1
|
Ma Y, Yang QQ, Gu DM, Yuan X, Wang YH, Guo LC. Canadine inhibits epithelial mesenchymal transformation of HPV-negative cervical cancer. Tissue Barriers 2024; 12:2256641. [PMID: 37819188 PMCID: PMC11262239 DOI: 10.1080/21688370.2023.2256641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/04/2023] [Indexed: 10/13/2023] Open
Abstract
Although the majority of the population will be protected due to the advent and widespread use of the HPV vaccine, the treatment of cervical cancer for all causes, including HPV-negative cervical cancer, is still worthy of further research. The focal point of this study was Canadine's inhibition of epithelial-mesenchymal transformation (EMT) in cervical cancer. Immunoblotting, wound healing and tumor invasion experiments showed that low concentration of Canadine could inhibit the EMT process, proliferation and migration of HT-3 cells (HPV-negative cell line). Combined with GEO database, it was found that the expression levels of several genes highly expressed in cervical tumor tissues could be inhibited by Canadine, especially MAGEA3. Further experiments confirmed that the inhibition of Canadine on MAGEA3 protein increased with time. The small interference and overexpression plasmid of MAGEA3 were designed and verified. In HT-3 cells, when MAGEA3 levels were directly decreased, mesenchymal phenotypic markers were decreased and epithelial phenotypic markers were increased. The opposite result was obtained by overexpression of MAGEA3. In addition, the inhibition of EMT due to the reduction of endogenous MAGEA3 by Canadine was also offset by the overexpression of exogenous MAGEA3. The study concludes that Canadine inhibits EMT of cervical cancer by inhibiting MAGEA3.
Collapse
Affiliation(s)
- Yan Ma
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Qian-Qian Yang
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Dong-Mei Gu
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Xiao Yuan
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Yu-Hong Wang
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Ling-Chuan Guo
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| |
Collapse
|
2
|
Li T, Wang P, Sun G, Zou Y, Cheng Y, Wang H, Lu Y, Shi J, Wang K, Zhang Q, Ye H. hccTAAb Atlas: An Integrated Knowledge Database for Tumor-Associated Autoantibodies in Hepatocellular Carcinoma. J Proteome Res 2024; 23:728-737. [PMID: 38156953 DOI: 10.1021/acs.jproteome.3c00579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Tumor-associated autoantibodies (TAAbs) have demonstrated potential as biomarkers for cancer detection. However, the understanding of their role in hepatocellular carcinoma (HCC) remains limited. In this study, we aimed to systematically collect and standardize information about these TAAbs and establish a comprehensive database as a platform for in-depth research. A total of 170 TAAbs were identified from published papers retrieved from PubMed, Web of Science, and Embase. Following normative reannotation, these TAAbs were referred to as 162 official symbols. The hccTAAb (tumor-associated autoantibodies in hepatocellular carcinoma) atlas was developed using the R Shiny framework and incorporating literature-based and multiomics data sets. This comprehensive online resource provides key information such as sensitivity, specificity, and additional details such as official symbols, official full names, UniProt, NCBI, HPA, neXtProt, and aliases through hyperlinks. Additionally, hccTAAb offers six analytical modules for visualizing expression profiles, survival analysis, immune infiltration, similarity analysis, DNA methylation, and DNA mutation analysis. Overall, the hccTAAb Atlas provides valuable insights into the mechanisms underlying TAAb and has the potential to enhance the diagnosis and treatment of HCC using autoantibodies. The hccTAAb Atlas is freely accessible at https://nscc.v.zzu.edu.cn/hccTAAb/.
Collapse
Affiliation(s)
- Tiandong Li
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
| | - Peng Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
| | - Guiying Sun
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
| | - Yuanlin Zou
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
| | - Yifan Cheng
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
| | - Han Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
| | - Yin Lu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
| | - Jianxiang Shi
- Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Keyan Wang
- Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Qiang Zhang
- School of Nursing and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Hua Ye
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
3
|
Verma S, Swain D, Kushwaha PP, Brahmbhatt S, Gupta K, Sundi D, Gupta S. Melanoma Antigen Family A (MAGE A) as Promising Biomarkers and Therapeutic Targets in Bladder Cancer. Cancers (Basel) 2024; 16:246. [PMID: 38254738 PMCID: PMC10813664 DOI: 10.3390/cancers16020246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
The Melanoma Antigen Gene (MAGE) is a large family of highly conserved proteins that share a common MAGE homology domain. Interestingly, many MAGE family members exhibit restricted expression in reproductive tissues but are abnormally expressed in various human malignancies, including bladder cancer, which is a common urinary malignancy associated with high morbidity and mortality rates. The recent literature suggests a more prominent role for MAGEA family members in driving bladder tumorigenesis. This review highlights the role of MAGEA proteins, the potential for them to serve as diagnostic or prognostic biomarker(s), and as therapeutic targets for bladder cancer.
Collapse
Affiliation(s)
- Shiv Verma
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.V.); (P.P.K.); (K.G.)
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Diya Swain
- College of Arts and Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; (D.S.); (S.B.)
| | - Prem Prakash Kushwaha
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.V.); (P.P.K.); (K.G.)
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Smit Brahmbhatt
- College of Arts and Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; (D.S.); (S.B.)
| | - Karishma Gupta
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.V.); (P.P.K.); (K.G.)
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Debasish Sundi
- Department of Urology, Division of Urologic Oncology, The Ohio State University Comprehensive Cancer Center, James Cancer Hospital & Wexner Medical Center, Columbus, OH 43210, USA;
| | - Sanjay Gupta
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.V.); (P.P.K.); (K.G.)
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA
- Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| |
Collapse
|
4
|
Wang Y, Song W, Xu Q, Liu Y, Liu H, Guo R, Chiou CJ, Gao K, Jin B, Chen C, Li Z, Yan J, Yu J. Adjuvant DNA vaccine pNMM promotes enhanced specific immunity and anti-tumor effects. Hum Vaccin Immunother 2023; 19:2202127. [PMID: 37128699 PMCID: PMC10142307 DOI: 10.1080/21645515.2023.2202127] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
DNA vaccines containing only antigenic components have limited efficacy and may fail to induce effective immune responses. Consequently, adjuvant molecules are often added to enhance immunogenicity. In this study, we generated a tumor vaccine using a plasmid encoding NMM (NY-ESO-1/MAGE-A3/MUC1) target antigens and immune-associated molecules. The products of the vaccine were analyzed in 293 T cells by western blotting, flow cytometry, and meso-scale discovery electrochemiluminescence. To assess the immunogenicity obtained, C57BL/6 mice were immunized using the DNA vaccine. The results revealed that following immunization, this DNA vaccine induced cellular immune responses in C57BL/6 mice, as evaluated by the release of IFN-γ, and we also detected increases in the percentages of nonspecific lymphocytes, as well as those of antigen-specific T cells. Furthermore, immunization with the pNMM vaccine was found to significantly inhibit tumor growth and prolonged the survival of mice with B16-NMM+-tumors. Our data revealed that pNMM DNA vaccines not only confer enhanced immunity against tumors but also provide a potentially novel approach for vaccine design. Moreover, our findings provide a basis for further studies on vaccine pharmacodynamics and pharmacology, and lay a solid foundation for clinical application.
Collapse
Affiliation(s)
| | | | | | - Yachao Liu
- Gu'an Dingtai Haigui Biotechnology Co., Ltd., Peptide Valley Biomedical Incubation Port, Gu'an County, Hebei, China
| | - Hezhong Liu
- Gu'an Dingtai Haigui Biotechnology Co., Ltd., Peptide Valley Biomedical Incubation Port, Gu'an County, Hebei, China
| | - Runzi Guo
- Gu'an Dingtai Haigui Biotechnology Co., Ltd., Peptide Valley Biomedical Incubation Port, Gu'an County, Hebei, China
| | - Chuang-Jiun Chiou
- Gu'an Dingtai Haigui Biotechnology Co., Ltd., Peptide Valley Biomedical Incubation Port, Gu'an County, Hebei, China
| | - Kun Gao
- Gu'an Dingtai Haigui Biotechnology Co., Ltd., Peptide Valley Biomedical Incubation Port, Gu'an County, Hebei, China
| | - Baofeng Jin
- Gu'an Dingtai Haigui Biotechnology Co., Ltd., Peptide Valley Biomedical Incubation Port, Gu'an County, Hebei, China
| | - Changfeng Chen
- Gu'an Dingtai Haigui Biotechnology Co., Ltd., Peptide Valley Biomedical Incubation Port, Gu'an County, Hebei, China
| | - Zhongming Li
- Gu'an Dingtai Haigui Biotechnology Co., Ltd., Peptide Valley Biomedical Incubation Port, Gu'an County, Hebei, China
| | - Jinqi Yan
- Gu'an Dingtai Haigui Biotechnology Co., Ltd., Peptide Valley Biomedical Incubation Port, Gu'an County, Hebei, China
| | - Jiyun Yu
- Gu'an Dingtai Haigui Biotechnology Co., Ltd., Peptide Valley Biomedical Incubation Port, Gu'an County, Hebei, China
| |
Collapse
|
5
|
Li J, Xiao Z, Wang D, Jia L, Nie S, Zeng X, Hu W. The screening, identification, design and clinical application of tumor-specific neoantigens for TCR-T cells. Mol Cancer 2023; 22:141. [PMID: 37649123 PMCID: PMC10466891 DOI: 10.1186/s12943-023-01844-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
Recent advances in neoantigen research have accelerated the development of tumor immunotherapies, including adoptive cell therapies (ACTs), cancer vaccines and antibody-based therapies, particularly for solid tumors. With the development of next-generation sequencing and bioinformatics technology, the rapid identification and prediction of tumor-specific antigens (TSAs) has become possible. Compared with tumor-associated antigens (TAAs), highly immunogenic TSAs provide new targets for personalized tumor immunotherapy and can be used as prospective indicators for predicting tumor patient survival, prognosis, and immune checkpoint blockade response. Here, the identification and characterization of neoantigens and the clinical application of neoantigen-based TCR-T immunotherapy strategies are summarized, and the current status, inherent challenges, and clinical translational potential of these strategies are discussed.
Collapse
Affiliation(s)
- Jiangping Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| | - Zhiwen Xiao
- Department of Otolaryngology Head and Neck Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, People's Republic of China
| | - Donghui Wang
- Department of Radiation Oncology, The Third Affiliated Hospital Sun Yat-Sen University, Guangzhou, 510630, People's Republic of China
| | - Lei Jia
- International Health Medicine Innovation Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Shihong Nie
- Department of Radiation Oncology, West China Hospital, Sichuan University, Cancer Center, Chengdu, 610041, People's Republic of China
| | - Xingda Zeng
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Wei Hu
- Division of Vascular Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| |
Collapse
|
6
|
Grizzi F, Chiriva-Internati M, Miranda E, Zaharie R, Hajjar NA, Zaharie F, Del Arco CD, Fernández-Aceñero MJ, Bresalier RS, Moiş E. Sperm protein antigen 17 and Sperm flagellar 1 cancer testis antigens are expressed in a rare case of ciliated foregut cyst of the common hepatic duct. Pathol Res Pract 2023; 247:154546. [PMID: 37224658 DOI: 10.1016/j.prp.2023.154546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023]
Abstract
INTRODUCTION Ciliated foregut cysts (CFCs) are frequently described in liver, pancreas and gallbladder and generally considered benign although one case of squamous cell metaplasia and five cases of squamous cell carcinoma arising from a ciliated hepatic foregut cyst have been reported. Here we explore two cancer-testis antigens (CTAs), Sperm protein antigen 17 (SPA17) and Sperm flagellar 1 (SPEF1) expression in a rare case of CFC of the common hepatic duct MATERIALS AND METHODS: 3 µm-thick CFC sections were immunohistochemically treated with antibodies raised against human SPA17 or SPEF1. In silico Protein-Protein Interaction (PPI) network and differential protein expression were also investigated RESULTS: Immunohistochemistry revealed SPA17 and SPEF1 in the cytoplasm of ciliated epithelium. SPA17, but not SPEF1, was also detected in cilia. The PPI networks demonstrated that other CTAs are significantly predicted functional partners with SPA17 and SPEF1. The differential protein expression demonstrated that SPA17 was higher in breast cancer, cholangiocarcinoma, liver hepatocellular carcinoma, uterine corpus endometrial carcinoma, gastric adenocarcinoma, cervical squamous cell carcinoma, bladder urothelial carcinoma. SPEF1 expression was higher in breast cancer, cholangiocarcinoma, uterine corpus endometrial carcinoma and kidney renal papillary cell carcinoma CONCLUSIONS: Our study suggests that further characterization of SPA17 and SPEF1 in patients with CFCs might provide significant insights to understand the mechanisms underlying their potential to malignant transformation.
Collapse
Affiliation(s)
- Fabio Grizzi
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.
| | - Maurizio Chiriva-Internati
- Departments of Gastroenterology, Hepatology & Nutrition, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Roxana Zaharie
- Iuliu Hațieganu University of Medicine and Pharmacy, Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania
| | - Nadim Al Hajjar
- Iuliu Hațieganu University of Medicine and Pharmacy, Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania
| | - Florin Zaharie
- Iuliu Hațieganu University of Medicine and Pharmacy, Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania
| | | | | | - Robert S Bresalier
- Departments of Gastroenterology, Hepatology & Nutrition, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Emil Moiş
- Iuliu Hațieganu University of Medicine and Pharmacy, Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania
| |
Collapse
|
7
|
Jiang Y, Yu L, Hu Q, Kang Y, You J, Huang C, Xu X, Chen L. Cancer/testis antigen HEMGN correlated with immune infiltration serves as a prognostic biomarker in lung adenocarcinoma. Mol Immunol 2023; 153:226-237. [PMID: 36563642 DOI: 10.1016/j.molimm.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
HEMGN belongs to the Cancer/testis antigens (CTAs), which are expressed in various types of human cancers and have received particular attention in cancer immunotherapy. However, the potential function of HEMGN involved in lung cancer and the immune response is not yet elucidated. HEMGN expression in lung adenocarcinoma (LUAD) was estimated via the Tumor Immune Estimation Resource (TIMER), The Cancer Genome Atlas (TCGA), The University of Alabama at Birmingham Cancer data analysis Portal (UALCAN), and Human Protein Atlas databases. The prognostic role of HEMGN was investigated by Gene Expression Profiling Interactive Analysis (GEPIA), PrognoScan, and Kaplan-Meier plotter databases. The associations between HEMGN and clinicopathological parameters were analyzed with UALCAN database. Then, immunohistochemical and Real-Time Quantitative Reverse Transcription PCR (qRT-PCR) analysis were performed to further verify the associations in tissue or serum samples. Serum from patients were detected for HEMGN antibody by enzyme-linked immunosorbent assay (ELISA). Flow cytometry was used to detect immune cell infiltration in peripheral blood of patients with LUAD. In addition, Gene Set Enrichment Analysis (GSEA) was conducted to investigate the functional role of HEMGN. Furthermore, we obtained the somatic mutation data from the TCGA LUAD dataset and analyzed the mutation profiles with "maftools" package. Finally, we evaluated the associations between HEMGN and immune infiltration level and the characteristic markers of immune cells in TIMER, GEPIA, and CIBERSORT. The mRNA and protein expressions of HEMGN were significantly decreased in LUAD patients. High HEMGN expression was remarkably associated with better prognosis in LUAD patients. The concentration levels of anti-HEMGN antibody in LUAD were significantly higher than that in healthy individuals and were closely correlated with clinical stage. In addition, HEMGN was involved in distinct typical genomic alterations in LUAD. GSEA demonstrated that HEMGN was significantly connected with immunity and substance metabolism. Notably, HEMGN was significantly related to immune infiltrates, including B cells, CD8 + T cells, CD4 + T cells, neutrophils, macrophages, dendritic cells (DCs), and various kinds of functional T cells. Furthermore, HEMGN had a significant association with diverse immune gene markers. HEMGN can be considered as a prognostic biomarker of LUAD and is associated with immune infiltration.
Collapse
Affiliation(s)
- Yingfeng Jiang
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Lili Yu
- Department of Thoracic Surgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Qingfeng Hu
- Department of Clinical Laboratory, Maternal and Child Health Hospital of Xianyou County, Putian, China
| | - Yanli Kang
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Jianbin You
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Chen Huang
- Department of Thoracic Surgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Xunyu Xu
- Department of Thoracic Surgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China.
| | - Liangyuan Chen
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China.
| |
Collapse
|