1
|
Li L, Wang S, Fu S, Chen Z, Wang P, Zhao Y. Human ATP-binding proteins: Structural features, functional diversity, and pharmacotherapeutic potential in disease: A review. Int J Biol Macromol 2025; 308:142303. [PMID: 40118416 DOI: 10.1016/j.ijbiomac.2025.142303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/03/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
ATP-binding proteins (ABPs) form diverse and essential protein families across living organisms. Early life forms likely relied on simple chemical reactions for energy, but with the emergence of ABPs and their evolving functions, organisms became capable of more efficient energy storage and utilization, which drove the complexity of metabolic and life processes. By binding and hydrolyzing ATP through conserved structural motifs such as the Walker motifs, ABPs play critical roles in material transport, signal transduction, cellular structure maintenance, motility, and cell cycle regulation. Dysfunctions arising from mutations, deletions, or misregulation of ABPs are linked to a variety of human diseases, including cancer, neurodegenerative disorders, and cardiovascular diseases. The growing recognition of ABPs' significance in disease progression highlights their relevance not only in basic biology but also in clinical applications, particularly as biomarkers and therapeutic targets. This review provides a comprehensive overview of human ABPs, detailing their structural and functional roles, their involvement in disease mechanisms, and the latest advances in understanding their clinical relevance. Additionally, it identifies current research gaps and offers new perspectives for future investigations and therapeutic strategies.
Collapse
Affiliation(s)
- Letong Li
- School of Pharmacy, Health Science Center, Ningbo University, Ningbo 315211, PR China; Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China
| | - Shanshan Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China.
| | - Songsen Fu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China
| | - Zhen Chen
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China
| | - Pengjun Wang
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, PR China.
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China; Department of Chemical Biology, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, PR China; Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
2
|
Agboola OE, Agboola SS, Oyinloye OM, Fadugba AE, Omolayo EY, Ayinla ZA, Osunsanmi FO, Olaiya OE, Olojo FO, Ajiboye BO, Oyinloye BE. Integrative Genomic and in Silico Analysis Reveals Mitochondrially Encoded Cytochrome C Oxidase III (MT-CO3) Overexpression and Potential Neem-Derived Inhibitors in Breast Cancer. Genes (Basel) 2025; 16:546. [PMID: 40428367 PMCID: PMC12111084 DOI: 10.3390/genes16050546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 04/11/2025] [Accepted: 04/17/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND The increasing global incidence of breast cancer calls for the identification of new therapeutic targets and the assessment of possible neem-derived inhibitors by means of computational modeling and integrated genomic research. METHODS Originally looking at 59,424 genes throughout 42 samples, we investigated gene expression data from The Cancer Genome Atlas-Breast Cancer (TCGA-BRCA) dataset. We chose 286 genes for thorough investigation following strict screening for consistent expression. R's limma package was used in differential expression analysis. The leading candidate's protein modeling was done with Swiss-ADME and Discovery Studio. Molecular docking studies, including 132 neem compounds, were conducted utilizing AutoDock Vina. RESULTS Among the 286 examined, mitochondrially encoded cytochrome C oxidase III (MT-CO3) turned out to be the most greatly overexpressed gene, showing consistent elevation across all breast cancer samples. Protein modeling revealed a substantial hydrophobic pocket (volume: 627.3 Å3) inside the structure of MT-CO3. Docking investigations showed five interesting neem-derived inhibitors: 7-benzoylnimbocinol, nimolicinol, melianodiol, isonimocinolide, and stigmasterol. Strong binding affinities ranging from -9.2 to -11.5 kcal/mol and diverse interactions with MT-CO3, mostly involving the residues Phe214, Arg221, and Trp58, these molecules displayed. With hydrophobic interactions dominant across all chemicals, fragment contribution analysis revealed that scaffold percentage greatly influences binding effectiveness. Stigmasterol revealed greater drug-likeness (QED = 0.79) despite minimal interaction variety, while 7-benzoylnimbocinol presented the best-balanced physicochemical profile. CONCLUSION Connecting traditional medicine with current genomics and computational biology, this work proposes a methodology for structure-guided drug design and development using neem-derived chemicals and finds MT-CO3 as a potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Oluwaseun E. Agboola
- Institute for Drug Research and Development, Bogoro Research Centre, Afe Babalola University, Ado-Ekiti 360001, Nigeria;
- Damsem Scientific Laboratory and Research, Ado-Ekiti 360102, Nigeria
| | - Samuel S. Agboola
- Department of Pharmacology and Toxicology, College of Pharmacy, Afe Babalola University, Ado-Ekiti 360001, Nigeria;
| | - Oluwatoyin M. Oyinloye
- Department of Biological Sciences, College of Sciences, Afe Babalola University, P.M.B 5454, Ado-Ekiti 360001, Nigeria (A.E.F.); (E.Y.O.)
| | - Abimbola E. Fadugba
- Department of Biological Sciences, College of Sciences, Afe Babalola University, P.M.B 5454, Ado-Ekiti 360001, Nigeria (A.E.F.); (E.Y.O.)
| | - Esther Y. Omolayo
- Department of Biological Sciences, College of Sciences, Afe Babalola University, P.M.B 5454, Ado-Ekiti 360001, Nigeria (A.E.F.); (E.Y.O.)
| | - Zainab A. Ayinla
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Foluso O. Osunsanmi
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa;
| | - Oluranti E. Olaiya
- Department of Medical Biochemistry, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria;
| | - Folake O. Olojo
- Department of Chemical Sciences, Dominion University, Ibadan 110108, Nigeria;
| | - Basiru O. Ajiboye
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti 371104, Nigeria;
| | - Babatunji E. Oyinloye
- Institute for Drug Research and Development, Bogoro Research Centre, Afe Babalola University, Ado-Ekiti 360001, Nigeria;
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa;
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, P.M.B 5454, Ado-Ekiti 360001, Nigeria
| |
Collapse
|
3
|
Glocker UM, Braun F, Eberl HC, Bantscheff M. A Probe-Based Target Engagement Assay for Kinases in Live Cells. Mol Cell Proteomics 2025; 24:100963. [PMID: 40187494 PMCID: PMC12076712 DOI: 10.1016/j.mcpro.2025.100963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/27/2025] [Indexed: 04/07/2025] Open
Abstract
The efficacy and safety of kinase inhibitor drugs are largely influenced by their selectivity. Available profiling technologies are primarily based on overexpressed or endogenously expressed kinases in cell extracts. We compared kinase capture with the cell penetrant covalent probe XO44 to three derivatives and found that replacing the alkyne handle with a trans-cyclooctene group allowed the development of a more robust kinase capture and enrichment protocol. An intracellular chemoproteomics target profiling and engagement assay was devised by optimizing probe concentration and incubation time and using an isobaric mass tag-based strategy for relative quantification. Comparing intracellular kinase profiles of the marketed drug dasatinib and the tool compound dinaciclib with the lysate-based kinobeads assay revealed excellent agreement in rank-order of binding. Dinaciclib showed a systematic shift to higher IC50s, suggesting that intracellular cosubstrate concentrations, cell penetration of the compound, as well as kinase localization and complexes in live cells influence target profiles. Further, we show that sepiapterin reductase SPR and multidrug resistance protein 1 ABCC1 are off-targets of kinase inhibitor scaffolds with potential implications on efficacy and safety.
Collapse
Affiliation(s)
| | - Florian Braun
- Chemical Synthesis Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | |
Collapse
|
4
|
Chiwoneso TC, Luo Y, Xu Y, Chen X, Chen L, Sun J. Kinases and their derived inhibitors from natural products. Bioorg Chem 2025; 156:108196. [PMID: 39908736 DOI: 10.1016/j.bioorg.2025.108196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/03/2024] [Accepted: 01/18/2025] [Indexed: 02/07/2025]
Abstract
Protein kinase dysregulation is a hallmark of many cancers, yet their tumorigenic mechanisms remain elusive despite 60 years of study. Since learning that their mechanism includes catalyzing phosphorylation of amino acids in protein substrates, researchers began devising their inhibition strategies. Initially, protein kinase inhibitors (PKIs) derived from natural products were employed despite high cytotoxicity risks. While synthetic PKIs proved less toxic, they face significant drug resistance challenges. This review examines the progress in understanding protein kinases' role in cancer, their classification and modes of action since their discovery. To illuminate the path towards less toxic yet highly effective kinase inhibitors, this study analyzes the synthesis and modification of all FDA-approved natural product derived kinase inhibitors (NPDKIs) as well as those that failed clinical trials. By providing insights into successful and unsuccessful approaches, this review also aims to advance medicinal chemistry strategies for developing more effective and safer PKIs, potentially improving cancer treatment outcomes.
Collapse
Affiliation(s)
- Takudzwa Chipeperengo Chiwoneso
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198 China
| | - Yajing Luo
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198 China
| | - Yifan Xu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198 China
| | - Xinyu Chen
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198 China
| | - Li Chen
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198 China.
| | - Jianbo Sun
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198 China.
| |
Collapse
|
5
|
Abd-El-Haleem DAM, Elkatory MR, Abu-Elreesh GM. Uncovering novel polyhydroxyalkanoate biosynthesis genes and unique pathway in yeast hanseniaspora valbyensis for sustainable bioplastic production. Sci Rep 2024; 14:27162. [PMID: 39511267 PMCID: PMC11544117 DOI: 10.1038/s41598-024-77382-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024] Open
Abstract
This study delves into the exploration of polyhydroxyalkanoate (PHA) biosynthesis genes within wild-type yeast strains, spotlighting the exceptional capabilities of isolate DMG-2. Through meticulous screening, DMG-2 emerged as a standout candidate, showcasing vivid red fluorescence indicative of prolific intracellular PHA granules. Characterization via FTIR spectroscopy unveiled a diverse biopolymer composition within DMG-2, featuring distinct functional groups associated with PHA and polyphosphate. Phylogenetic analysis placed DMG-2 within the Hanseniaspora valbyensis NRRL Y-1626 group, highlighting its distinct taxonomic classification. Subsequent investigation into DMG-2's PHA biosynthesis genes yielded promising outcomes, with successful cloning and efficient PHA accumulation confirmed in transgenic E. coli cells. Protein analysis of ORF1 revealed its involvement in sugar metabolism, supported by its cellular localization and identification of functional motifs. Genomic analysis revealed regulatory elements within ORF1, shedding light on potential splice junctions and transcriptional networks influencing PHA synthesis pathways. Spectroscopic analysis of the biopolymer extracted from transgenic E. coli DMG2-1 provided insights into its co-polymer nature, comprising segments of PHB, PHV, and polyphosphate. GC-MS analysis further elucidated the intricate molecular architecture of the polymer. In conclusion, this study represents a pioneering endeavor in exploring PHA biosynthesis genes within yeast cells, with isolate DMG-2 demonstrating remarkable potential. The findings offer valuable insights for advancing sustainable bioplastic production and hold significant implications for biotechnological applications.
Collapse
Affiliation(s)
- Desouky A M Abd-El-Haleem
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Institute, City of Scientific Research and Technological Applications SRTA-City, Alexandria, 21934, New Burelarab, Egypt.
| | - Marwa R Elkatory
- Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications SRTA-City, New Borg El-Arab City, 21934, Alexandria, Egypt
| | - Gadallah M Abu-Elreesh
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Institute, City of Scientific Research and Technological Applications SRTA-City, Alexandria, 21934, New Burelarab, Egypt
| |
Collapse
|
6
|
Bayoumi HH, Ibrahim MK, Dahab MA, Khedr F, El-Adl K. Rationale, in silico docking, ADMET profile, design, synthesis and cytotoxicity evaluations of phthalazine derivatives as VEGFR-2 inhibitors and apoptosis inducers. RSC Adv 2024; 14:27110-27121. [PMID: 39193307 PMCID: PMC11348385 DOI: 10.1039/d4ra04956j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
New phthalazine derivatives as vascular endothelial growth factor receptor-2 (VEGFR-2) inhibitors were synthesized joined to different spacers including pyrazole, α,β-unsaturated ketonic fragment, pyrimidinone and/or pyrimidinthione. A docking study was carried out to explore the suggested binding orientations of the novel derivatives inside the active site of VEGFR-2. The obtained biological data were extremely interrelated to that of the docking study. In particular, compounds 4b and 3e showed the highest activities against Michigan Cancer Foundation-7 (MCF-7) and Hepatocellular carcinoma G2 (HepG2) with half maximal inhibitory concentration (IC50) = 0.06, 0.06 μM and 0.08, 0.19 μM respectively. Our derivatives 3a-e, 4a,b and 5a,b were evaluated for their cytotoxicity against normal VERO cells. Our compounds exhibited low toxicity concerning normal VERO cells with IC50 = 3.00-4.75 μM. In addition, our final derivatives 3a-e, 4a, 4b, 5a and 5b were investigated for their VEGFR-2 inhibitory activities. Derivative 4b exhibited the highest VEGFR-2 inhibitory activities at an IC50 value of 0.09 ± 0.02 μM. Derivatives 3e, 4a and 5b demonstrated good activities with IC50 values = 0.12 ± 0.02, 0.15 ± 0.03 and 0.13 ± 0.03 μM respectively. Furthermore, the activities of 4b were assessed against MCF-7 cancer cells for apoptosis induction, cell cycle distribution and growth inhibition. Compound 4b caused cell growth arrest in growth 2-mitosis (G2-M) phase; accumulation of cells at that phase became 6.92% after being 13.2 in control cells. Moreover, our derivatives 3e, 4b and 5b revealed a good in silico considered absorption, distribution, metabolism, excretion, and toxicity (ADMET) profile in comparison to sorafenib.
Collapse
Affiliation(s)
- Hatem Hussein Bayoumi
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Mohamed-Kamal Ibrahim
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Mohammed A Dahab
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Fathalla Khedr
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Khaled El-Adl
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development Cairo Egypt
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Nasr City 11884 Cairo Egypt
| |
Collapse
|
7
|
Jia M, Dong Z, Dong W, Yang B, He Y, Wang Y, Wang J. DDIT3 deficiency accelerates bone remodeling during bone healing by enhancing osteoblast and osteoclast differentiation through ULK1-mediated autophagy. Bone 2024; 182:117058. [PMID: 38408589 DOI: 10.1016/j.bone.2024.117058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
The coordination of osteoblasts and osteoclasts is essential for bone remodeling. DNA damage inducible script 3 (DDIT3) is an important regulator of bone and participates in cell differentiation, proliferation, autophagy, and apoptosis. However, its role in bone remodeling remains unexplored. Here, we found that Ddit3 knockout (Ddit3-KO) enhanced both bone formation and resorption. The increased new bone formation and woven bone resorption, i.e., enhanced bone remodeling capacity, was found to accelerate bone defect healing in Ddit3-KO mice. In vitro experiments showed that DDIT3 inhibited both osteoblast differentiation and Raw264.7 cell differentiation by regulating autophagy. Cell coculture assay showed that Ddit3-KO decreased the ratio of receptor activator of nuclear factor-κβ ligand (RANKL) to osteoprotegerin (OPG) in osteoblasts, and Ddit3-KO osteoblasts inhibited osteoclast differentiation. Meanwhile, DDIT3 knockdown (DDIT3-sh) increased receptor activator of nuclear factor-κβ (RANK) expression in Raw264.7 cells, and DDIT3-sh Raw264.7 cells promoted osteoblast differentiation, whereas, DDIT3 overexpression had the opposite effect. Mechanistically, DDIT3 promoted autophagy partly by increasing ULK1 phosphorylation at serine555 (pULK1-S555) and decreasing ULK1 phosphorylation at serine757 (pULK1-S757) in osteoblasts, thereby inhibiting osteoblast differentiation. DDIT3 inhibited autophagy partly by decreasing pULK1-S555 in Raw264.7 cells, thereby suppressing osteoclastic differentiation. Taken together, our data indicate that DDIT3 is one of the elements regulating bone remodeling and bone healing, which may become a potential target in bone defect treatment.
Collapse
Affiliation(s)
- Meie Jia
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Zhipeng Dong
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Wei Dong
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Beining Yang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Ying He
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yan Wang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Jiawei Wang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China.
| |
Collapse
|
8
|
Zhang K, Tang Y, Yu H, Yang J, Tao L, Xiang P. Discovery of lupus nephritis targeted inhibitors based on De novo molecular design: comprehensive application of vinardo scoring, ADMET analysis, and molecular dynamics simulation. J Biomol Struct Dyn 2024:1-14. [PMID: 38501728 DOI: 10.1080/07391102.2024.2329293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/06/2024] [Indexed: 03/20/2024]
Abstract
Lupus Nephritis (LN) is an autoimmune disease affecting the kidneys, and conventional drug studies have limitations due to its imprecise and complex pathogenesis. Therefore, the aim of this study was to design a novel Lupus Nephritis-targeted drug with good clinical due potential, high potency and selectivity by computer-assisted approach.NIK belongs to the serine/threonine protein kinase, which is gaining attention as a drug target for Lupus Nephritis. we used bioinformatics, homology modelling and sequence comparison analysis, small molecule ab initio design, ADMET analysis, molecular docking, molecular dynamics simulation, and MM/PBSA analysis to design and explore the selectivity and efficiency of a novel Lupus Nephritis-targeting drug, ClImYnib, and a classical NIK inhibitor, NIK SMI1. We used bioinformatics techniques to determine the correlation between lupus nephritis and the NF-κB signaling pathway. De novo drugs design was used to create a NIK-targeted inhibitor, ClImYnib, with lower toxicity, after which we used molecular dynamics to simulate NIK SMI1 against ClImYnib, and the simulation results showed that ClImYnib had better selectivity and efficiency. Our research delves into the molecular mechanism of protein ligands, and we have designed and validated an excellent NIK inhibitor using multiple computational simulation methods. More importantly, it provides an idea of target designing small molecules.
Collapse
Affiliation(s)
- Kaiyuan Zhang
- School of Clinical Medicine, Bengbu Medical College, China
| | - Yingkai Tang
- Department of Anatomy, School of basic Medicine, Bengbu Medical College, China
| | - Haiyue Yu
- School of Clinical Medicine, Bengbu Medical College, China
| | - Jingtao Yang
- School of Clinical Medicine, Bengbu Medical College, China
| | - Lu Tao
- Central Laboratory, The Frist Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Ping Xiang
- Central Laboratory, The Frist Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| |
Collapse
|
9
|
Bonato Wille AP, Pereira da Motta K, Pinto Brites N, Luchese C, Frederico Schumacher R, Antunes Wilhelm E. Synthesis and investigation of new indole-containing vinyl sulfide derivatives: In silico and in vitro studies for potential therapeutic applications. Chem Biodivers 2024; 21:e202301460. [PMID: 38117615 DOI: 10.1002/cbdv.202301460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 12/22/2023]
Abstract
Indoles featuring organosulfur compounds serve as privileged structural scaffolds in various biologically active compounds. This study investigates the biological properties of five synthetic sulphenyl vinyl indoles (3 a-e) using both in silico and in vitro methods. Computational analyses employing Swiss ADME and Molinspiration software reveal the remarkable inhibitory activity of compound 3 d against proteases and kinases (scores of 0.18 and 0.06, respectively). Furthermore, it demonstrates the ability to modulate ionic and G protein-coupled receptors (scores: -0.06 and 0.31, respectively) and serves as a ligand for nuclear receptors (score 0.15). In vitro investigations highlight the compounds' efficacy in countering ABTS+ radical attacks and reducing lipid peroxidation levels. Particularly noteworthy is the superior efficacy of compounds 3 a, 3 b, and 3 e in DPPH (EC50 3 a: 268.5 μM) and TEAC assays (EC50 3 a: 49.9 μM; EC50 3 b: 133.4 μM, and EC50 3 e: 84.9 μM), as well as TBARS levels. Compound 3 c significantly reduces acetylcholinesterase activity, positioning itself as a noteworthy enzyme inhibitor. This study emphasizes the versatile biological potential of synthetic indole derivatives, suggesting their applicability for therapeutic purposes.
Collapse
Affiliation(s)
- Ana Paula Bonato Wille
- Postgraduate Program in Biochemistry and Bioprospecting, Research Laboratory in Biochemical Pharmacology (LaFarBio), Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, Brazil CEP, 96010-900, RS, Brazil
| | - Ketlyn Pereira da Motta
- Postgraduate Program in Biochemistry and Bioprospecting, Research Laboratory in Biochemical Pharmacology (LaFarBio), Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, Brazil CEP, 96010-900, RS, Brazil
| | - Nathan Pinto Brites
- Department of Chemistry, Federal University of Santa Maria, Santa Maria Brazil, CEP, 97105-900, RS, Brazil
| | - Cristiane Luchese
- Postgraduate Program in Biochemistry and Bioprospecting, Research Laboratory in Biochemical Pharmacology (LaFarBio), Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, Brazil CEP, 96010-900, RS, Brazil
| | | | - Ethel Antunes Wilhelm
- Postgraduate Program in Biochemistry and Bioprospecting, Research Laboratory in Biochemical Pharmacology (LaFarBio), Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, Brazil CEP, 96010-900, RS, Brazil
| |
Collapse
|
10
|
Godbole SS, Dokholyan NV. Allosteric regulation of kinase activity in living cells. eLife 2023; 12:RP90574. [PMID: 37943025 PMCID: PMC10635643 DOI: 10.7554/elife.90574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Abstract
The dysregulation of protein kinases is associated with multiple diseases due to the kinases' involvement in a variety of cell signaling pathways. Manipulating protein kinase function, by controlling the active site, is a promising therapeutic and investigative strategy to mitigate and study diseases. Kinase active sites share structural similarities, making it difficult to specifically target one kinase, and allosteric control allows specific regulation and study of kinase function without directly targeting the active site. Allosteric sites are distal to the active site but coupled via a dynamic network of inter-atomic interactions between residues in the protein. Establishing an allosteric control over a kinase requires understanding the allosteric wiring of the protein. Computational techniques offer effective and inexpensive mapping of the allosteric sites on a protein. Here, we discuss the methods to map and regulate allosteric communications in proteins, and strategies to establish control over kinase functions in live cells and organisms. Protein molecules, or 'sensors,' are engineered to function as tools to control allosteric activity of the protein as these sensors have high spatiotemporal resolution and help in understanding cell phenotypes after immediate activation or inactivation of a kinase. Traditional methods used to study protein functions, such as knockout, knockdown, or mutation, cannot offer a sufficiently high spatiotemporal resolution. We discuss the modern repertoire of tools to regulate protein kinases as we enter a new era in deciphering cellular signaling and developing novel approaches to treat diseases associated with signal dysregulation.
Collapse
Affiliation(s)
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of MedicineHersheyUnited States
- Department of Biomedical Engineering, Penn State University, University ParkHersheyUnited States
- Department of Engineering Science and Mechanics, Penn State University, University ParkHersheyUnited States
- Department of Biochemistry & Molecular Biology, Penn State College of MedicineHersheyUnited States
- Department of Chemistry, Penn State University, University ParkHersheyUnited States
| |
Collapse
|
11
|
Xu J, Yan D, Chen Y, Cai D, Huang F, Zhu L, Zhang X, Luan S, Xiao C, Huang Q. Fungicidal activity of novel quinazolin-6-ylcarboxylates and mode of action on Botrytis cinerea. PEST MANAGEMENT SCIENCE 2023; 79:3022-3032. [PMID: 36966485 DOI: 10.1002/ps.7477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/17/2023] [Accepted: 03/26/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Fungal diseases remain important causes of crop failure and economic losses. As the resistance toward current selective fungicides becomes increasingly problematic, it is necessary to develop efficient fungicides with novel chemotypes. RESULTS A series of novel quinazolin-6-ylcarboxylates which combined the structures of pyridine or heterocyclic motif and the N-(3-chloro-4-fluorophenyl)quinazolin-4-amine moiety, a binding group of ATP-binding site of gefitinib, were evaluated for their fungicidal activity on different phytopathogenic fungi. Most of these compounds showed excellent fungicidal activities against Botrytis cinerea and Exserohilum rostratum, especially compound F17 displayed the highest activity with EC50 values as 3.79 μg mL-1 against B. cinerea and 2.90 μg mL-1 against E. rostratum, which was similar to or even better than those of the commercial fungicides, such as pyraclostrobin (EC50 , 3.68, 17.38 μg mL-1 ) and hymexazol (EC50 , 4.56, 2.13 μg mL-1 ). Moreover, compound F17 significantly arrested the lesion expansion of B. cinerea infection on tomato detached leaves and strongly suppressed grey mold disease on tomato seedlings in greenhouse. The abilities of compound F17 to induce cell apoptosis of the non-germinated spores, to limit oxalic acid production, to reduce malate dehydrogenase (MDH) expression, and to block the active pocket of MDH protein were demonstrated in B. cinerea. CONCLUSION The novel quinazolin-6-ylcarboxylates containing ATP-binding site-directed moiety, especially compound F17, could be developed as a potential fungicidal candidate for further study. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jialin Xu
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Dongmei Yan
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yongjun Chen
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Danni Cai
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Fengcheng Huang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Lisong Zhu
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xianfei Zhang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Shaorong Luan
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Ciying Xiao
- School of Biochemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Qingchun Huang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
12
|
Martins MS, Almeida IF, Cruz MT, Sousa E. Chronic pruritus: from pathophysiology to drug design. Biochem Pharmacol 2023; 212:115568. [PMID: 37116666 DOI: 10.1016/j.bcp.2023.115568] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/30/2023]
Abstract
Pruritus, the most common symptom in dermatology, is an innate response capable of protecting skin against irritants. Nonetheless, when it lasts more than six weeks it is assumed to be a chronic pathology having a negative impact on people's lives. Chronic pruritus (CP) can occur in common and rare skin diseases, having a high prevalence in global population. The existing therapies are unable to counteract CP or are associated with adverse effects, so the development of effective treatments is a pressing issue. The pathophysiological mechanisms underlying CP are not yet completely dissected but, based on current knowledge, involve a wide range of receptors, namely neurokinin 1 receptor (NK1R), Janus kinase (JAK), and transient receptor potential (TRP) ion channels, especially transient receptor potential vanilloid 1 (TRPV1) and transient receptor potential ankyrin 1 (TRPA1). This review will address the relevance of these molecular targets for the treatment of CP and molecules capable of modulating these receptors that have already been studied clinically or have the potential to possibly alleviate this pathology. According to scientific and clinical literature, there is an increase in the expression of these molecular targets in the lesioned skin of patients experiencing CP when compared with non-lesioned skin, highlighting their importance for the development of potential efficacious drugs through the design of antagonists/inhibitors.
Collapse
Affiliation(s)
- Márcia S Martins
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal; Laboratory of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Isaobel F Almeida
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO-Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Maria T Cruz
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Emília Sousa
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal; Laboratory of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
13
|
Zha J, Li M, Kong R, Lu S, Zhang J. Explaining and Predicting Allostery with Allosteric Database and Modern Analytical Techniques. J Mol Biol 2022; 434:167481. [DOI: 10.1016/j.jmb.2022.167481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 12/17/2022]
|
14
|
Serafim RAM, Elkins JM, Zuercher WJ, Laufer SA, Gehringer M. Chemical Probes for Understudied Kinases: Challenges and Opportunities. J Med Chem 2021; 65:1132-1170. [PMID: 34477374 DOI: 10.1021/acs.jmedchem.1c00980] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over 20 years after the approval of the first-in-class protein kinase inhibitor imatinib, the biological function of a significant fraction of the human kinome remains poorly understood while most research continues to be focused on few well-validated targets. Given the strong genetic evidence for involvement of many kinases in health and disease, the understudied fraction of the kinome holds a large and unexplored potential for future therapies. Specific chemical probes are indispensable tools to interrogate biology enabling proper preclinical validation of novel kinase targets. In this Perspective, we highlight recent case studies illustrating the development of high-quality chemical probes for less-studied kinases and their application in target validation. We spotlight emerging techniques and approaches employed in the generation of chemical probes for protein kinases and beyond and discuss the associated challenges and opportunities.
Collapse
Affiliation(s)
- Ricardo A M Serafim
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Jonathan M Elkins
- Centre for Medicines Discovery, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - William J Zuercher
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Stefan A Laufer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany.,Tübingen Center for Academic Drug Discovery, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|