. Allergen-induced cross-linking of IgE antibodies bound to high-affinity IgE receptors, FcεRI, on the surface of mast cells triggers their activation, resulting in the release of mediators of immediate hypersensitivity. These mediators rapidly induce both local gastrointestinal and systemic physiological responses including anaphylaxis. Emerging evidence has revealed that, in addition to inciting immediate reactions, mast cells are key regulators of adaptive immunity to foods. In the gastrointestinal mucosa they provide the priming cytokines that initiate and, over time, consolidate adaptive TH2 responses to ingested allergens as well as TNF and chemokines that orchestrate the recruitment of tissue-infiltrating leukocytes that drive type 2 tissue inflammation. Patients with atopic dermatitis have increased intestinal mast cell numbers and are at a greater risk for food allergy. Recent studies have uncovered a skin-gut axis in which epicutaneous allergen exposure drives intestinal mast cell expansion. The activating effects of IgE antibodies in mast cells are countered by food-specific IgG antibodies that signal via the inhibitory IgG receptor, FcγR2b, suppressing both immediate allergic reactions to foods and the type 2 immune adjuvant activity of mast cells.
Collapse
Affiliation(s)
- Hans C Oettgen
- Department of Pediatrics, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass.
| |
Collapse
|
3
|
The Role of Small Extracellular Vesicles and MicroRNAs in the Diagnosis and Treatment of Allergic Rhinitis and Nasal Polyps. Mediators Inflamm 2022; 2022:4428617. [PMID: 35757106 PMCID: PMC9225904 DOI: 10.1155/2022/4428617] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 12/29/2022] Open
Abstract
Allergic rhinitis and nasal polyps are common otorhinolaryngological diseases. Small extracellular vesicles and microRNAs have recently become major research topics of interest due to their key regulatory roles in cancer, inflammation, and various diseases. Although very detailed and in-depth studies on the pathogenesis and pathophysiology of allergic rhinitis and nasal polyps have been conducted, few studies have assessed the regulatory effects of exosomes and microRNAs on allergic rhinitis and nasal polyps. This paper reviews the studies on small extracellular vesicles and microRNAs in allergic rhinitis and nasal polyps conducted in recent years and focuses on the regulation of small extracellular vesicles and microRNAs in allergic rhinitis and nasal polyps with the aim of providing insights for the future diagnosis and treatment of allergic rhinitis and nasal polyps.
Collapse
|
4
|
Qin B, Peng Y, Zhong C, Cai Y, Zhou S, Chen H, Zhuang J, Zeng H, Xu C, Xu H, Li J, Ying G, Gu C, Chen G, Wang L. Mast Cells Mediate Inflammatory Injury and Aggravate Neurological Impairment in Experimental Subarachnoid Hemorrhage Through Microglial PAR-2 Pathway. Front Cell Neurosci 2021; 15:710481. [PMID: 34646122 PMCID: PMC8503547 DOI: 10.3389/fncel.2021.710481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/19/2021] [Indexed: 11/30/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a devastating cerebrovascular disease with high mortality and disability. Aberrant neuroinflammation has been identified as a critical factor accounting for the poor prognosis of SAH patients. Mast cells (MCs), the sentinel cells of the immune system, play a critical in the early immune reactions and participate in multiple pathophysiological process. However, the exact role of MCs on the pathophysiological process after SAH has not been fully understood. The current study was conducted to determine the role of MCs and MC stabilization in the context of SAH. Mouse SAH model was established by endovascular perforation process. Mice received saline or cromolyn (MC stabilizer) or compound 48/80 (MCs degranulator). Post-SAH evaluation included neurobehavioral test, western blot, immunofluorescence, and toluidine blue staining. We demonstrated that SAH induced MCs activation/degranulation. Administration of MC stabilizer cromolyn conferred a better neurologic outcome and decreased brain edema when compared with SAH+vehicle group. Furthermore, cromolyn significantly inhibited neuroinflammatory response and alleviated neuronal damage after SAH. However, pharmacological activation of MCs with compound 48/80 dramatically aggravated SAH-induced brain injury and exacerbated neurologic outcomes. Notably, pharmacological inhibition of microglial PAR-2 significantly reversed MCs-induced inflammatory response and neurological impairment. Additionally, the effect of MCs-derived tryptase in mediating neuroinflammation was also abolished by the microglial PAR-2 blockage in vitro. Taken together, MCs yielded inflammatory injury through activating microglia-related neuroinflammation after SAH. These data shed light on the notion that MCs might be a novel and promising therapeutic target for SAH.
Collapse
Affiliation(s)
- Bing Qin
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yucong Peng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Zhong
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shengjun Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Huaijun Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jianfeng Zhuang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hanhai Zeng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chaoran Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hangzhe Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jianru Li
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Guangyu Ying
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chi Gu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Gao Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|