1
|
Ayesiga I, Okoro LN, Taremba C, Yeboah MO, Naab JTM, Anyango RM, Adekeye J, Kahwa I. Genetic variability in snake venom and its implications for antivenom development in sub-Saharan Africa. Trans R Soc Trop Med Hyg 2025; 119:400-406. [PMID: 39749534 DOI: 10.1093/trstmh/trae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/23/2024] [Accepted: 09/19/2024] [Indexed: 01/04/2025] Open
Abstract
Snake venom, a complex mixture of proteins, has attracted human attention for centuries due to its associated mortality, morbidity and other therapeutic properties. In sub-Saharan Africa (SSA), where snakebites pose a significant health risk, understanding the genetic variability of snake venoms is crucial for developing effective antivenoms. The wide geographic distribution of venomous snake species in SSA countries demonstrates the need to develop specific and broad antivenoms. However, the development of broad antivenoms has been hindered by different factors, such as antivenom cross-reactivity and polygenic paratopes. While specific antivenoms have been hindered by the numerous snake species across the SSA region, current antivenoms, such as SAIMR polyvalent and Premium Serums & Vaccines, exhibit varying degrees of cross-reactivity. Such ability to cross-react enables the antivenoms to target multiple components from the different snake species. The advent of biotechnological innovations, including recombinant antibodies, small-molecule drugs, monoclonal antibodies and synthetic antivenoms, presents options for eliminating limitations associated with traditional plasma-derived antivenoms. However, challenges still persist, especially in SSA, in addressing genetic variability, as evidenced by inadequate testing capacity and limited genomic research facilities. This comprehensive review explores the genetic variability of snake venoms in SSA, emphasizing the venom composition of various snake species and their interactions. This information is critical in developing multiple strategies during antivenom development. Finally, it offers information concerning the need for extensive collaborative engagements, technological advancements and comprehensive genomic evaluations to produce targeted and effective antivenoms.
Collapse
Affiliation(s)
- Innocent Ayesiga
- Department of Research, Ubora Foundation Africa, Kampala 759125, Uganda
| | - Lenz N Okoro
- Department of Community Medicine, David Umahi Federal University Teaching Hospital, Uburu, Ebonyi State 480101, Nigeria
| | - Chirigo Taremba
- National University of Science and Technology, Bulawayo 00000, Zimbabwe
| | - Michael O Yeboah
- School of Public Health, University of Port Harcourt, River State 500001, Nigeria
| | - Justine T M Naab
- School of Public Health, Kwame Nkrumah University of Science and Technology, Kumasi GA107, Ghana
| | - Ruphline M Anyango
- Department of Veterinary Tropical Medicine, University of Pretoria, Pretoria 0002, South Africa
| | - John Adekeye
- Virology clinic, Olabisi Onabanjo University Teaching Hospital, Sagamu, Ogun state 111103, Nigeria
| | - Ivan Kahwa
- Pharm-Biotechnology and Traditional Medicine Centre (PHARMBIOTRAC), Faculty of Medicine, Mbarara University of Science and Technology, Mbarara 40006, Uganda
| |
Collapse
|
2
|
Orlandi G, Rossi N, Chiarelli F, Di Filippo P. Vipera Snakebite in Children: A Focus on Europe. CHILDREN (BASEL, SWITZERLAND) 2025; 12:393. [PMID: 40150675 PMCID: PMC11941593 DOI: 10.3390/children12030393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/11/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Although there are over 5 million cases of snakebites each year, up-to-date data on epidemiology and management in European children are lacking in literature. Snakebite envenoming is a rare but potentially life-threatening event, and children are more susceptible due to their lower weight-to-venom ratio. Symptoms of viper envenomation in children are mainly local, but the lymphatic and blood diffusion of the venom may cause systemic symptoms, mainly hemotoxic and cytotoxic symptoms. Immunotherapy with anti-viper serums is the cornerstone of treatment for viper bites, while the use of antibiotics, steroids and analgesics is still unclear and unstandardized. Recently, efforts have been made to improve the pediatric approach to viper envenomation in European children. Several pediatric case reports in children were reported in literature, and a pediatric grading severity score and electronic clinical tool (VipGrade®) were created to better manage this issue. However, larger studies are needed to validate these pediatric tools. This narrative review focuses on the clinical characteristics and management of European snake envenomation in children.
Collapse
Affiliation(s)
| | | | | | - Paola Di Filippo
- Department of Pediatrics, University of Chieti, 66100 Chieti, Italy; (G.O.); (N.R.); (F.C.)
| |
Collapse
|
3
|
Hussain SS, Kingsley JD. Metabolomics and proteomics: synergistic tools for understanding snake venom inhibition. Arch Toxicol 2025; 99:915-934. [PMID: 39760869 DOI: 10.1007/s00204-024-03947-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/17/2024] [Indexed: 01/07/2025]
Abstract
Snake envenomation presents a significant global health challenge, especially in rural areas of tropical and subtropical regions. Traditional antivenom therapies face limitations related to efficacy, availability, and specificity, prompting a need for novel approaches. Recent advancements in omics technologies, particularly metabolomics and proteomics, have enhanced our understanding of snake venom composition, toxicity, and potential therapeutic strategies. Metabolomics allows for the study of metabolic changes induced by venom, providing insights into disrupted pathways and possible inhibitors. Proteomics facilitates the identification and characterization of venom proteins, unveiling their interactions with therapeutic agents. Integrative databases such as the Snake Venom Database (SVDB) and STAB Profiles enhance this research by cataloging venom components and aiding in the analysis of venom-antivenom interactions. The combined application of metabolomics and proteomics has led to the identification of crucial metabolic pathways and protein targets essential for effective venom inhibition. This review explores current advances in these fields, emphasizing the role of omics in identifying novel inhibitors and developing next-generation antivenoms. The integrated approach of metabolomics and proteomics offers a comprehensive understanding of snake venom biology, paving the way for more effective and tailored therapeutic solutions for envenomation.
Collapse
Affiliation(s)
- Sana S Hussain
- Department of Integrative Biology, School of Bioscience and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - J Danie Kingsley
- Department of Integrative Biology, School of Bioscience and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
4
|
Eriksson M, Larsson A. Avian Antibodies as Potential Therapeutic Tools. Antibodies (Basel) 2025; 14:18. [PMID: 39982233 PMCID: PMC11843883 DOI: 10.3390/antib14010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/17/2025] [Accepted: 02/13/2025] [Indexed: 02/22/2025] Open
Abstract
Immunoglobulin Y (IgY) is the primary antibody found in the eggs of chicken (Gallus domesticus), allowing for large-scale antibody production with high titers, making them cost-effective antibody producers. IgY serves as a valuable alternative to mammalian antibodies typically used in immunodiagnostics and immunotherapy. Compared to mammalian antibodies, IgY offers several biochemical advantages, and its straightforward purification from egg yolk eliminates the need for invasive procedures like blood collection, reducing stress in animals. Due to the evolutionary differences between birds and mammals, chicken antibodies can bind to a broader range of epitopes on mammalian proteins than their mammalian counterparts. Studies have shown that chicken antibodies bind 3-5 times more effectively to rabbit IgG than swine antibodies, enhancing the signal in immunological assays. Additionally, IgY does not interact with rheumatoid factors or human anti-mouse IgG antibodies (HAMA), helping to minimize interference from these factors. IgY obtained from egg yolk of hens immunized against Pseudomonas aeruginosa has been used in patients suffering from cystic fibrosis and chronic pulmonary colonization with this bacterium. Furthermore, IgY has been used to counteract streptococcus mutans in the oral cavity and for the treatment of enteral infections in both humans and animals. However, the use of avian antibodies is limited to pulmonary, enteral, or topical application and should, due to immunogenicity, not be used for systemic administration. Thus, IgY expands the range of strategies available for combating pathogens in medicine, as a promising candidate both as an alternative to antibiotics and as a valuable tool in research and diagnostics.
Collapse
Affiliation(s)
- Mats Eriksson
- Department of Surgical Sciences, Section of Anaesthesiology and Intensive Care, Uppsala University, SE-751 85 Uppsala, Sweden
- NOVA Medical School, New University of Lisbon, 1099-085 Lisbon, Portugal
| | - Anders Larsson
- Department of Medical Sciences, Section of Clinical Chemistry, Uppsala University, SE-751 85 Uppsala, Sweden;
| |
Collapse
|
5
|
Cavalcante JS, Arruda SST, Riciopo PM, Pucca M, Ferreira Junior RS. Diagnosis of human envenoming by terrestrial venomous animals: Routine, advances, and perspectives. Toxicon X 2024; 24:100211. [PMID: 39507426 PMCID: PMC11539352 DOI: 10.1016/j.toxcx.2024.100211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 11/08/2024] Open
Abstract
Despite the development of new and advanced diagnostic approaches, monitoring the clinical evolution of accidents caused by venomous animals is still a challenge for science. In this review, we present the state of the art of laboratory tests that are routinely used for the diagnosis and monitoring of envenomings by venomous animals, as well as the use of new tools for more accurate and specific diagnoses. While a comprehensive range of tools is outlined, comprising hematological, biochemical, immunoassays, and diagnostic imaging tools, it is important to acknowledge their limitations in predicting the onset of clinical complications, since they provide an overview of organic damage after its development. Thus, the need for discovery, validation, and use of biomarkers that have greater predictive power, sensitivity and specificity is evident. This will help in the diagnosis, monitoring, and treatment of patients envenomated by venomous animals, consequently reducing the global burden of morbidity and mortality.
Collapse
Affiliation(s)
- Joeliton S. Cavalcante
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP—Univ Estadual Paulista), Botucatu, 18618-687, São Paulo, Brazil
| | - Sabrina Santana Toledo Arruda
- Department of Bioprocess and Biotechnology, School of Agriculture, Agronomic Sciences School, São Paulo State University (UNESP—Univ Estadual Paulista), Botucatu, 18618-687, São Paulo, Brazil
| | - Pedro Marques Riciopo
- Department of Bioprocess and Biotechnology, School of Agriculture, Agronomic Sciences School, São Paulo State University (UNESP—Univ Estadual Paulista), Botucatu, 18618-687, São Paulo, Brazil
| | - Manuela Pucca
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University UNESP—Univ Estadual Paulista, Araraquara, 14800-903, Brazil
| | - Rui Seabra Ferreira Junior
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP—Univ Estadual Paulista), Botucatu, 18618-687, São Paulo, Brazil
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP—Univ Estadual Paulista), Botucatu, 18610-307, São Paulo, Brazil
- Center for Translational Science and Development of Biopharmaceuticals FAPESP/CEVAP-UNESP, Botucatu, 18610-307, São Paulo, Brazil
| |
Collapse
|
6
|
Nyarko E, Ameho EK, Iddi S, Asiedu L. Challenges associated with the availability, accessibility, and use of antivenoms for treating snakebite envenoming in Ghana: A MaxDiff experiment design. Toxicon 2024; 238:107594. [PMID: 38191031 DOI: 10.1016/j.toxicon.2023.107594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/20/2023] [Accepted: 12/30/2023] [Indexed: 01/10/2024]
Abstract
Successful snakebite envenoming (SBE) treatment requires safe, effective, and quality-assured antivenom products specifically tailored to combat endemic venomous snake species. This study aims to identify the challenges associated with the availability, accessibility, and use of antivenoms for treating SBE. The data for this study were obtained from a cross-sectional study involving healthcare workers from two districts (namely Afram Plains North and Afram Plains South) in the Eastern Region of Ghana. Through the MaxDiff design methodology, we quantify the challenges associated with the availability, accessibility, and use of antivenoms. Responses from a simple random sample of 203 healthcare workers were included in this study. Participants identified the high cost of antivenoms as the most challenging factor that limits the availability, accessibility, and use of antivenoms for treating SBE. Other important challenges were the lack of access to effective antivenoms in remote areas when needed and the increased use of unorthodox and harmful practices, followed by resort to unorthodox and harmful practices and the lack of effective antivenoms to address envenoming from local species in some instances. However, poor outcomes from using substandard antivenoms, stock-outs, inadequate number of manufacturers, and the resort to substandard, cheap, and harmful antivenoms were traded off. Also, poor utilization of antivenoms, suboptimal utilization of antivenoms (low quality, under-dose), use of ineffective, substandard antivenoms, and flooding of the market with products that have not been evaluated thoroughly were underscored. Our findings provide essential data to guide discussions on barriers to the availability, accessibility, and use of antivenoms for treating SBE to improve the supply of antivenoms, enhance the effectiveness of snakebite treatment, and improve patient care quality in Ghana. Multi-component strategies are needed to address the challenges identified, such as intensified advocacy, ongoing education and community engagement, healthcare worker training, and leveraging institutional and governance structures.
Collapse
Affiliation(s)
- Eric Nyarko
- Department of Statistics and Actuarial Science, School of Physical and Mathematical Sciences, University of Ghana, Box LG 115, Legon, Accra, Ghana.
| | - Ebenezer Kwesi Ameho
- Department of Statistics and Actuarial Science, School of Physical and Mathematical Sciences, University of Ghana, Box LG 115, Legon, Accra, Ghana
| | - Samuel Iddi
- Department of Statistics and Actuarial Science, School of Physical and Mathematical Sciences, University of Ghana, Box LG 115, Legon, Accra, Ghana
| | - Louis Asiedu
- Department of Statistics and Actuarial Science, School of Physical and Mathematical Sciences, University of Ghana, Box LG 115, Legon, Accra, Ghana
| |
Collapse
|
7
|
Findlay-Wilson S, Easterbrook L, Smith S, Pope N, Aldridge M, Humphries G, Schuhmann H, Ngabo D, Rayner E, Otter A, Coleman T, Hicks B, Halkerston R, Apostolakis K, Taylor S, Fotheringham S, Horton A, CanoCejas I, Wand M, Tree JA, Sutton M, Graham V, Hewson R, Dowall S. Refinement of an ovine-based immunoglobulin therapy against SARS-CoV-2, with comparison of whole IgG versus F(ab') 2 fragments. Sci Rep 2023; 13:13912. [PMID: 37626085 PMCID: PMC10457378 DOI: 10.1038/s41598-023-40277-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
The development of new therapies against SARS-CoV-2 is required to extend the toolkit of intervention strategies to combat the global pandemic. In this study, hyperimmune plasma from sheep immunised with whole spike SARS-CoV-2 recombinant protein has been used to generate candidate products. In addition to purified IgG, we have refined candidate therapies by removing non-specific IgG via affinity binding along with fragmentation to eliminate the Fc region to create F(ab')2 fragments. These preparations were evaluated for in vitro activity and demonstrated to be strongly neutralising against a range of SARS-CoV-2 strains, including Omicron B2.2. In addition, their protection against disease manifestations and viral loads were assessed using a hamster SARS-CoV-2 infection model. Results demonstrated protective effects of both IgG and F(ab')2, with the latter requiring sequential dosing to maintain in vivo activity due to rapid clearance from the circulation.
Collapse
Affiliation(s)
| | - Linda Easterbrook
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Sandra Smith
- International Therapeutic Proteins Ltd, Longford, TAS, 7301, Australia
| | - Neville Pope
- International Therapeutic Proteins Ltd, Goleigh Farm, Selborne, GU34 3SE, Hampshire, UK
| | | | - Gareth Humphries
- Native Antigen Company, Langford Locks, Kidlington, Oxford, OX5 1LH, UK
| | - Holger Schuhmann
- Native Antigen Company, Langford Locks, Kidlington, Oxford, OX5 1LH, UK
| | - Didier Ngabo
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Emma Rayner
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Ashley Otter
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Thomas Coleman
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Bethany Hicks
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Rachel Halkerston
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Kostis Apostolakis
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Stephen Taylor
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Susan Fotheringham
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Amanda Horton
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Irene CanoCejas
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Matthew Wand
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Julia A Tree
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Mark Sutton
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Victoria Graham
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Roger Hewson
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Stuart Dowall
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK.
| |
Collapse
|
8
|
Romo E, Torres M, Martin-Solano S. Current situation of snakebites envenomation in the Neotropics: Biotechnology, a versatile tool in the production of antivenoms. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.04.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Snakebite envenomation is a neglected tropical disease that affects millions of people around the world with a great impact on health and the economy. Unfortunately, public health programs do not include this kind of disease as a priority in their social programs. Cases of snakebite envenomations in the Neotropics are inaccurate due to inadequate disease management from medical records to the choice of treatments. Victims of snakebite envenomation are primarily found in impoverished agricultural areas where remote conditions limit the availability of antivenom. Antivenom serum is the only Food and Drug Administration-approved treatment used up to date. However, it has several disadvantages in terms of safety and effectiveness. This review provides a comprehensive insight dealing with the current epidemiological status of snakebites in the Neotropics and technologies employed in antivenom production. Also, modern biotechnological tools such as transcriptomic, proteomic, immunogenic, high-density peptide microarray and epitope mapping are highlighted for producing new-generation antivenom sera. These results allow us to propose strategic solutions in the Public Health Sector for managing this disease.
Keywords: antivenom, biotechnology, neglected tropical disease, omics, recombinant antibody.
Collapse
Affiliation(s)
- Elizabeth Romo
- Carrera de Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Sangolquí, Ecuador
| | - Marbel Torres
- Carrera de Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Sangolquí, Ecuador, Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera de Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Immunology and Virology Laboratory, Nanoscience and Nanotechnology Center, Universidad de las Fuerzas Armadas, ESPE, Sangolquí, Ecuador
| | - Sarah Martin-Solano
- Carrera de Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Sangolquí, Ecuador, Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera de Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Grupo de Investigación en Biodiversidad, Zoonosis y Salud Pública, Universidad Central del Ecuador
| |
Collapse
|