1
|
Mackey S, Aghaeepour N, Gaudilliere B, Kao MC, Kaptan M, Lannon E, Pfyffer D, Weber K. Innovations in acute and chronic pain biomarkers: enhancing diagnosis and personalized therapy. Reg Anesth Pain Med 2025; 50:110-120. [PMID: 39909549 PMCID: PMC11877092 DOI: 10.1136/rapm-2024-106030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/17/2024] [Indexed: 02/07/2025]
Abstract
Pain affects millions worldwide, posing significant challenges in diagnosis and treatment. Despite advances in understanding pain mechanisms, there remains a critical need for validated biomarkers to enhance diagnosis, prognostication, and personalized therapy. This review synthesizes recent advancements in identifying and validating acute and chronic pain biomarkers, including imaging, molecular, sensory, and neurophysiological approaches. We emphasize the emergence of composite, multimodal strategies that integrate psychosocial factors to improve the precision and applicability of biomarkers in chronic pain management. Neuroimaging techniques like MRI and positron emission tomography provide insights into structural and functional abnormalities related to pain, while electrophysiological methods like electroencepholography and magnetoencepholography assess dysfunctional processing in the pain neuroaxis. Molecular biomarkers, including cytokines, proteomics, and metabolites, offer diagnostic and prognostic potential, though extensive validation is needed. Integrating these biomarkers with psychosocial factors into clinical practice can revolutionize pain management by enabling personalized treatment strategies, improving patient outcomes, and potentially reducing healthcare costs. Future directions include the development of composite biomarker signatures, advances in artificial intelligence, and biomarker signature integration into clinical decision support systems. Rigorous validation and standardization efforts are also necessary to ensure these biomarkers are clinically useful. Large-scale collaborative research will be vital to driving progress in this field and implementing these biomarkers in clinical practice. This comprehensive review highlights the potential of biomarkers to transform acute and chronic pain management, offering hope for improved diagnosis, treatment personalization, and patient outcomes.
Collapse
Affiliation(s)
- Sean Mackey
- Division of Pain Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Nima Aghaeepour
- Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, California, USA
| | - Brice Gaudilliere
- Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, California, USA
| | - Ming-Chih Kao
- Division of Pain Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Merve Kaptan
- Division of Pain Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Edward Lannon
- Division of Pain Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Dario Pfyffer
- Division of Pain Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Kenneth Weber
- Division of Pain Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
2
|
Wei W, Fang J, Yang B, Cui C, Wei J, Xue Y. Temporal therapy utilizing exosomes derived from M2 macrophages demonstrates enhanced efficacy in alleviating neuropathic pain in diabetic rats. Korean J Pain 2025; 38:14-28. [PMID: 39711250 PMCID: PMC11695256 DOI: 10.3344/kjp.24244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/24/2024] Open
Abstract
Background Diabetic pain patients have increased pain at night. Exosomes can relieve neuropathic pain. This study aimed to investigate the efficacy of exosome administration at different time points in relieving diabetic neuropathic pain (DNP) in rats. Methods M2 macrophages from bone marrow were induced in mice and exosomes were extracted. A diabetic rat model was induced using streptozotocin, with the mechanical withdrawal threshold (MWT) of the rats being measured at ≤ 80% of the basal value after 14 days, indicating successful construction of the DNP rat model. Exosomes were administered on three consecutive days at ZT0 (zeitgeber time) and ZT12. Parameters including blood glucose levels, body weight, MWT, and thermal withdrawal latency (TWL) were assessed in the rats. The lumbar spinal cord of rats was examined on days 21 and 28 to measure inflammatory factors and observe the expression of M1 and M2 microglia. Furthermore, microglia were exposed to lipopolysaccharide (LPS) and LPS + exosomes in a controlled in vitro setting to assess alterations in microglia phenotype involving the NF-kB p65 and IKBα inflammatory signaling pathways. Results The findings revealed that administration of exosomes during the rat resting period at ZT12 resulted in increased MWT and TWL, as well as a shift in microglia polarization towards the M2 phenotype. In vitro analysis indicated that exosomes influenced microglia polarization and suppressed the phosphorylation of NF-kB p65 and IKBα. Conclusions Temporal therapy with exosomes effectively reduces pain in DNP rats by polarizing microglia and affecting NF-kB p65 and IKBα signaling pathways.
Collapse
Affiliation(s)
- Wei Wei
- School of Anesthesia, Shanxi Medical University, Shanxi, China
| | - Jun Fang
- School of Anesthesia, Shanxi Medical University, Shanxi, China
| | - Baozhong Yang
- Department of Anesthesiology, Taiyuan Central Hospital, Taiyuan, China
| | - Chenlong Cui
- School of Anesthesia, Shanxi Medical University, Shanxi, China
| | - Jiacheng Wei
- School of Anesthesia, Shanxi Medical University, Shanxi, China
| | - Yating Xue
- School of Anesthesia, Shanxi Medical University, Shanxi, China
| |
Collapse
|
3
|
Song Y, Zhao S, Peng P, Zhang C, Liu Y, Chen Y, Luo Y, Li B, Liu L. Neuron-glia crosstalk and inflammatory mediators in migraine pathophysiology. Neuroscience 2024; 560:381-396. [PMID: 39389252 DOI: 10.1016/j.neuroscience.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
Migraine is a complex neurological disorder with neuroinflammation playing a crucial role in its pathogenesis. This review provides an overview of the neuroinflammation mechanisms in migraine, focusing on both cellular and molecular aspects. At the cellular level, we examine the role of glial cells, including astrocytes, microglia, oligodendrocytes in the central nervous system, and Schwann cells and satellite glial cells in the peripheral nervous system. On the molecular level, we explore the signaling pathways, including IL-1β, TNF-α, IL-6, and non-coding RNAs, that mediate cell interactions or independent actions. Some of the molecular signaling pathways mentioned, such as TNF-α and IL-1β, have been investigated as druggable targets. Recent advancements, such as [11C] PBR28-targeted imaging for visualizing astrocyte activation and single-cell sequencing for exploring cellular heterogeneity, represent breakthroughs in understanding the mechanisms of neuroinflammation in migraine. By considering factors for personalized treatments, estrogen and TRPM8 emerge as promising therapeutic targets regarding sexual dimorphism. These advancements may help bridge the gap between preclinical findings and clinical applications, ultimately leading to more precise and personalized options for migraine patients.
Collapse
Affiliation(s)
- Yine Song
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
| | - Shaoru Zhao
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
| | - Peiyue Peng
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
| | - Chengcheng Zhang
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
| | - Yuhan Liu
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
| | - Ying Chen
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
| | - Yuxi Luo
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
| | - Bin Li
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China
| | - Lu Liu
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, China.
| |
Collapse
|
4
|
Hassan M, Shahzadi S, Yasir M, Chun W, Kloczkowski A. Therapeutic Implication of miRNAs as an Active Regulatory Player in the Management of Pain: A Review. Genes (Basel) 2024; 15:1003. [PMID: 39202362 PMCID: PMC11353898 DOI: 10.3390/genes15081003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
Chronic pain is frequently associated with neuropathy, inflammation, or the malfunctioning of nerves. Chronic pain is associated with a significant burden of morbidity due to opioid use, associated with addiction and tolerance, and disability. MicroRNAs (miRs) are emerging therapeutic targets to treat chronic pain through the regulation of genes associated with inflammation, neuronal excitability, survival, or de-differentiation. In this review, we discuss the possible involvement of miRs in pain-related molecular pathways. miRs are known to regulate high-conviction pain genes, supporting their potential as therapeutic targets.
Collapse
Affiliation(s)
- Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, OH 43205, USA; (S.S.); (A.K.)
| | - Saba Shahzadi
- The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, OH 43205, USA; (S.S.); (A.K.)
| | - Muhammad Yasir
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea; (M.Y.); (W.C.)
| | - Wanjoo Chun
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea; (M.Y.); (W.C.)
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, OH 43205, USA; (S.S.); (A.K.)
- Department of Pediatrics, The Ohio State University School of Medicine, Columbus, OH 43205, USA
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
5
|
Kovanur Sampath K, Belcher S, Hales J, Thomson OP, Farrell G, Gisselman AS, Katare R, Tumilty S. The role of micro-RNAs in neuropathic pain-a scoping review. Pain Rep 2023; 8:e1108. [PMID: 37928202 PMCID: PMC10624461 DOI: 10.1097/pr9.0000000000001108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 09/08/2023] [Accepted: 09/23/2023] [Indexed: 11/07/2023] Open
Abstract
Neuropathic pain can be caused by a lesion or disease of the somatosensory system characterised by pathological neuro-immune alterations. At a molecular level, microRNAs (miRNAs) act as regulators of gene expression orchestrating both immune and neuronal processes. Thus, miRNAs may act as essential modulators of processes for the establishment and maintenance of neuropathic pain. The objective/aims of this scoping review was to explore and chart the literature to identify miRNAs that are dysregulated in neuropathic pain. The following databases were searched from inception to March 2023: PubMed, EBSCO, CINAHL, Cochrane Library, and SCOPUS. Two independent reviewers screened, extracted data, and independently assessed the risk of bias in included studies. The JBI critical appraisal checklist was used for critical appraisal. A narrative synthesis was used to summarise the evidence. Seven studies (total of 384 participants) that met our eligibility criteria were included in this scoping review. Our review has identified different miRNAs that are commonly involved in the chronic neuropathic pain conditions including miR-132, miR-101, and miR-199a. Our review findings further suggest that expression of miRNAs to be significantly associated with increased diabetic disease duration, HbA1C levels, and fibrinogen levels. Our review findings suggest that there is clear association between miRNA expression and chronic neuropathic pain conditions. Therefore, increasing the specificity by selecting a candidate miRNA and identifying its target mRNA is an area of future research.
Collapse
Affiliation(s)
- Kesava Kovanur Sampath
- Centre for Health and Social Practice, Waikato Institute of Technology, Hamilton, New Zealand
| | - Suzie Belcher
- Centre for Health and Social Practice, Waikato Institute of Technology, Hamilton, New Zealand
| | - James Hales
- Centre for Health and Social Practice, Waikato Institute of Technology, Hamilton, New Zealand
| | - Oliver P. Thomson
- Research Centre, University College of Osteopathy, London, United Kingdom
| | - Gerard Farrell
- Centre for Health Activity and Rehabilitation Research, School of Physiotherapy, Otago University, Dunedin, New Zealand
| | - Angela Spontelli Gisselman
- Doctor of Physical Therapy Program, Department of Public Health and Community Medicine, School of Medicine, Tufts University, Phoenix, AZ, USA
| | - Rajesh Katare
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Steve Tumilty
- Centre for Health Activity and Rehabilitation Research, School of Physiotherapy, Otago University, Dunedin, New Zealand
| |
Collapse
|
6
|
Zhang K, Li P, Jia Y, Liu M, Jiang J. Concise review: Current understanding of extracellular vesicles to treat neuropathic pain. Front Aging Neurosci 2023; 15:1131536. [PMID: 36936505 PMCID: PMC10020214 DOI: 10.3389/fnagi.2023.1131536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/09/2023] [Indexed: 03/06/2023] Open
Abstract
Extracellular vesicles (EVs) including exosomes are vesicular vesicles with phospholipid bilayer implicated in many cellular interactions and have the ability to transfer multiple types of cargo to cells. It has been found that EVs can package various molecules including proteins and nucleic acids (DNA, mRNA, and noncoding RNA). The discovery of EVs as carriers of proteins and various forms of RNA, such as microRNAs (miRNA) and long noncoding RNAs (lncRNA), has raised great interest in the field of drug delivery. Despite the underlying mechanisms of neuropathic pain being unclear, it has been shown that uncontrolled glial cell activation and the neuroinflammation response to noxious stimulation are important in the emergence and maintenance of neuropathic pain. Many studies have demonstrated a role for noncoding RNAs in the pathogenesis of neuropathic pain and EVs may offer possibilities as carriers of noncoding RNAs for potential in neuropathic pain treatment. In this article, the origins and clinical application of EVs and the mechanism of neuropathic pain development are briefly introduced. Furthermore, we demonstrate the therapeutic roles of EVs in neuropathic pain and that this involve vesicular regulation of glial cell activation and neuroinflammation.
Collapse
|
7
|
Diaz MM, Caylor J, Strigo I, Lerman I, Henry B, Lopez E, Wallace MS, Ellis RJ, Simmons AN, Keltner JR. Toward Composite Pain Biomarkers of Neuropathic Pain-Focus on Peripheral Neuropathic Pain. FRONTIERS IN PAIN RESEARCH 2022; 3:869215. [PMID: 35634449 PMCID: PMC9130475 DOI: 10.3389/fpain.2022.869215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/21/2022] [Indexed: 01/09/2023] Open
Abstract
Chronic pain affects ~10-20% of the U.S. population with an estimated annual cost of $600 billion, the most significant economic cost of any disease to-date. Neuropathic pain is a type of chronic pain that is particularly difficult to manage and leads to significant disability and poor quality of life. Pain biomarkers offer the possibility to develop objective pain-related indicators that may help diagnose, treat, and improve the understanding of neuropathic pain pathophysiology. We review neuropathic pain mechanisms related to opiates, inflammation, and endocannabinoids with the objective of identifying composite biomarkers of neuropathic pain. In the literature, pain biomarkers typically are divided into physiological non-imaging pain biomarkers and brain imaging pain biomarkers. We review both types of biomarker types with the goal of identifying composite pain biomarkers that may improve recognition and treatment of neuropathic pain.
Collapse
Affiliation(s)
- Monica M. Diaz
- Department of Neurology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Jacob Caylor
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States
| | - Irina Strigo
- Department of Psychiatry, San Francisco Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Imanuel Lerman
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States
| | - Brook Henry
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Eduardo Lopez
- Department of Psychiatry, San Francisco Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Mark S. Wallace
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States
| | - Ronald J. Ellis
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Alan N. Simmons
- Department of Psychiatry, San Diego & Center of Excellence in Stress and Mental Health, Veteran Affairs Health Care System, University of California, San Diego, San Diego, CA, United States
| | - John R. Keltner
- Department of Psychiatry, San Diego & San Diego VA Medical Center, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
8
|
Staal R, Khayrullina T, Christensen R, Hestehave S, Zhou H, Cajina M, Nattini ME, Gandhi A, Fallon SM, Schmidt M, Zorn SH, Brodbeck RM, Chandrasena G, Segerdahl Storck M, Breysse N, Hopper AT, Möller T, Munro G. P2X7 receptor mediated release of microglial prostanoids and miRNAs correlates with reversal of neuropathic hypersensitivity in rats. Eur J Pain 2022; 26:1304-1321. [PMID: 35388574 DOI: 10.1002/ejp.1951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/29/2022] [Accepted: 04/03/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND P2X7 receptor antagonists have potential for treating various CNS diseases, including neuropathic pain, although none have been approved for clinical use. Reasons may include insufficient understanding of P2X7 receptor signaling in pain and the lack of a corresponding preclinical mechanistic biomarker. METHODS Lu AF27139 is a highly selective and potent small molecule antagonist at rat, mouse, and human forms of the P2X7 receptor, with excellent pharmacokinetic and CNS permeability properties. In the current experiments, we probed the utility of previously characterized and novel signaling cascades exposed to Lu AF27139 using cultured microglia combined with release assays. Subsequently, we assessed the biomarker potential of identified candidate molecules in the rat chronic constriction injury (CCI) model of neuropathic pain; study design limitations precluded their assessment in spared nerve injury (SNI) rats. RESULTS Lu AF27139 blocked several pain-relevant pathways downstream of P2X7 receptors in-vitro. At brain and spinal cord receptor occupancy levels capable of functionally blocking P2X7 receptors, it diminished neuropathic hypersensitivity in SNI rats, and less potently in CCI rats. Although tissue levels of numerous molecules previously linked to neuropathic pain and P2X7 receptor function (e.g. IL-6, IL-1β, cathepsin-S, 2-AG) were unaffected by CCI, Lu AF27139-mediated regulation of spinal PGE2 and miRNA (e.g. rno-miR-93-5p) levels increased by CCI aligned with its ability to diminish neuropathic hypersensitivity. CONCLUSIONS We have identified a pain-relevant P2X7 receptor-regulated mechanism in neuropathic rats that could hold promise as a translatable biomarker and by association enhance the clinical progression of P2X7 receptor antagonists in neuropathic pain.
Collapse
Affiliation(s)
- Roland Staal
- Neuroinflammation Disease Biology Unit Lundbeck Research USA, 215 College Road, Paramus, NJ, 07652, USA
| | - Tanzilya Khayrullina
- Neuroinflammation Disease Biology Unit Lundbeck Research USA, 215 College Road, Paramus, NJ, 07652, USA
| | - Rie Christensen
- Neurodegeneration In Vivo Lundbeck A/S, Ottiliavej 9, 2500, Valby, Denmark
| | - Sara Hestehave
- Neurodegeneration In Vivo Lundbeck A/S, Ottiliavej 9, 2500, Valby, Denmark
| | - Hua Zhou
- Neuroinflammation Disease Biology Unit Lundbeck Research USA, 215 College Road, Paramus, NJ, 07652, USA
| | - Manuel Cajina
- Neuroinflammation Disease Biology Unit Lundbeck Research USA, 215 College Road, Paramus, NJ, 07652, USA
| | - Megan E Nattini
- Neuroinflammation Disease Biology Unit Lundbeck Research USA, 215 College Road, Paramus, NJ, 07652, USA
| | - Adarsh Gandhi
- Neuroinflammation Disease Biology Unit Lundbeck Research USA, 215 College Road, Paramus, NJ, 07652, USA
| | - Shaun M Fallon
- Neuroinflammation Disease Biology Unit Lundbeck Research USA, 215 College Road, Paramus, NJ, 07652, USA
| | - Megan Schmidt
- Neuroinflammation Disease Biology Unit Lundbeck Research USA, 215 College Road, Paramus, NJ, 07652, USA
| | - Stevin H Zorn
- Neuroinflammation Disease Biology Unit Lundbeck Research USA, 215 College Road, Paramus, NJ, 07652, USA
| | - Robbin M Brodbeck
- Neuroinflammation Disease Biology Unit Lundbeck Research USA, 215 College Road, Paramus, NJ, 07652, USA
| | - Gamini Chandrasena
- Neuroinflammation Disease Biology Unit Lundbeck Research USA, 215 College Road, Paramus, NJ, 07652, USA
| | | | - Nathalie Breysse
- Neuroinflammation Disease Biology Unit Lundbeck Research USA, 215 College Road, Paramus, NJ, 07652, USA
| | - Allen T Hopper
- Neuroinflammation Disease Biology Unit Lundbeck Research USA, 215 College Road, Paramus, NJ, 07652, USA
| | - Thomas Möller
- Neuroinflammation Disease Biology Unit Lundbeck Research USA, 215 College Road, Paramus, NJ, 07652, USA
| | - Gordon Munro
- Neurodegeneration In Vivo Lundbeck A/S, Ottiliavej 9, 2500, Valby, Denmark
| |
Collapse
|
9
|
Wen Q, Wang Y, Pan Q, Tian R, Zhang D, Qin G, Zhou J, Chen L. MicroRNA-155-5p promotes neuroinflammation and central sensitization via inhibiting SIRT1 in a nitroglycerin-induced chronic migraine mouse model. J Neuroinflammation 2021; 18:287. [PMID: 34893074 PMCID: PMC8665643 DOI: 10.1186/s12974-021-02342-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 12/05/2021] [Indexed: 12/03/2022] Open
Abstract
Background Previous studies have confirmed that the microglial activation and subsequent inflammatory responses in the trigeminal nucleus caudalis (TNC) are involved in the central sensitization of chronic migraine (CM). MicroRNA-155-5p has been shown to modulate the polarization of microglia and participate in inflammatory processes in a variety of neurological diseases. However, its role in CM remains unclear. The purpose of this study was to determine the precise role of miR-155-5p in CM. Methods A model of CM in C57BL/6 mice was established by recurrent intraperitoneal injection of nitroglycerin (NTG). Mechanical and thermal hyperalgesia were evaluated by Von Frey filaments and radiant heat. The expression of miR-155-5p was examined by qRT-PCR, and the mRNA and protein levels of silent information regulator 1(SIRT1) were measured by qRT-PCR, Western blotting (WB) and immunofluorescence (IF) analysis. The miR-155-5p antagomir, miR-155-5p agomir, SRT1720 (a SIRT1 activator) and EX527 (a SIRT1 inhibitor) were administered to confirm the effects of miR-155-5p and SIRT1 on neuroinflammation and the central sensitization of CM. ELISA, WB and IF assays were applied to evaluate the expression of TNF-α, myeloperoxidase (MPO), IL-10, p-ERK, p-CREB, calcitonin gene-related peptide (CGRP), c-Fos and microglial activation. The cellular localization of SIRT1 was illustrated by IF. Results After the NTG-induced mouse model of CM was established, the expression of miR-155-5p was increased. The level of SIRT1 was decreased, and partly colocalized with Iba1 in the TNC. The miR-155-5p antagomir and SRT1720 downregulated the expression of p-ERK, p-CREB, CGRP, and c-Fos, alleviating microglial activation and decreasing inflammatory substances (TNF-α, MPO). The administration of miR-155-5p agomir or EX527 exacerbated neuroinflammation and central sensitization. Importantly, the miR-155-5p agomir elevated CGRP and c-Fos expression and microglial activation, which could subsequently be alleviated by SRT1720. Conclusions These data demonstrate that upregulated miR-155-5p in the TNC participates in the central sensitization of CM. Inhibiting miR-155-5p alleviates neuroinflammation by activating SIRT1 in the TNC of CM mice.
Collapse
Affiliation(s)
- Qianwen Wen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, 1st You Yi Road, Yu Zhong, Chongqing, 400016, China
| | - Yunfeng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurology, Nanchong Central Hospital, Nanchong, China
| | - Qi Pan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ruimin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dunke Zhang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, 1st You Yi Road, Yu Zhong, Chongqing, 400016, China
| | - Guangcheng Qin
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, 1st You Yi Road, Yu Zhong, Chongqing, 400016, China
| | - Jiying Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lixue Chen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, 1st You Yi Road, Yu Zhong, Chongqing, 400016, China.
| |
Collapse
|
10
|
Circulating miRNome of Trachemys scripta after elective gonadectomy under general anesthesia. Sci Rep 2021; 11:14712. [PMID: 34282201 PMCID: PMC8289937 DOI: 10.1038/s41598-021-94113-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 07/05/2021] [Indexed: 12/30/2022] Open
Abstract
Post-surgical management is an important issue in veterinary medicine, requiring biomarkers with high sensitivity and specificity for timely and effective treatment. Emerging evidence suggests that miRNAs are promising stress- and pain-related markers. The aims were to profile the circulating miRNA signature in plasma of turtles (Trachemysscripta) and point out potential candidate biomarkers to assess the status of the animal. The plasma of female turtles underwent surgical gonadectomy were collected 24 h pre-surgery, and 2.5 h and 36 h post-surgery. The expression of miRNAs was profiled by Next Generation Sequencing and the dysregulated miRNAs were validated using RT-qPCR. The diagnostic value of miRNAs was calculated by ROC curves. The results showed that 14 miRNAs were differentially expressed over time. RT-qPCR validation highlighted that 2-miR-499-3p and miR-203-5p-out of 8 miRNAs tested were effectively modulated. The Area Under the Curve (AUC) of miR-203-5p was fair (AUC 0.7934) in discriminating pre- and 36 h post-surgery samples and poor for other time points; the AUC of miR-499-3p was excellent (AUC 0.944) in discriminating pre-surgery and 2.5 h post-surgery samples, and fair in discriminating pre-surgery and 36 h post-surgery (AUC 0.7292) and 2.5 h and 36 h post-surgery (AUC 0.7569) samples. In conclusion, we demonstrated for the first time that miRNAs profile changes in plasma of turtles underwent surgical oophorectomy and identified miR-203-5p and miR-499-3p as potential candidate biomarkers to assess animals' status. Further studies are necessary to confirm their diagnostic value and to investigate functional and mechanistic networks to improve our understanding of the biological processes.
Collapse
|
11
|
Malafoglia V, Ilari S, Vitiello L, Tenti M, Balzani E, Muscoli C, Raffaeli W, Bonci A. The Interplay between Chronic Pain, Opioids, and the Immune System. Neuroscientist 2021; 28:613-627. [PMID: 34269117 DOI: 10.1177/10738584211030493] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic pain represents one of the most serious worldwide medical problems, in terms of both social and economic costs, often causing severe and intractable physical and psychological suffering. The lack of biological markers for pain, which could assist in forming clearer diagnoses and prognoses, makes chronic pain therapy particularly arduous and sometimes harmful. Opioids are used worldwide to treat chronic pain conditions, but there is still an ambiguous and inadequate understanding about their therapeutic use, mostly because of their dual effect in acutely reducing pain and inducing, at the same time, tolerance, dependence, and a risk for opioid use disorder. In addition, clinical studies suggest that opioid treatment can be associated with a high risk of immune suppression and the development of inflammatory events, worsening the chronic pain status itself. While opioid peptides and receptors are expressed in both central and peripheral nervous cells, immune cells, and tissues, the role of opioids and their receptors, when and why they are activated endogenously and what their exact role is in chronic pain pathways is still poorly understood. Thus, in this review we aim to highlight the interplay between pain and immune system, focusing on opioids and their receptors.
Collapse
Affiliation(s)
| | - Sara Ilari
- Department of Health Science Institute of Research for Food Safety & Health (IRC-FSH), University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | | | - Michael Tenti
- Institute for Research on Pain, ISAL Foundation, Rimini, Italy
| | - Eleonora Balzani
- Department of Surgical Science, University of Turin, Turin, Italy
| | - Carolina Muscoli
- Department of Health Science Institute of Research for Food Safety & Health (IRC-FSH), University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | | | | |
Collapse
|
12
|
Polli A, Godderis L, Ghosh M, Ickmans K, Nijs J. Epigenetic and miRNA Expression Changes in People with Pain: A Systematic Review. THE JOURNAL OF PAIN 2020; 21:763-780. [DOI: 10.1016/j.jpain.2019.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/30/2019] [Accepted: 12/02/2019] [Indexed: 01/13/2023]
|
13
|
Davis KD, Aghaeepour N, Ahn AH, Angst MS, Borsook D, Brenton A, Burczynski ME, Crean C, Edwards R, Gaudilliere B, Hergenroeder GW, Iadarola MJ, Iyengar S, Jiang Y, Kong JT, Mackey S, Saab CY, Sang CN, Scholz J, Segerdahl M, Tracey I, Veasley C, Wang J, Wager TD, Wasan AD, Pelleymounter MA. Discovery and validation of biomarkers to aid the development of safe and effective pain therapeutics: challenges and opportunities. Nat Rev Neurol 2020; 16:381-400. [PMID: 32541893 PMCID: PMC7326705 DOI: 10.1038/s41582-020-0362-2] [Citation(s) in RCA: 252] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2020] [Indexed: 02/06/2023]
Abstract
Pain medication plays an important role in the treatment of acute and chronic pain conditions, but some drugs, opioids in particular, have been overprescribed or prescribed without adequate safeguards, leading to an alarming rise in medication-related overdose deaths. The NIH Helping to End Addiction Long-term (HEAL) Initiative is a trans-agency effort to provide scientific solutions to stem the opioid crisis. One component of the initiative is to support biomarker discovery and rigorous validation in collaboration with industry leaders to accelerate high-quality clinical research into neurotherapeutics and pain. The use of objective biomarkers and clinical trial end points throughout the drug discovery and development process is crucial to help define pathophysiological subsets of pain, evaluate target engagement of new drugs and predict the analgesic efficacy of new drugs. In 2018, the NIH-led Discovery and Validation of Biomarkers to Develop Non-Addictive Therapeutics for Pain workshop convened scientific leaders from academia, industry, government and patient advocacy groups to discuss progress, challenges, gaps and ideas to facilitate the development of biomarkers and end points for pain. The outcomes of this workshop are outlined in this Consensus Statement.
Collapse
Affiliation(s)
- Karen D Davis
- Department of Surgery and Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.
| | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Martin S Angst
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - David Borsook
- Center for Pain and the Brain, Harvard Medical School, Boston, MA, USA
| | | | | | | | - Robert Edwards
- Pain Management Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Brice Gaudilliere
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Georgene W Hergenroeder
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Michael J Iadarola
- Department of Perioperative Medicine, Clinical Center, NIH, Rockville, MD, USA
| | - Smriti Iyengar
- Division of Translational Research, National Institute of Neurological Disorders and Stroke, NIH, Rockville, MD, USA
| | - Yunyun Jiang
- The Biostatistics Center, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Jiang-Ti Kong
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Sean Mackey
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Carl Y Saab
- Department of Neuroscience and Department of Neurosurgery, Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Christine N Sang
- Department of Anesthesiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Joachim Scholz
- Neurocognitive Disorders, Pain and New Indications, Biogen, Cambridge, MA, USA
| | | | - Irene Tracey
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, NYU School of Medicine, New York, NY, USA
| | - Tor D Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Ajay D Wasan
- Anesthesiology and Perioperative Medicine and Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mary Ann Pelleymounter
- Division of Translational Research, National Institute of Neurological Disorders and Stroke, NIH, Rockville, MD, USA
| |
Collapse
|
14
|
Kalpachidou T, Kummer KK, Mitrić M, Kress M. Tissue Specific Reference Genes for MicroRNA Expression Analysis in a Mouse Model of Peripheral Nerve Injury. Front Mol Neurosci 2019; 12:283. [PMID: 31824261 PMCID: PMC6883285 DOI: 10.3389/fnmol.2019.00283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) have emerged as master switch regulators in many biological processes in health and disease, including neuropathy. miRNAs are commonly quantified by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR), usually estimated as relative expression through reference genes normalization. Different non-coding RNAs (ncRNAs) are used for miRNA normalization; however, there is no study identifying the optimal reference genes in animal models for peripheral nerve injury. We evaluated the stability of eleven ncRNAs, commonly used for miRNA normalization, in dorsal root ganglia (DRG), dorsal horn of the spinal cord (dhSC), and medial prefrontal cortex (mPFC) in the mouse spared nerve injury (SNI) model. After RT-qPCR, the stability of each ncRNA was determined by using four different methods: BestKeeper, the comparative delta-Cq method, geNorm, and NormFinder. The candidates were rated according to their performance in each method and an overall ranking list was compiled. The most stable ncRNAs were: sno420, sno429, and sno202 in DRG; sno429, sno202, and U6 in dhSC; sno202, sno420, and sno142 in mPFC. We provide the first reference genes' evaluation for miRNA normalization in different neuronal tissues in an animal model of peripheral nerve injury. Our results underline the need for careful selection of reference genes for miRNA normalization in different tissues and experimental conditions. We further anticipate that our findings can be used in a broad range of nerve injury related studies, to ensure validity and promote reproducibility in miRNA quantification.
Collapse
|
15
|
Current Evidence on Potential Uses of MicroRNA Biomarkers for Migraine: From Diagnosis to Treatment. Mol Diagn Ther 2019; 23:681-694. [DOI: 10.1007/s40291-019-00428-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Walters ET. Adaptive mechanisms driving maladaptive pain: how chronic ongoing activity in primary nociceptors can enhance evolutionary fitness after severe injury. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190277. [PMID: 31544606 DOI: 10.1098/rstb.2019.0277] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chronic pain is considered maladaptive by clinicians because it provides no apparent protective or recuperative benefits. Similarly, evolutionary speculations have assumed that chronic pain represents maladaptive or evolutionarily neutral dysregulation of acute pain mechanisms. By contrast, the present hypothesis proposes that chronic pain can be driven by mechanisms that evolved to reduce increased vulnerability to attack from predators and aggressive conspecifics, which often target prey showing physical impairment after severe injury. Ongoing pain and anxiety persisting long after severe injury continue to enhance vigilance and behavioural caution, decreasing the heightened vulnerability to attack that results from motor impairment and disfigurement, thereby increasing survival and reproduction (fitness). This hypothesis is supported by evidence of animals surviving and reproducing after traumatic amputations, and by complex specializations that enable primary nociceptors to detect local and systemic signs of injury and inflammation, and to maintain low-frequency discharge that can promote ongoing pain indefinitely. Ongoing activity in nociceptors involves intricate electrophysiological and anatomical specializations, including inducible alterations in the expression of ion channels and receptors that produce persistent hyperexcitability and hypersensitivity to chemical signals of injury. Clinically maladaptive chronic pain may sometimes result from the recruitment of this powerful evolutionary adaptation to severe bodily injury. This article is part of the Theo Murphy meeting issue 'Evolution of mechanisms and behaviour important for pain'.
Collapse
Affiliation(s)
- Edgar T Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, 6431 Fannin Street, Houston, TX 77030, USA
| |
Collapse
|
17
|
Katayama M, Wiklander OPB, Fritz T, Caidahl K, El-Andaloussi S, Zierath JR, Krook A. Circulating Exosomal miR-20b-5p Is Elevated in Type 2 Diabetes and Could Impair Insulin Action in Human Skeletal Muscle. Diabetes 2019; 68:515-526. [PMID: 30552111 DOI: 10.2337/db18-0470] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 12/01/2018] [Indexed: 11/13/2022]
Abstract
miRNAs are noncoding RNAs representing an important class of gene expression modulators. Extracellular circulating miRNAs are both candidate biomarkers for disease pathogenesis and mediators of cell-to-cell communication. We examined the miRNA expression profile of total serum and serum-derived exosome-enriched extracellular vesicles in people with normal glucose tolerance or type 2 diabetes. In contrast to total serum miRNA, which did not reveal any differences in miRNA expression, we identified differentially abundant miRNAs in patients with type 2 diabetes using miRNA expression profiles of exosome RNA (exoRNA). To validate the role of these differentially abundant miRNAs on glucose metabolism, we transfected miR-20b-5p, a highly abundant exoRNA in patients with type 2 diabetes, into primary human skeletal muscle cells. miR-20b-5p overexpression increased basal glycogen synthesis in human skeletal muscle cells. We identified AKTIP and STAT3 as miR-20b-5p targets. miR-20b-5p overexpression reduced AKTIP abundance and insulin-stimulated glycogen accumulation. In conclusion, exosome-derived extracellular miR-20b-5p is a circulating biomarker associated with type 2 diabetes that plays an intracellular role in modulating insulin-stimulated glucose metabolism via AKT signaling.
Collapse
Affiliation(s)
- Mutsumi Katayama
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | | | - Tomas Fritz
- Department of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Kenneth Caidahl
- Department of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Samir El-Andaloussi
- Department of Laboratory Medicine, Karolinska Institute, Huddinge, Sweden
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Anna Krook
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
18
|
|
19
|
McDonald MK, Ramanathan S, Touati A, Zhou Y, Thanawala RU, Alexander GM, Sacan A, Ajit SK. Regulation of proinflammatory genes by the circulating microRNA hsa-miR-939. Sci Rep 2016; 6:30976. [PMID: 27498764 PMCID: PMC4976376 DOI: 10.1038/srep30976] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/12/2016] [Indexed: 12/14/2022] Open
Abstract
Circulating microRNAs are beneficial biomarkers because of their stability and dysregulation in diseases. Here we sought to determine the role of miR-939, a miRNA downregulated in patients with complex regional pain syndrome (CRPS). Hsa-miR-939 is predicted to target several proinflammatory genes, including IL-6, VEGFA, TNFα, NFκB2, and nitric oxide synthase 2 (NOS2A). Binding of miR-939 to the 3' untranslated region of these genes was confirmed by reporter assay. Overexpression of miR-939 in vitro resulted in reduction of IL-6, NOS2A and NFκB2 mRNAs, IL-6, VEGFA, and NOS2 proteins and NFκB activation. We observed a significant decrease in the NOS substrate l-arginine in plasma from CRPS patients, suggesting reduced miR-939 levels may contribute to an increase in endogenous NOS2A levels and NO, and thereby to pain and inflammation. Pathway analysis showed that miR-939 represents a critical regulatory node in a network of inflammatory mediators. Collectively, our data suggest that miR-939 may regulate multiple proinflammatory genes and that downregulation of miR-939 in CRPS patients may increase expression of these genes, resulting in amplification of the inflammatory pain signal transduction cascade. Circulating miRNAs may function as crucial signaling nodes, and small changes in miRNA levels may influence target gene expression and thus disease.
Collapse
Affiliation(s)
- Marguerite K McDonald
- Pharmacology &Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA.,Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Suite 2000, Translational Research Laboratories (TRL), 125 S. 31st Street, Philadelphia, PA 19104-3403, USA
| | - Sujay Ramanathan
- Pharmacology &Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Andrew Touati
- Pharmacology &Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Yiqian Zhou
- School of Biomedical Engineering, Science &Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | - Rushi U Thanawala
- Pharmacology &Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Guillermo M Alexander
- Neurology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Ahmet Sacan
- School of Biomedical Engineering, Science &Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | - Seena K Ajit
- Pharmacology &Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| |
Collapse
|