1
|
Tsuchiya J, Mino S, Fujiwara F, Okuma N, Ichihashi Y, Morris RM, Nunn BL, Timmins-Schiffman E, Sawabe T. Time course transcriptomic profiling suggests Crp/Fnr transcriptional regulation of nosZ gene in a N 2O-reducing thermophile. iScience 2024; 27:111074. [PMID: 39507244 PMCID: PMC11539149 DOI: 10.1016/j.isci.2024.111074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/31/2024] [Accepted: 09/26/2024] [Indexed: 11/08/2024] Open
Abstract
Nitrosophilus labii HRV44T is a thermophilic chemolithoautotroph possessing clade II type nitrous oxide (N2O) reductase (NosZ) that has an outstanding activity in reducing N2O to dinitrogen gas. Here, we attempt to understand molecular responses of HRV44T to N2O. Time course transcriptome and proteomic mass spectrometry analyses under anaerobic conditions revealed that most of transcripts and peptides related to denitrification were constitutively detected, even in the absence of any nitrogen oxides as electron acceptors. Gene expressions involved in electron transport to NosZ were upregulated within 3 h in response to N2O, rather than upregulation of nos genes. Two genes encoding Crp/Fnr transcriptional regulators observed upstream of nap and nor gene clusters had significant negative correlations with nosZ expression. Statistical path analysis further inferred a significant causal relationship between the gene expression of nosZ and that of one Crp/Fnr regulators. Our findings contribute to understanding the transcriptional regulation in clade II type N2O-reducers.
Collapse
Affiliation(s)
- Jiro Tsuchiya
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Sayaka Mino
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Fuki Fujiwara
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Nao Okuma
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | | | - Robert M. Morris
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - Brook L. Nunn
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Tomoo Sawabe
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| |
Collapse
|
2
|
Yang LY, Li S, Shangguan HY, Qiao ZH, Huang XR, Zhou SYD, Li H, Su XX, Sun X, Zhu YG, Yang XR. Diversity and Activity of Soil N 2O-Reducing Bacteria Shaped by Urbanization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17295-17303. [PMID: 39291625 DOI: 10.1021/acs.est.4c01750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Nitrous oxide (N2O) is a potent greenhouse gas with various production pathways. N2O reductase (N2OR) is the primary N2O sink, but the distribution of its gene clades, typically nosZI and atypically nosZII, along urbanization gradients remains poorly understood. Here we sampled soils from forests, parks, and farmland across eight provinces in eastern China, using high-throughput sequencing to distinguish between two N2O-reducing bacteria clades. A deterministic process mainly determined assemblies of the nosZI communities. Homogeneous selection drove nosZI deterministic processes, and both homogeneous and heterogeneous selection influenced nosZII. This suggests nosZII is more sensitive to environmental changes than nosZI, with significant changes in community structure over time or space. Ecosystems with stronger anthropogenic disturbance, such as urban areas, provide diverse ecological niches for N2O-reducing bacteria (especially nosZII) to adapt to environmental fluctuations. Structural equation modeling (SEM) and correlation analyses revealed that pH significantly influences the community composition of both N2O-reducing bacteria clades. This study underscores urbanization's impact on N2O-reducing bacteria in urban soils, highlighting the importance of nosZII and survival strategies. It offers novel insights into the role of atypical denitrifiers among N2O-reducing bacteria, underscoring their potential ecological importance in mitigating N2O emissions from urban soils.
Collapse
Affiliation(s)
- Le-Yang Yang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing100049, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Shun Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Hua-Yuan Shangguan
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing100049, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Zhi-Hong Qiao
- University of Chinese Academy of Sciences, Beijing100049, China
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Xin-Rong Huang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing100049, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Shu-Yi-Dan Zhou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Hu Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing100049, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Xiao-Xuan Su
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Xin Sun
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing100049, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing100049, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Xiao-Ru Yang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing100049, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| |
Collapse
|
3
|
Zhou J, Deng W, Wu J, Xiang H, Shen X, Lin JG, Hong Y. Respiration and growth of Paracoccus denitrificans R-1 with nitrous oxide as an electron acceptor. Microbiol Spectr 2024; 12:e0381123. [PMID: 38647341 PMCID: PMC11237620 DOI: 10.1128/spectrum.03811-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/22/2024] [Indexed: 04/25/2024] Open
Abstract
In the nitrogen biogeochemical cycle, the reduction of nitrous oxide (N2O) to N2 by N2O reductase, which is encoded by nosZ gene, is the only biological pathway for N2O consumption. In this study, we successfully isolated a strain of denitrifying Paracoccus denitrificans R-1 from sewage treatment plant sludge. This strain has strong N2O reduction capability, and the average N2O reduction rate was 5.10 ± 0.11 × 10-9 µmol·h-1·cell-1 under anaerobic condition in a defined medium. This reduction was accompanied by the stoichiometric consumption of acetate over time when N2O served as the sole electron acceptor and the reduction can yield energy to support microbial growth, suggesting that microbial N2O reduction is related to the energy generation process. Genomic analysis showed that the gene cluster encoding N2O reductase of P. denitrificans R-1 was composed of nosR, nosZ, nosD, nosF, nosY, nosL, and nosZ, which was identified as that in other strains in clade I. Respiratory inhibitors test indicated that the pathway of electron transport for N2O reduction was different from that of the traditional electron transport chain for aerobic respiration. Cu2+, silver nanoparticles, O2, and acidic conditions can strongly inhibit the reduction, whereas NO3- or NH4+ can promote it. These findings suggest that modular N2O reduction of P. denitrificans R-1 is linked to the electron transport and energy conservation, and dissimilatory N2O reduction is a form of microbial anaerobic respiration. IMPORTANCE Nitrous oxide (N2O) is a potent greenhouse gas and contributor to ozone layer destruction, and atmospheric N2O has increased steadily over the past century due to human activities. The release of N2O from fixed N is almost entirely controlled by microbial N2O reductase activities. Here, we investigated the ability to obtain energy for the growth of Paracoccus denitrificans R-1 by coupling the oxidation of various electron donors to N2O reduction. The modular N2O reduction process of denitrifying microorganism not only can consume N2O produced by itself but also can consume the external N2O generated from biological or abiotic pathways under suitable condition, which should be critical for controlling the release of N2O from ecosystems into the atmosphere.
Collapse
Affiliation(s)
- Jiaxian Zhou
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Wenfang Deng
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Jiapeng Wu
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Hua Xiang
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Xiaomei Shen
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Jih-Gaw Lin
- Institute of Environmental Engineering, National Yangming Chiao Tung University, Hsinchu City, Taiwan
| | - Yiguo Hong
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| |
Collapse
|
4
|
Hiis EG, Vick SHW, Molstad L, Røsdal K, Jonassen KR, Winiwarter W, Bakken LR. Unlocking bacterial potential to reduce farmland N 2O emissions. Nature 2024; 630:421-428. [PMID: 38811724 PMCID: PMC11168931 DOI: 10.1038/s41586-024-07464-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/25/2024] [Indexed: 05/31/2024]
Abstract
Farmed soils contribute substantially to global warming by emitting N2O (ref. 1), and mitigation has proved difficult2. Several microbial nitrogen transformations produce N2O, but the only biological sink for N2O is the enzyme NosZ, catalysing the reduction of N2O to N2 (ref. 3). Although strengthening the NosZ activity in soils would reduce N2O emissions, such bioengineering of the soil microbiota is considered challenging4,5. However, we have developed a technology to achieve this, using organic waste as a substrate and vector for N2O-respiring bacteria selected for their capacity to thrive in soil6-8. Here we have analysed the biokinetics of N2O reduction by our most promising N2O-respiring bacterium, Cloacibacterium sp. CB-01, its survival in soil and its effect on N2O emissions in field experiments. Fertilization with waste from biogas production, in which CB-01 had grown aerobically to about 6 × 109 cells per millilitre, reduced N2O emissions by 50-95%, depending on soil type. The strong and long-lasting effect of CB-01 is ascribed to its tenacity in soil, rather than its biokinetic parameters, which were inferior to those of other strains of N2O-respiring bacteria. Scaling our data up to the European level, we find that national anthropogenic N2O emissions could be reduced by 5-20%, and more if including other organic wastes. This opens an avenue for cost-effective reduction of N2O emissions for which other mitigation options are lacking at present.
Collapse
Affiliation(s)
- Elisabeth G Hiis
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Silas H W Vick
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Lars Molstad
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Kristine Røsdal
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | | | - Wilfried Winiwarter
- International Institute for Applied Systems Analysis, Laxenburg, Austria
- Institute of Environmental Engineering, University of Zielona Góra, Zielona Góra, Poland
| | - Lars R Bakken
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
5
|
Awala SI, Gwak JH, Kim Y, Jung MY, Dunfield PF, Wagner M, Rhee SK. Nitrous oxide respiration in acidophilic methanotrophs. Nat Commun 2024; 15:4226. [PMID: 38762502 PMCID: PMC11102522 DOI: 10.1038/s41467-024-48161-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/22/2024] [Indexed: 05/20/2024] Open
Abstract
Aerobic methanotrophic bacteria are considered strict aerobes but are often highly abundant in hypoxic and even anoxic environments. Despite possessing denitrification genes, it remains to be verified whether denitrification contributes to their growth. Here, we show that acidophilic methanotrophs can respire nitrous oxide (N2O) and grow anaerobically on diverse non-methane substrates, including methanol, C-C substrates, and hydrogen. We study two strains that possess N2O reductase genes: Methylocella tundrae T4 and Methylacidiphilum caldifontis IT6. We show that N2O respiration supports growth of Methylacidiphilum caldifontis at an extremely acidic pH of 2.0, exceeding the known physiological pH limits for microbial N2O consumption. Methylocella tundrae simultaneously consumes N2O and CH4 in suboxic conditions, indicating robustness of its N2O reductase activity in the presence of O2. Furthermore, in O2-limiting conditions, the amount of CH4 oxidized per O2 reduced increases when N2O is added, indicating that Methylocella tundrae can direct more O2 towards methane monooxygenase. Thus, our results demonstrate that some methanotrophs can respire N2O independently or simultaneously with O2, which may facilitate their growth and survival in dynamic environments. Such metabolic capability enables these bacteria to simultaneously reduce the release of the key greenhouse gases CO2, CH4, and N2O.
Collapse
Affiliation(s)
- Samuel Imisi Awala
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
- Center for Ecology and Environmental Toxicology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, South Korea
| | - Joo-Han Gwak
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Yongman Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Man-Young Jung
- Interdisciplinary Graduate Programme in Advance Convergence Technology and Science, Jeju National University, Jeju, Republic of Korea
- Department of Science Education, Jeju National University, Jeju, Republic of Korea
- Jeju Microbiome Center, Jeju National University, Jeju, Republic of Korea
| | - Peter F Dunfield
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Michael Wagner
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Sung-Keun Rhee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
6
|
Hunt KA, Carr AV, Otwell AE, Valenzuela JJ, Walker KS, Dixon ER, Lui LM, Nielsen TN, Bowman S, von Netzer F, Moon JW, Schadt CW, Rodriguez M, Lowe K, Joyner D, Davis KJ, Wu X, Chakraborty R, Fields MW, Zhou J, Hazen TC, Arkin AP, Wankel SD, Baliga NS, Stahl DA. Contribution of Microorganisms with the Clade II Nitrous Oxide Reductase to Suppression of Surface Emissions of Nitrous Oxide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7056-7065. [PMID: 38608141 DOI: 10.1021/acs.est.3c07972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
The sources and sinks of nitrous oxide, as control emissions to the atmosphere, are generally poorly constrained for most environmental systems. Initial depth-resolved analysis of nitrous oxide flux from observation wells and the proximal surface within a nitrate contaminated aquifer system revealed high subsurface production but little escape from the surface. To better understand the environmental controls of production and emission at this site, we used a combination of isotopic, geochemical, and molecular analyses to show that chemodenitrification and bacterial denitrification are major sources of nitrous oxide in this subsurface, where low DO, low pH, and high nitrate are correlated with significant nitrous oxide production. Depth-resolved metagenomes showed that consumption of nitrous oxide near the surface was correlated with an enrichment of Clade II nitrous oxide reducers, consistent with a growing appreciation of their importance in controlling release of nitrous oxide to the atmosphere. Our work also provides evidence for the reduction of nitrous oxide at a pH of 4, well below the generally accepted limit of pH 5.
Collapse
Affiliation(s)
- Kristopher A Hunt
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Alex V Carr
- Department of Molecular Engineering Sciences, University of Washington, Seattle, Washington 98105, United States
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Anne E Otwell
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, United States
| | | | - Kathleen S Walker
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Emma R Dixon
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Lauren M Lui
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Torben N Nielsen
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Samuel Bowman
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02540, United States
| | - Frederick von Netzer
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Ji-Won Moon
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Christopher W Schadt
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Miguel Rodriguez
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Kenneth Lowe
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Dominique Joyner
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Katherine J Davis
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana 59717, United States
| | - Xiaoqin Wu
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Romy Chakraborty
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Matthew W Fields
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana 59717, United States
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717, United States
| | - Jizhong Zhou
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma 73019, United States
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Terry C Hazen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Adam P Arkin
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Scott D Wankel
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02540, United States
| | - Nitin S Baliga
- Department of Molecular Engineering Sciences, University of Washington, Seattle, Washington 98105, United States
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - David A Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
7
|
Rivera-Millot A, Harrison LB, Veyrier FJ. Copper management strategies in obligate bacterial symbionts: balancing cost and benefit. Emerg Top Life Sci 2024; 8:29-35. [PMID: 38095549 PMCID: PMC10903467 DOI: 10.1042/etls20230113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 02/23/2024]
Abstract
Bacteria employ diverse mechanisms to manage toxic copper in their environments, and these evolutionary strategies can be divided into two main categories: accumulation and rationalization of metabolic pathways. The strategies employed depend on the bacteria's lifestyle and environmental context, optimizing the metabolic cost-benefit ratio. Environmental and opportunistically pathogenic bacteria often possess an extensive range of copper regulation systems in order to respond to variations in copper concentrations and environmental conditions, investing in diversity and/or redundancy as a safeguard against uncertainty. In contrast, obligate symbiotic bacteria, such as Neisseria gonorrhoeae and Bordetella pertussis, tend to have specialized and more parsimonious copper regulation systems designed to function in the relatively stable host environment. These evolutionary strategies maintain copper homeostasis even in challenging conditions like encounters within phagocytic cells. These examples highlight the adaptability of bacterial copper management systems, tailored to their specific lifestyles and environmental requirements, in the context of an evolutionary the trade-off between benefits and energy costs.
Collapse
Affiliation(s)
- Alex Rivera-Millot
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, Quebec H7V 1B7, Canada
| | - Luke B. Harrison
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, Quebec H7V 1B7, Canada
| | - Frédéric J. Veyrier
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, Quebec H7V 1B7, Canada
| |
Collapse
|
8
|
Wilkens D, Simon J. Biosynthesis and function of microbial methylmenaquinones. Adv Microb Physiol 2023; 83:1-58. [PMID: 37507157 DOI: 10.1016/bs.ampbs.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
The membranous quinone/quinol pool is essential for the majority of life forms and its composition has been widely used as a biomarker in microbial taxonomy. The most abundant quinone is menaquinone (MK), which serves as an essential redox mediator in various electron transport chains of aerobic and anaerobic respiration. Several methylated derivatives of MK, designated methylmenaquinones (MMKs), have been reported to be present in members of various microbial phyla possessing either the classical MK biosynthesis pathway (Men) or the futalosine pathway (Mqn). Due to their low redox midpoint potentials, MMKs have been proposed to be specifically involved in appropriate electron transport chains of anaerobic respiration. The class C radical SAM methyltransferases MqnK, MenK and MenK2 have recently been shown to catalyse specific MK methylation reactions at position C-8 (MqnK/MenK) or C-7 (MenK2) to synthesise 8-MMK, 7-MMK and 7,8-dimethylmenaquinone (DMMK). MqnK, MenK and MenK2 from organisms such as Wolinella succinogenes, Adlercreutzia equolifaciens, Collinsella tanakaei, Ferrimonas marina and Syntrophus aciditrophicus have been functionally produced in Escherichia coli, enabling extensive quinone/quinol pool engineering of the native MK and 2-demethylmenaquinone (DMK). Cluster and phylogenetic analyses of available MK and MMK methyltransferase sequences revealed signature motifs that allowed the discrimination of MenK/MqnK/MenK2 family enzymes from other radical SAM enzymes and the identification of C-7-specific menaquinone methyltransferases of the MenK2 subfamily. It is envisaged that this knowledge will help to predict the methylation status of the menaquinone/menaquinol pool of any microbial species (or even a microbial community) from its (meta)genome.
Collapse
Affiliation(s)
- Dennis Wilkens
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technical University of Darmstadt, Schnittspahnstraße 10, Darmstadt, Germany
| | - Jörg Simon
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technical University of Darmstadt, Schnittspahnstraße 10, Darmstadt, Germany; Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany.
| |
Collapse
|
9
|
Denitrification by Bradyrhizobia under Feast and Famine and the Role of the bc1 Complex in Securing Electrons for N 2O Reduction. Appl Environ Microbiol 2023; 89:e0174522. [PMID: 36662572 PMCID: PMC9972998 DOI: 10.1128/aem.01745-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Rhizobia living as microsymbionts inside nodules have stable access to carbon substrates, but also must survive as free-living bacteria in soil where they are starved for carbon and energy most of the time. Many rhizobia can denitrify, thus switch to anaerobic respiration under low O2 tension using N-oxides as electron acceptors. The cellular machinery regulating this transition is relatively well known from studies under optimal laboratory conditions, while little is known about this regulation in starved organisms. It is, for example, not known if the strong preference for N2O- over NO3- reduction in bradyrhizobia is retained under carbon limitation. Here, we show that starved cultures of a Bradyrhizobium strain with respiration rates 1 to 18% of well-fed cultures reduced all available N2O before touching provided NO3-. These organisms, which carry out complete denitrification, have the periplasmic nitrate reductase NapA but lack the membrane-bound nitrate reductase NarG. Proteomics showed similar levels of NapA and NosZ (N2O reductase), excluding that the lack of NO3- reduction was due to low NapA abundance. Instead, this points to a metabolic-level phenomenon where the bc1 complex, which channels electrons to NosZ via cytochromes, is a much stronger competitor for electrons from the quinol pool than the NapC enzyme, which provides electrons to NapA via NapB. The results contrast the general notion that NosZ activity diminishes under carbon limitation and suggest that bradyrhizobia carrying NosZ can act as strong sinks for N2O under natural conditions, implying that this criterion should be considered in the development of biofertilizers. IMPORTANCE Legume cropped farmlands account for substantial N2O emissions globally. Legumes are commonly inoculated with N2-fixing bacteria, rhizobia, to improve crop yields. Rhizobia belonging to Bradyrhizobium, the microsymbionts of several economically important legumes, are generally capable of denitrification but many lack genes encoding N2O reductase and will be N2O sources. Bradyrhizobia with complete denitrification will instead act as sinks since N2O-reduction efficiently competes for electrons over nitrate reduction in these organisms. This phenomenon has only been demonstrated under optimal conditions and it is not known how carbon substrate limitation, which is the common situation in most soils, affects the denitrification phenotype. Here, we demonstrate that bradyrhizobia retain their strong preference for N2O under carbon starvation. The findings add basic knowledge about mechanisms controlling denitrification and support the potential for developing novel methods for greenhouse gas mitigation based on legume inoculants with the dual capacity to optimize N2 fixation and minimize N2O emission.
Collapse
|
10
|
Bandekar M, Ramaiah N, Seleyi SC, Nazareth DR, Kekäläinen J. Diversity and Quantitative Detection of Clade I Type nosZ Denitrifiers in the Arabian Sea Oxygen Minimum Zone. Microbes Environ 2023; 38. [PMID: 36696991 PMCID: PMC10037096 DOI: 10.1264/jsme2.me22056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A significant amount of nitrous oxide (N2O) is effluxed into the atmosphere as a result of marine denitrification in the Arabian Sea (AS) oxygen minimum zone (OMZ). An assessment of temporal variations in the diversity and abundance of nosZ denitrifiers was performed to establish the relative importance of these bacteria in denitrification. Sampling was conducted at the Arabian Sea Time Series (ASTS) location and a quantitative PCR (qPCR) ana-lysis was performed. We detected a high abundance of the nosZ gene at core OMZ depths (250 m and 500 m), indicating the occurrence of denitrification in the AS-OMZ. The maximum abundance of the nosZ gene was observed during the Spring Intermonsoon (SIM) at 250 m (1.32×106 copies L-1) and 500 m (1.50×106 copies L-1). Sequencing ana-lysis showed that nosZ denitrifiers belonged to the classes Alpha-, Beta-, and Gammaproteobacteria. Taxonomic ana-lysis revealed that most OTUs were affiliated with Pseudomonas, Rhodopseudomonas, and Bradyrhizobium. Diversity indices and richness estimators confirmed a higher diversity of nosZ denitrifiers at 250 m than at 500 m during all three seasons. The present results also indicated that dissolved oxygen (DO) and total organic carbon (TOC) are critical factors influencing the diversity and abundance of the nosZ-denitrifying bacterial community.
Collapse
Affiliation(s)
- Mandar Bandekar
- Biological Oceanography Division, CSIR-National Institute of Oceanography
- Department of Environmental and Biological Sciences, University of Eastern Finland
| | - Nagappa Ramaiah
- Biological Oceanography Division, CSIR-National Institute of Oceanography
| | - Seyieleno C Seleyi
- Biological Oceanography Division, CSIR-National Institute of Oceanography
| | - Delcy R Nazareth
- Biological Oceanography Division, CSIR-National Institute of Oceanography
| | - Jukka Kekäläinen
- Department of Environmental and Biological Sciences, University of Eastern Finland
| |
Collapse
|
11
|
Behrendt U, Spanner T, Augustin J, Zak DH, Horn MA, Kolb S, Ulrich A. Consumption of N2O by Flavobacterium azooxidireducens sp. nov. Isolated from Decomposing Leaf Litter of Phragmites australis (Cav.). Microorganisms 2022; 10:microorganisms10112304. [PMID: 36422374 PMCID: PMC9697520 DOI: 10.3390/microorganisms10112304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022] Open
Abstract
Microorganisms acting as sinks for the greenhouse gas nitrous oxide (N2O) are gaining increasing attention in the development of strategies to control N2O emissions. Non-denitrifying N2O reducers are of particular interest because they can provide a real sink without contributing to N2O release. The bacterial strain under investigation (IGB 4-14T), isolated in a mesocosm experiment to study the litter decomposition of Phragmites australis (Cav.), is such an organism. It carries only a nos gene cluster with the sec-dependent Clade II nosZ and is able to consume significant amounts of N2O under anoxic conditions. However, consumption activity is considerably affected by the O2 level. The reduction of N2O was not associated with cell growth, suggesting that no energy is conserved by anaerobic respiration. Therefore, the N2O consumption of strain IGB 4-14T rather serves as an electron sink for metabolism to sustain viability during transient anoxia and/or to detoxify high N2O concentrations. Phylogenetic analysis of 16S rRNA gene similarity revealed that the strain belongs to the genus Flavobacterium. It shares a high similarity in the nos gene cluster composition and the amino acid similarity of the nosZ gene with various type strains of the genus. However, phylogenomic analysis and comparison of overall genome relatedness indices clearly demonstrated a novel species status of strain IGB 4-14T, with Flavobacterium lacus being the most closely related species. Various phenotypic differences supported a demarcation from this species. Based on these results, we proposed a novel species Flavobacterium azooxidireducens sp. nov. (type strain IGB 4-14T = LMG 29709T = DSM 103580T).
Collapse
Affiliation(s)
- Undine Behrendt
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, D-15374 Müncheberg, Germany
- Correspondence: (U.B.); (A.U.); Tel.: +49-33432-82460 (U.B.); +49-33432-82345 (A.U.)
| | - Tobias Spanner
- Institute of Microbiology, Leibniz University Hannover, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Jürgen Augustin
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, D-15374 Müncheberg, Germany
| | - Dominik H. Zak
- Institute for Ecoscience, Aarhus University, C.F. Møllersvej, Bygning 1331, 8000 Aarhus, Denmark
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries Berlin, Müggelseedamm 301, D-12587 Berlin, Germany
| | - Marcus A. Horn
- Institute of Microbiology, Leibniz University Hannover, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Steffen Kolb
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, D-15374 Müncheberg, Germany
| | - Andreas Ulrich
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, D-15374 Müncheberg, Germany
- Correspondence: (U.B.); (A.U.); Tel.: +49-33432-82460 (U.B.); +49-33432-82345 (A.U.)
| |
Collapse
|
12
|
Oba K, Suenaga T, Kuroiwa M, Riya S, Terada A. Exploring the Functions of Efficient Canonical Denitrifying Bacteria as N 2O Sinks: Implications from 15N Tracer and Transcriptome Analyses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11694-11706. [PMID: 35917165 DOI: 10.1021/acs.est.2c02119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In denitrifying reactors, canonical complete denitrifying bacteria reduce nitrate (NO3-) to nitrogen via N2O. However, they can also produce N2O under certain conditions. We used a 15N tracer method, in which 15N-labeled NO3-/nitrite (NO2-) and nonlabeled N2O were simultaneously supplied with organic electron donors to five canonical complete denitrifying bacteria affiliated with either Clade I or Clade II nosZ. We calculated their NO3-, NO2-, and N2O consumption rates. The Clade II nosZ bacterium Azospira sp. strain I13 had the highest N2O consumption rate (3.47 ± 0.07 fmol/cell/h) and the second lowest NO3- consumption rate (0.20 ± 0.03 fmol/cell/h); hence, it is a N2O sink. A change from peptone- to acetate/citrate-based organic electron donors increased the NO3- consumption rate by 4.8 fold but barely affected the N2O consumption rate. Electron flow was directed to N2O rather than NO3- in Azospira sp. strain I13 and Az. oryzae strain PS only exerting a N2O sink but to NO3- in the Clade I nosZ N2O-reducing bacteria Pseudomonas stutzeri strain JCM 5965 and Alicycliphilus denitrificans strain I51. Transcriptome analyses revealed that the genotype could not fully describe the phenotype. The results show that N2O production and consumption differ among canonical denitrifying bacteria and will be useful for developing N2O mitigation strategies.
Collapse
Affiliation(s)
- Kohei Oba
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo 184-8588, Japan
| | - Toshikazu Suenaga
- Global Innovation Research Institute, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-Cho, Fuchu, Tokyo 185-8538, Japan
- Department of Chemical Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8527, Japan
| | - Megumi Kuroiwa
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo 184-8588, Japan
| | - Shohei Riya
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo 184-8588, Japan
- Global Innovation Research Institute, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-Cho, Fuchu, Tokyo 185-8538, Japan
| | - Akihiko Terada
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo 184-8588, Japan
- Global Innovation Research Institute, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-Cho, Fuchu, Tokyo 185-8538, Japan
| |
Collapse
|
13
|
Stuchiner ER, von Fischer JC. Using isotope pool dilution to understand how organic carbon additions affect N 2 O consumption in diverse soils. GLOBAL CHANGE BIOLOGY 2022; 28:4163-4179. [PMID: 35377524 PMCID: PMC9321687 DOI: 10.1111/gcb.16190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 02/24/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Nitrous oxide (N2 O) is a formidable greenhouse gas with a warming potential ~300× greater than CO2 . However, its emissions to the atmosphere have gone largely unchecked because the microbial and environmental controls governing N2 O emissions have proven difficult to manage. The microbial process N2 O consumption is the only know biotic pathway to remove N2 O from soil pores and therefore reduce N2 O emissions. Consequently, manipulating soils to increase N2 O consumption by organic carbon (OC) additions has steadily gained interest. However, the response of N2 O emissions to different OC additions are inconsistent, and it is unclear if lower N2 O emissions are due to increased consumption, decreased production, or both. Simplified and systematic studies are needed to evaluate the efficacy of different OC additions on N2 O consumption. We aimed to manipulate N2 O consumption by amending soils with OC compounds (succinate, acetate, propionate) more directly available to denitrifiers. We hypothesized that N2 O consumption is OC-limited and predicted these denitrifier-targeted additions would lead to enhanced N2 O consumption and increased nosZ gene abundance. We incubated diverse soils in the laboratory and performed a 15 N2 O isotope pool dilution assay to disentangle microbial N2 O emissions from consumption using laser-based spectroscopy. We found that amending soils with OC increased gross N2 O consumption in six of eight soils tested. Furthermore, three of eight soils showed Increased N2 O Consumption and Decreased N2 O Emissions (ICDE), a phenomenon we introduce in this study as an N2 O management ideal. All three ICDE soils had low soil OC content, suggesting ICDE is a response to relaxed C-limitation wherein C additions promote soil anoxia, consequently stimulating the reduction of N2 O via denitrification. We suggest, generally, OC additions to low OC soils will reduce N2 O emissions via ICDE. Future studies should prioritize methodical assessment of different, specific, OC-additions to determine which additions show ICDE in different soils.
Collapse
Affiliation(s)
- Emily R. Stuchiner
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsColoradoUSA
- Department of BiologyColorado State UniversityFort CollinsColoradoUSA
| | - Joseph C. von Fischer
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsColoradoUSA
- Department of BiologyColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
14
|
A Dual Enrichment Strategy Provides Soil- and Digestate-Competent Nitrous Oxide-Respiring Bacteria for Mitigating Climate Forcing in Agriculture. mBio 2022; 13:e0078822. [PMID: 35638872 PMCID: PMC9239227 DOI: 10.1128/mbio.00788-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Manipulating soil metabolism through heavy inoculation with microbes is feasible if organic wastes can be utilized as the substrate for growth and vector as a fertilizer. This, however, requires organisms active in both digestate and soil (generalists). Here, we present a dual enrichment strategy to enrich and isolate such generalists among N2O-respiring bacteria (NRB) in soil and digestates, to be used as an inoculum for strengthening the N2O-reduction capacity of soils. The enrichment strategy utilizes sequential batch enrichment cultures alternating between sterilized digestate and soil as substrates, with each batch initiated with limited O2 and unlimited N2O. The cultures were monitored for gas kinetics and community composition. As predicted by a Lotka-Volterra competition model, cluster analysis identified generalist operational taxonomic units (OTUs) which became dominant, digestate/soil-specialists which did not, and a majority that were gradually diluted out. We isolated several NRBs circumscribed by generalist OTUs. Their denitrification genes and phenotypes predicted a variable capacity to act as N2O-sinks, while all genomes predicted broad catabolic capacity. The latter contrasts with previous attempts to enrich NRB by anaerobic incubation of unsterilized digestate only, which selected for organisms with a catabolic capacity limited to fermentation products. The two isolates with the most promising characteristics as N2O sinks were aPseudomonas sp. with a full-fledged denitrification-pathway and a Cloacibacterium sp. carrying only N2O reductase (clade II), and soil experiments confirmed their capacity to reduce N2O-emissions from soil. The successful enrichment of NRB with broad catabolic spectra suggests that the concept of dual enrichment should also be applicable for enrichment of generalists with traits other than N2O reduction.
Collapse
|
15
|
Bryson SJ, Hunt KA, Stahl DA, Winkler MKH. Metagenomic Insights Into Competition Between Denitrification and Dissimilatory Nitrate Reduction to Ammonia Within One-Stage and Two-Stage Partial-Nitritation Anammox Bioreactor Configurations. Front Microbiol 2022; 13:825104. [PMID: 35547121 PMCID: PMC9083452 DOI: 10.3389/fmicb.2022.825104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Anaerobic ammonia oxidizing bacteria (Anammox) are implemented in high-efficiency wastewater treatment systems operated in two general configurations; one-stage systems combine aerobic ammonia oxidizing bacteria (AOB) and Anammox within a single aerated reactor, whereas two-stage configurations separate these processes into discrete tanks. Within both configurations heterotrophic populations that perform denitrification or dissimilatory nitrate reduction to ammonia (DNRA) compete for carbon and nitrate or nitrite and can impact reactor performance because DNRA retains nitrogen in the system. Therefore, it is important to understand how selective pressures imposed by one-stage and two-stage reactor configurations impact the microbial community structure and associated nitrogen transforming functions. We performed 16S rRNA gene and metagenomic sequencing on different biomass fractions (granules, flocs, and suspended biomass) sampled from two facilities treating sludge dewatering centrate: a one-stage treatment facility (Chambers Creek, Tacoma, WA) and a two-stage system (Rotterdam, Netherlands). Similar microbial populations were identified across the different samples, but relative abundances differed between reactor configurations and biomass sources. Analysis of metagenome assembled genomes (MAGs) indicated different lifestyles for abundant heterotrophic populations. Acidobacteria, Bacteroidetes, and Chloroflexi MAGs had varying capacity for DNRA and denitrification. Acidobacteria MAGs possessed high numbers of glycosyl hydrolases and glycosyl transferases indicating a role in biomass degradation. Ignavibacteria and Phycosphaerae MAGs contributed to the greater relative abundance of DNRA associated nrf genes in the two-stage granules and contained genomic features suggesting a preference for an anoxic or microoxic niche. In the one-stage granules a MAG assigned to Burkholderiales accounted for much of the abundant denitrification genes and had genomic features, including the potential for autotrophic denitrification using reduced sulfur, that indicate an ability to adapt its physiology to varying redox conditions. Overall, the competition for carbon substrates between denitrifying and DNRA performing heterotrophs may be impacted by configuration specific selective pressures. In one-stage systems oxygen availability in the bulk liquid and the oxygen gradient within granules would provide a greater niche space for heterotrophic populations capable of utilizing both oxygen and nitrate or nitrite as terminal electron acceptors, compared to two-stage systems where a homogeneous anoxic environment would favor heterotrophic populations primarily adapted to anaerobic metabolism.
Collapse
Affiliation(s)
- Samuel J Bryson
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States
| | - Kristopher A Hunt
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States
| | - David A Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States
| | - Mari-Karoliina H Winkler
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
16
|
Frostegård Å, Vick SHW, Lim NYN, Bakken LR, Shapleigh JP. Linking meta-omics to the kinetics of denitrification intermediates reveals pH-dependent causes of N 2O emissions and nitrite accumulation in soil. THE ISME JOURNAL 2022; 16:26-37. [PMID: 34211102 PMCID: PMC8692524 DOI: 10.1038/s41396-021-01045-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/07/2021] [Accepted: 06/16/2021] [Indexed: 11/24/2022]
Abstract
Soil pH is a key controller of denitrification. We analysed the metagenomics/transcriptomics and phenomics of two soils from a long-term liming experiment, SoilN (pH 6.8) and un-limed SoilA (pH 3.8). SoilA had severely delayed N2O reduction despite early transcription of nosZ (mainly clade I), encoding N2O reductase, by diverse denitrifiers. This shows that post-transcriptionally hampered maturation of the NosZ apo-protein at low pH is a generic phenomenon. Identification of transcript reads of several accessory genes in the nos cluster indicated that enzymes for NosZ maturation were present across a range of organisms, eliminating their absence as an explanation for the failure to produce a functional enzyme. nir transcript abundances (for NO2- reductase) in SoilA suggest that low NO2- concentrations in acidic soils, often ascribed to abiotic degradation, are primarily due to biological activity. The accumulation of NO2- in neutral soil was ascribed to high nar expression (nitrate reductase). The -omics results revealed dominance of nirK over nirS in both soils while qPCR showed the opposite, demonstrating that standard primer pairs only capture a fraction of the nirK pool. qnor encoding NO reductase was strongly expressed in SoilA, implying an important role in controlling NO. Production of HONO, for which some studies claim higher, others lower, emissions from NO2- accumulating soil, was estimated to be ten times higher from SoilA than from SoilN. The study extends our understanding of denitrification-driven gas emissions and the diversity of bacteria involved and demonstrates that gene and transcript quantifications cannot always reliably predict community phenotypes.
Collapse
Affiliation(s)
- Åsa Frostegård
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
| | - Silas H W Vick
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Natalie Y N Lim
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Lars R Bakken
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | | |
Collapse
|
17
|
Bernabeu E, Miralles-Robledillo JM, Giani M, Valdés E, Martínez-Espinosa RM, Pire C. In Silico Analysis of the Enzymes Involved in Haloarchaeal Denitrification. Biomolecules 2021; 11:biom11071043. [PMID: 34356667 PMCID: PMC8301774 DOI: 10.3390/biom11071043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/02/2021] [Accepted: 07/09/2021] [Indexed: 12/18/2022] Open
Abstract
During the last century, anthropogenic activities such as fertilization have led to an increase in pollution in many ecosystems by nitrogen compounds. Consequently, researchers aim to reduce nitrogen pollutants following different strategies. Some haloarchaea, owing to their denitrifier metabolism, have been proposed as good model organisms for the removal of not only nitrate, nitrite, and ammonium, but also (per)chlorates and bromate in brines and saline wastewater. Bacterial denitrification has been extensively described at the physiological, biochemical, and genetic levels. However, their haloarchaea counterparts remain poorly described. In previous work the model structure of nitric oxide reductase was analysed. In this study, a bioinformatic analysis of the sequences and the structural models of the nitrate, nitrite and nitrous oxide reductases has been described for the first time in the haloarchaeon model Haloferax mediterranei. The main residues involved in the catalytic mechanism and in the coordination of the metal centres have been explored to shed light on their structural characterization and classification. These results set the basis for understanding the molecular mechanism for haloarchaeal denitrification, necessary for the use and optimization of these microorganisms in bioremediation of saline environments among other potential applications including bioremediation of industrial waters.
Collapse
Affiliation(s)
- Eric Bernabeu
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (E.B.); (J.M.M.-R.); (M.G.); (E.V.); (R.M.M.-E.)
| | - Jose María Miralles-Robledillo
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (E.B.); (J.M.M.-R.); (M.G.); (E.V.); (R.M.M.-E.)
| | - Micaela Giani
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (E.B.); (J.M.M.-R.); (M.G.); (E.V.); (R.M.M.-E.)
| | - Elena Valdés
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (E.B.); (J.M.M.-R.); (M.G.); (E.V.); (R.M.M.-E.)
| | - Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (E.B.); (J.M.M.-R.); (M.G.); (E.V.); (R.M.M.-E.)
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain
| | - Carmen Pire
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (E.B.); (J.M.M.-R.); (M.G.); (E.V.); (R.M.M.-E.)
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain
- Correspondence: ; Tel.: +34-965903400 (ext. 2064)
| |
Collapse
|
18
|
Salas A, Cabrera JJ, Jiménez-Leiva A, Mesa S, Bedmar EJ, Richardson DJ, Gates AJ, Delgado MJ. Bacterial nitric oxide metabolism: Recent insights in rhizobia. Adv Microb Physiol 2021; 78:259-315. [PMID: 34147187 DOI: 10.1016/bs.ampbs.2021.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO) is a reactive gaseous molecule that has several functions in biological systems depending on its concentration. At low concentrations, NO acts as a signaling molecule, while at high concentrations, it becomes very toxic due to its ability to react with multiple cellular targets. Soil bacteria, commonly known as rhizobia, have the capacity to establish a N2-fixing symbiosis with legumes inducing the formation of nodules in their roots. Several reports have shown NO production in the nodules where this gas acts either as a signaling molecule which regulates gene expression, or as a potent inhibitor of nitrogenase and other plant and bacteria enzymes. A better understanding of the sinks and sources of NO in rhizobia is essential to protect symbiotic nitrogen fixation from nitrosative stress. In nodules, both the plant and the microsymbiont contribute to the production of NO. From the bacterial perspective, the main source of NO reported in rhizobia is the denitrification pathway that varies significantly depending on the species. In addition to denitrification, nitrate assimilation is emerging as a new source of NO in rhizobia. To control NO accumulation in the nodules, in addition to plant haemoglobins, bacteroids also contribute to NO detoxification through the expression of a NorBC-type nitric oxide reductase as well as rhizobial haemoglobins. In the present review, updated knowledge about the NO metabolism in legume-associated endosymbiotic bacteria is summarized.
Collapse
Affiliation(s)
- Ana Salas
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Juan J Cabrera
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain; School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Andrea Jiménez-Leiva
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Socorro Mesa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Eulogio J Bedmar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - David J Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Andrew J Gates
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - María J Delgado
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain.
| |
Collapse
|
19
|
Zhang L, Bill E, Kroneck PMH, Einsle O. Histidine-Gated Proton-Coupled Electron Transfer to the CuA Site of Nitrous Oxide Reductase. J Am Chem Soc 2020; 143:830-838. [DOI: 10.1021/jacs.0c10057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Lin Zhang
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg im Breisgau, Germany
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany
| | | | - Oliver Einsle
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg im Breisgau, Germany
| |
Collapse
|
20
|
Andrei A, Öztürk Y, Khalfaoui-Hassani B, Rauch J, Marckmann D, Trasnea PI, Daldal F, Koch HG. Cu Homeostasis in Bacteria: The Ins and Outs. MEMBRANES 2020; 10:E242. [PMID: 32962054 PMCID: PMC7558416 DOI: 10.3390/membranes10090242] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022]
Abstract
Copper (Cu) is an essential trace element for all living organisms and used as cofactor in key enzymes of important biological processes, such as aerobic respiration or superoxide dismutation. However, due to its toxicity, cells have developed elaborate mechanisms for Cu homeostasis, which balance Cu supply for cuproprotein biogenesis with the need to remove excess Cu. This review summarizes our current knowledge on bacterial Cu homeostasis with a focus on Gram-negative bacteria and describes the multiple strategies that bacteria use for uptake, storage and export of Cu. We furthermore describe general mechanistic principles that aid the bacterial response to toxic Cu concentrations and illustrate dedicated Cu relay systems that facilitate Cu delivery for cuproenzyme biogenesis. Progress in understanding how bacteria avoid Cu poisoning while maintaining a certain Cu quota for cell proliferation is of particular importance for microbial pathogens because Cu is utilized by the host immune system for attenuating pathogen survival in host cells.
Collapse
Affiliation(s)
- Andreea Andrei
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
- Fakultät für Biologie, Albert-Ludwigs Universität Freiburg; Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Yavuz Öztürk
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| | | | - Juna Rauch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| | - Dorian Marckmann
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| | | | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Hans-Georg Koch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| |
Collapse
|
21
|
Poole RK, Cozens AG, Shepherd M. The CydDC family of transporters. Res Microbiol 2019; 170:407-416. [PMID: 31279084 DOI: 10.1016/j.resmic.2019.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/12/2019] [Accepted: 06/25/2019] [Indexed: 12/23/2022]
Abstract
The CydDC family of ABC transporters export the low molecular weight thiols glutathione and cysteine to the periplasm of a variety of bacterial species. The CydDC complex has previously been shown to be important for disulfide folding, motility, respiration, and tolerance to nitric oxide and antibiotics. In addition, CydDC is thus far unique amongst ABC transporters in that it binds a haem cofactor that appears to modulate ATPase activity. CydDC has a diverse impact upon bacterial metabolism, growth, and virulence, and is of interest to those working on membrane transport mechanisms, redox biology, aerobic respiration, and stress sensing/tolerance during infection.
Collapse
Affiliation(s)
- Robert K Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Adam G Cozens
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Mark Shepherd
- School of Biosciences, University of Kent, Canterbury, United Kingdom.
| |
Collapse
|