1
|
Zhang Z, Chen L, Li X, Cai M, Yan H, Sun G. A quality control system of Chinese medicine preparation based on fingerprint identification technology, chemometrics and network pharmacology, using the Yixinshu capsule as an example. Talanta 2025; 292:128015. [PMID: 40154047 DOI: 10.1016/j.talanta.2025.128015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
Establishing a trustworthy quality control system for traditional Chinese medicine (TCM) is crucial to ensure the stability and reliability of the therapeutic efficacy of Chinese medicinal preparations (CMPs). This study takes Yixinshu Capsules (YXSC) as the research subject and develops a quality control system for TCM by integrating fingerprint technology, chemometrics, and network pharmacology. Initially, a dual-wavelength absorption coefficient ratio fingerprint (DWAR) was employed to verify the peak purity of each fingerprint peak in YXSC, while a three-dimensional chromatographic fingerprint (3DCFP) was utilized to generate full-wavelength chromatographic fingerprints of sample components. Subsequently, electrochemical (EC) and differential scanning calorimetry (DSC) methods were adopted as supplementary analytical approaches to evaluate YXSC comprehensively. A five-dimensional quantitative fingerprint method (5DQFM) was then applied to assess the above three detection methods from both qualitative and quantitative perspectives, enabling a holistic evaluation of YXSC's quality consistency. Furthermore, chemometric analysis demonstrated that 5DQFM and 3DCFP could accurately characterize YXSC's quality. Finally, network pharmacology was employed as a research methodology to explore the potential mechanisms through which different active chemical components in YXSC exert therapeutic effects on heart failure (HF). This study evaluates YXSC's quality from both chemical and biological perspectives and develops a comprehensive and reliable quality control approach, providing novel insights for quality control and therapeutic efficacy research of CMP.
Collapse
Affiliation(s)
- Zhenwei Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Lingkui Chen
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Xuan Li
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Ming Cai
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| | - Hui Yan
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| | - Guoxiang Sun
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
2
|
Wei CC, Tseng ZR, Liao HW. Discovery and determination of misuse and chemotypes of Pogostemon cablin by liquid chromatography-quadrupole time-of-flight mass spectrometry and liquid chromatography with diode-array detector. J Sep Sci 2024; 47:e2400208. [PMID: 39031742 DOI: 10.1002/jssc.202400208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 07/22/2024]
Abstract
Traditional Chinese medicine (TCM) has garnered significant scientific interest in healthcare but faces increased regulatory scrutiny due to concerns about uncontrolled usage. This study focuses on characterizing Pogostemon cablin (PC) to mitigate potential misuse and identify chemotype differences. Leveraging untargeted metabolomics, we identified 222 distinctive features effectively differentiating PC from Agastache rugosa (AR), reducing misidentification risks. Pogostone and tilianin emerged as potential markers, leading to a high-performance liquid chromatography-diode array detection (HPLC-DAD) method development for PC and AR discrimination. Evaluation of PC chromatograms revealed notable profile and pogostone level differences among samples, suggesting chemotype associations. Untargeted metabolic profiling identified 78 features with significant differences, highlighting 7,3',4'-tri-O-methyleriodictyol as a potential discriminatory marker between PC chemotypes. The developed HPLC-DAD method quantified pogostone and 7,3',4'-tri-O-methyleriodictyol, effectively discriminating PC chemotypes. This platform differentiates PC and AR and distinguishes chemical types within PC, like pogostone-type and patchoulol-type. Applied to local TCM stores, it ensures PC authenticity. This approach addresses TCM control concerns, enhancing understanding and application of herbal medicine by providing insights into PC chemical composition and discrimination.
Collapse
Affiliation(s)
- Chieh-Chun Wei
- Department of Pharmacy, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Zi-Rong Tseng
- Department of Pharmacy, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiao-Wei Liao
- Department of Pharmacy, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
3
|
Li R, Wu D, Hu J, Ma Y, Ba Y, Zou L, Hu Y. Polyphenol-enriched Penthorum chinense Pursh ameliorates alcohol-related liver injury through Ras/Raf/MEK/ERK pathway: Integrating network pharmacology and experiment validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117513. [PMID: 38040131 DOI: 10.1016/j.jep.2023.117513] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/09/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Penthorum chinense Pursh (PCP) has acknowledged as an edible herbal medicinal plant for the prevention and treatment of alcoholic liver injury (ALI). However, only few of researches focus on the chemical material basis and potential mechanisms of PCP against ALI. AIM OF THE STUDY Herein, we explored the therapeutic effects of PCP extract against ALI based on the integration of network pharmacology, molecular docking, and experiment validation. METHODS Based on the standard quality control of PCP herbs by UPLC fingerprint and quantitative determination, 80% ethanol extract fraction of PCP containing more polyphenols, compared to aqueous extract fraction of PCP, were chosen for further experiments. After oral administration of PCP ethanol extract, serum pharmacochemistry based on UPLC-Q-Exactive-MS analysis was implemented to evaluate the potential effective compounds. These absorbed prototypes in PCP were used to construct network pharmacology and predict the potential mechanisms of PCP extract against ALI. Then, the predicted targets and biological mechanisms of PCP extract were validated using animal experiments and molecular docking analysis. RESULTS Although totally 19 polyphenol compounds were identified in PCP ethanol extract by UPLC-MS analysis, only 18 absorbed prototypes were found in the serum collected from mice at 1 h post-administration with PCP extract. These candidate active compounds were further screened into 13 compounds to construct network pharmacology and 433 targets were identified as PCP targets. GO and KEGG pathway enrichment analyses indicated that the effects of PCP extract would involve in Ras signaling pathway. The animal experiments on chronic ALI model mice shown that the oral administration of PCP can alleviate ALI by attenuating hepatic oxidative stress, inflammation and down-regulating the target proteins in Ras/Raf/MEK/ERK pathway. Molecular docking analysis revealed the good binding ability between the three polyphenols (i.e. quercetin, apigenin, thonningianin B) in PCP with the top contribution in network pharmacology, and these target proteins (Ras, Raf, MEK1/2, and ERK1/2). CONCLUSION Our results clarified that PCP ethanol extract could effectively alleviate ALI by down-regulating Ras/Raf/MEK/ERK signaling pathway promisingly. Quercetin, apigenin, and thonningianin B may be the active compounds of PCP, attributing to the intervention benefits of PCP against ALI.
Collapse
Affiliation(s)
- Rui Li
- School of Pharmacy, Chengdu University, Chengdu, 610106, Sichuan, PR China; School of Food and Biological Engineering, Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, 610106, Sichuan, PR China.
| | - Dingtao Wu
- School of Food and Biological Engineering, Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, 610106, Sichuan, PR China.
| | - Jianping Hu
- School of Pharmacy, Chengdu University, Chengdu, 610106, Sichuan, PR China; School of Food and Biological Engineering, Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, 610106, Sichuan, PR China.
| | - Yuqi Ma
- School of Food and Biological Engineering, Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, 610106, Sichuan, PR China.
| | - Yabo Ba
- School of Food and Biological Engineering, Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, 610106, Sichuan, PR China.
| | - Liang Zou
- School of Food and Biological Engineering, Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, 610106, Sichuan, PR China.
| | - Yichen Hu
- School of Pharmacy, Chengdu University, Chengdu, 610106, Sichuan, PR China; School of Food and Biological Engineering, Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, 610106, Sichuan, PR China.
| |
Collapse
|
4
|
Rathi K, Shukla M, Hassam M, Shrivastava R, Rawat V, Prakash Verma V. Recent advances in the synthesis and antimalarial activity of 1,2,4-trioxanes. Bioorg Chem 2024; 143:107043. [PMID: 38134523 DOI: 10.1016/j.bioorg.2023.107043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/29/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
The increasing resistance of various malarial parasite strains to drugs has made the production of a new, rapid-acting, and efficient antimalarial drug more necessary, as the demand for such drugs is growing rapidly. As a major global health concern, various methods have been implemented to address the problem of drug resistance, including the hybrid drug concept, combination therapy, the development of analogues of existing medicines, and the use of drug resistance reversal agents. Artemisinin and its derivatives are currently used against multidrug- resistant P. falciparum species. However, due to its natural origin, its use has been limited by its scarcity in natural resources. As a result, finding a substitute becomes more crucial, and the peroxide group in artemisinin, responsible for the drugs biological action in the form of 1,2,4-trioxane, may hold the key to resolving this issue. The literature suggests that 1,2,4-trioxanes have the potential to become an alternative to current malaria drugs, as highlighted in this review. This is why 1,2,4-trioxanes and their derivatives have been synthesized on a large scale worldwide, as they have shown promising antimalarial activity in vivo and in vitro against Plasmodium species. Consequently, the search for a more convenient, environment friendly, sustainable, efficient, and effective synthetic pathway for the synthesis of 1,2,4-trioxanes continues. The aim of this work is to provide a comprehensive analysis of the synthesis and mechanism of action of 1,2,4-trioxanes. This systematic review highlights the most recent summaries of derivatives of 1,2,4-trioxane compounds and dimers with potential antimalarial activity from January 1988 to 2023.
Collapse
Affiliation(s)
- Komal Rathi
- Department of Chemistry, Banasthali University, Banasthali Newai 304022, Rajasthan, India
| | - Monika Shukla
- Department of Chemistry, Banasthali University, Banasthali Newai 304022, Rajasthan, India
| | | | - Rahul Shrivastava
- Department of Chemistry, Manipal University Jaipur, Jaipur (Rajasthan), VPO- Dehmi-Kalan, Off Jaipur-Ajmer Express Way, Jaipur, Rajasthan 30300, India
| | - Varun Rawat
- School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Ved Prakash Verma
- Department of Chemistry, Banasthali University, Banasthali Newai 304022, Rajasthan, India.
| |
Collapse
|
5
|
Chandel N, Singh BB, Dureja C, Yang YH, Bhatia SK. Indigo production goes green: a review on opportunities and challenges of fermentative production. World J Microbiol Biotechnol 2024; 40:62. [PMID: 38182914 DOI: 10.1007/s11274-023-03871-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/11/2023] [Indexed: 01/07/2024]
Abstract
Indigo is a widely used dye in various industries, such as textile, cosmetics, and food. However, traditional methods of indigo extraction and processing are associated with environmental and economic challenges. Fermentative production of indigo using microbial strains has emerged as a promising alternative that offers sustainability and cost-effectiveness. This review article provides a critical overview of microbial diversity, metabolic pathways, fermentation strategies, and genetic engineering approaches for fermentative indigo production. The advantages and limitations of different indigo production systems and a critique of the current understanding of indigo biosynthesis are discussed. Finally, the potential application of indigo in other sectors is also discussed. Overall, fermentative production of indigo offers a sustainable and bio-based alternative to synthetic methods and has the potential to contribute to the development of sustainable and circular biomanufacturing.
Collapse
Affiliation(s)
- Neha Chandel
- School of Medical and Allied Sciences, GD Goenka University, Gurugram, Haryana, 122103, India
| | - Bharat Bhushan Singh
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chetna Dureja
- Center for Inflammatory and Infectious Diseases, Texas A&M Health Science Center, Institute of Bioscience and Technology, Houston, TX, USA
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
- Institute for Ubiquitous Information Technology and Applications, Seoul, 05029, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea.
- Institute for Ubiquitous Information Technology and Applications, Seoul, 05029, Republic of Korea.
| |
Collapse
|
6
|
Li G, Chen D. Comparison of different extraction methods of active ingredients of Chinese medicine and natural products. J Sep Sci 2024; 47:e2300712. [PMID: 38234023 DOI: 10.1002/jssc.202300712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
Like other traditional medicine in the world, Chinese traditional medicine (CTM) has a long history, which is a treasure of the combination of medicine and Chinese classical culture even more than 5000 years. For thousands of years, CTM has made great contributions to the reproduction and health of the Chinese people. It was an efficient therapeutic tool under the guidance of Chinese traditional medical theory, its source is generally natural products, but there are also a small number of it are natural products after some processing methods. In fact, the definition of Chinese medicine (CM) includes both traditional and new CM developed by modern technology. It is well known that the chemical composition of most CM and natural products is very complex, for example, a single herb may contain hundreds of different chemicals, including active ingredients, side effects, and even toxic ingredients. Therefore, the extraction process is particularly crucial for the quality and clinical efficacy of CM and natural products. In this work, a new classification method was proposed to divide the extraction technologies of CM and natural products into 21 kinds in recent years and analyze their status, advantages, and disadvantages. Then put forward a new technical route based on ultra-high-pressure extraction technology for rapid extraction else while removing harmful impurities and making higher utilization of CM and natural products. It is a useful exploration for the extraction industry of medicinal materials and natural products in the world.
Collapse
Affiliation(s)
- Geyuan Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dongya Chen
- Institute of Toxicology and Risk Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| |
Collapse
|
7
|
Choi W, Wu Y, Li Y, Dong J. Network pharmacology prediction and molecular docking analysis reveal the mechanism of modified Bushen Yiqi formulas on chronic obstructive pulmonary disease. J Gene Med 2024; 26:e3607. [PMID: 37795773 DOI: 10.1002/jgm.3607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/22/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND The present study aimed to explore the mechanism of the modified Bushen Yiqi formula (MBYF) in the treatment of chronic obstructive pulmonary disease (COPD) based on network pharmacology and molecular docking. METHODS First, the active ingredients and corresponding targets in MBYF were mined through the Traditional Chinese Medicine Systems Pharmacology database. Subsequently, Online Mendelian Inheritance in Man, DrugBank, and GeneCard were used to screen COPD-related targets. Cytoscape was used to construct a network of candidate components of MBYF in COPD treatment. The overlapping targets of COPD and MBYF were used to treat COPD, and then CytoHubba and CytoNAC plug-ins in Cytoscape were used for topology analysis to build the core network. In addition, core targets were used for Gene Ontology analysis and enrichment analysis of the Kyoto Encyclopedia of Genes and Genomes. Finally, AutoDock Vina software was used to conduct a molecular docking study on the core active ingredients and core targets to verify the above network pharmacological analysis. RESULTS Seventy-nine active components of MBYF were screened and 261 corresponding targets were found. At the same time, 1307 related targets corresponding to COPD were screened and 111 overlapping targets were matched. By bioinformatics analysis, 10 core targets were identified, and subsequently, enrichment analysis revealed 385 BP, two CC, eight MF and 78 related signaling pathways. The binding of the core active components in MBYF to the core target was further verified by molecular docking, and all showed good binding. CONCLUSIONS The active components of MBYF, such as quercetin, kaempferol, luteolin, and baicalein, may be the material basis for the treatment of chronic obstructive pulmonary disease. They affect the expression of inflammatory cells and inflammatory factors, protein phosphorylation, and smooth muscle hyperplasia through tumor necrosis factor, interleukin-17, mitogen-activated protein kinase, nuclear factor-kappa B and other signaling pathways.
Collapse
Affiliation(s)
- Wenglam Choi
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yueren Wu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yifan Li
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|
8
|
He T, Duan C, Feng W, Ao J, Lu D, Li X, Zhang J. Bibliometric Analysis and Systemic Review of Cantharidin Research Worldwide. Curr Pharm Biotechnol 2024; 25:1585-1601. [PMID: 39034837 DOI: 10.2174/0113892010244101231024111850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/25/2023] [Accepted: 09/19/2023] [Indexed: 07/23/2024]
Abstract
BACKGROUND Cantharidin (CTD), a natural toxic compound from blister beetle Mylabris, has been used for cancer treatment for millenary. CTD and its analogs have become mainstream adjuvant drugs with radiotherapy and chemotherapy in clinical applications. However, the detailed pharmacology mechanism of CTD was not fully elucidated. METHODS Publications of CTD were collected from the Web of Science Core Collection database from 1991 to 2023 using CiteSpace, VOSviewer, and Scimago Graphica software. RESULTS A total of 1,611 publications of CTD were mainly published in China and the United States. The University of Newcastle has published the most researches. Mcclusey, Adam, Sakoff, Jennette, and Zhang, Yalin had the most CTD publications with higher H. Notably, CTD researches were mainly published in Bioorganic & Medicinal Chemistry Letters and the Journal of Biological Chemistry. Cluster profile results revealed that protein phosphatase 2A (PP2A), human gallbladder carcinoma, Aidi injection, and cell apoptosis were the hotspots. Concentration on the pharmacology function of PP2A subunit regulation, hepatotoxicity, nephrotoxicity, and cardiotoxicity mechanism should be strengthened in the future. CONCLUSION Bibliometric analysis combined with a systemic review of CTD research first revealed that PP2A and CTD analogs were the knowledge base of CTD, and PP2A subunit regulation and toxic mechanism could be the frontiers of CTD.
Collapse
Affiliation(s)
- Tianmu He
- School of Basic Medicine, Zunyi medical University, Zunyi 550025, China
- School of Basic Medicine, Guizhou Medical University, Guiyang 563000, Guizhou, China
| | - Cancan Duan
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education and Joint International Research Laboratory of Ethnomedicine, Ministry of Education, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Wenzhong Feng
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education and Joint International Research Laboratory of Ethnomedicine, Ministry of Education, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Jingwen Ao
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education and Joint International Research Laboratory of Ethnomedicine, Ministry of Education, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Dingyang Lu
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education and Joint International Research Laboratory of Ethnomedicine, Ministry of Education, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Xiaofei Li
- School of Basic Medicine, Zunyi medical University, Zunyi 550025, China
- School of Basic Medicine, Guizhou Medical University, Guiyang 563000, Guizhou, China
| | - Jianyong Zhang
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education and Joint International Research Laboratory of Ethnomedicine, Ministry of Education, Zunyi Medical University, Zunyi 563000, Guizhou, China
| |
Collapse
|
9
|
Zhang Y, Ma K, Jiang L, Xu L, Luo Y, Wu J, Li Y. Revealing the Preventable Effects of Fu-Zheng-Qu-Xie Decoction against Recurrence and Metastasis of Postoperative Early-Stage Lung Adenocarcinoma Based on Network Pharmacology Coupled with Metabolomics Analysis. ACS OMEGA 2023; 8:35555-35570. [PMID: 37810735 PMCID: PMC10552138 DOI: 10.1021/acsomega.3c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 06/27/2023] [Indexed: 10/10/2023]
Abstract
Fu-Zheng-Qu-Xie (FZQX) decoction is a traditional Chinese herbal prescription for the treatment of lung cancer and exerts proapoptotic and immunomodulatory effects. It has been clinically suggested to be effective in improving the survival of postoperative early-stage lung adenocarcinoma (LUAD), but the mechanism remains unclear. In this study, we used network pharmacology coupled with metabolomics approaches to explore the pharmacological action and effective mechanism of FZQX against the recurrence and metastasis of postoperative early-stage LUAD. Network pharmacology analysis showed that FZQX could prevent the recurrence and metastasis of postoperative early-stage LUAD by regulating a series of targets involving vascular endothelial growth factor receptor 2, estrogen receptor 1, sarcoma gene, epidermal growth factor receptor, and protein kinase B and by influencing the Ras, PI3K-Akt, and mitogen-activated protein kinase signaling pathways. In liquid chromatography-mass spectrometry analysis, 11 differentially expressed metabolites, including PA(12:0/18:4(6Z,9Z,12Z,15Z)), PC(16:0/0:0)[U], LysoPC(18:1(11Z)), and LysoPC(18:0), were discovered in the FZQX-treated group compared to those in the model group before treatment or normal group. They were enriched in cancer metabolism-related signaling pathways such as central carbon metabolism in cancer, choline metabolism, and glycerol phospholipid metabolism. Collectively, our results suggest that the multicomponent and multitarget interaction network of FZQX inhibits the recurrence and metastasis of postoperative early-stage LUAD by activating the receptor signal transduction pathway to inhibit proliferation, induce cell apoptosis, inhibit aerobic glycolysis, and reprogram tumor lipid metabolism.
Collapse
Affiliation(s)
- Yixi Zhang
- Department
of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Kai Ma
- Department
of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Lei Jiang
- Department
of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Lili Xu
- Department
of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Yingbin Luo
- Department
of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Jianchun Wu
- Department
of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Yan Li
- Department
of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| |
Collapse
|
10
|
Cheng C, Wang Q, Huang Y, Xue Q, Wang Y, Wu P, Liao F, Miao C. Gandouling inhibits hepatic fibrosis in Wilson's disease through Wnt-1/β-catenin signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116445. [PMID: 37015279 DOI: 10.1016/j.jep.2023.116445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
ETHNOPHARMACOLOGIC SIGNIFICANCE Wilson's disease (WD) hepatic fibrosis is the result of chronic liver injury induced by Cu2+ deposition in the liver. Gandouling (GDL) is a hospital preparation of the First Affiliated Hospital of Anhui University of Chinese Medicine. Previous studies have found that GDL can play an anti-inflammatory, anti-oxidation, and promote Cu2+ excretion, which has a clear anti-WD effect. AIM OF THE STUDY We found that Wnt-1 was significantly up-regulated in the liver tissue of toxic-milk (TX) mouse in the WD gene mutant model, and the monomer components of GDL could combine well with Wnt-1. Therefore, in this work, we used RT-qPCR, Western blot, immunofluorescence, network pharmacology, molecular docking, and related methods to study the effects of GDL on hepatic stellate cell (HSC) activation and Wnt-1/β-catenin pathway in TX mice to clarify the effect of GDL on WD hepatic fibrosis. RESULTS GDL could alleviate hepatic fibrosis, improve liver function, and inhibit the activation of HSC in TX mice. Network pharmacology predicted that the Wnt-1/β-catenin was the target of GDL, and molecular dynamics further revealed that GDL has a good binding ability with Wnt-1 and inhibits the Wnt/β-catenin signaling pathway through Wnt-1. Furthermore, we found that GDL blocked the Wnt-1/β-catenin signaling pathway in the liver of TX mice in vivo. In vitro, serum containing GDL blocked the Cu2+ ion-induced Wnt-1/β-catenin signaling pathway in LX-2 cells. Therefore, GDL blocked the Wnt-1/β-catenin signaling pathway, inhibited HSC activation, and improved WD hepatic fibrosis by binding to Wnt-1. CONCLUSION GDL improves hepatic fibrosis in WD model mice by blocking the Wnt-1/β-catenin signaling pathway, and Wnt-1 may be a new target for the diagnosis and treatment of WD. This reveals a new mechanism of GDL against WD, and promotes the clinical promotion of GDL.
Collapse
Affiliation(s)
- Chenglong Cheng
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.
| | - Qiang Wang
- Department of Pharmaceutical Preparation, School of Life and Health Sciences, Anhui University of Science and Technology, China.
| | - Yurong Huang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.
| | - Qiuyun Xue
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.
| | - Yuting Wang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.
| | - Peng Wu
- Department of Anatomy, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.
| | - Faxue Liao
- Department of Orthopaedics, The First Affiliated Hospital, Anhui Medical University, Hefei, China; Anhui Public Health Clinical Center, Hefei, China.
| | - Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
11
|
Zhang L, Li H, Zhang L, Zu Z, Xu D, Zhang J. Network Pharmacology Analysis of the Mechanisms Underlying the Therapeutic Effects of Yangjing Zhongyu Tang on Thin Endometrium. Drug Des Devel Ther 2023; 17:1805-1818. [PMID: 37350984 PMCID: PMC10284302 DOI: 10.2147/dddt.s409659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023] Open
Abstract
Purpose Yangjing Zhongyu Tang (YJZYT) is a classic Chinese prescription for infertility treatment and exerts therapeutic effects via activity on the thin endometrium (TE). However, the major components and underlying mechanisms of YJZYT actions remain to be established. The main objectives of this study were to clarify the effects of YJZYT on the TE and provide insights into the related mechanisms based on network pharmacology and molecular docking analyses. Methods Network pharmacology was employed to explore the main bioactive components and targets of YJZYT. TE-related genes were obtained from the Genecards database and screened for intersections with YJZYT. The Cytoscape 3.8.2 was used to build a "compounds-disease-targets" network and molecular docking analysis performed on key targets. The mechanism of action of YJZYT was further validated in vivo using a rat model. Results A total of 98 YJZYT active ingredients, 2409 thin endometrium-associated genes, and 186 common targets were obtained. Through topological analysis, 10 core objectives were screened. Data from the PPI network suggest that AKT1, TNF, VEGFA, IL-6, TP53, INS, ESR1, MMP9, ALB, and ACTB serve as key targets in the action of YJZYT on TE. PI3K-Akt, TNF, apoptosis, IL-17 and MAPK were established as the main functional pathways. Molecular docking analysis revealed high affinity of the active ingredients of YJZYT, specifically, ursolic acid, palbinone, stigmasterol, and beta-sitosterol, for TNF, VEGFA, IL-6, AKT, and MMP9. YJZYT improved endometrial recovery, promoted endometrial angiogenesis, and upregulated protein expression of VEGF, PI3K, AKT, and p-AKT in the TE rat model. Conclusion Network pharmacological and animal studies facilitated the prediction and validation of the active components and key targets of YJZYT potentially contributing to TE. Preliminary evidence from in vivo experiments showed that YJZYT promotes angiogenesis and thin endometrial repair via regulation of the PI3K/AKT pathway, providing a reference for further research.
Collapse
Affiliation(s)
- Lei Zhang
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Honglin Li
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Liang Zhang
- Gynecology, Obstetrics and Reproductive Center, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Zhihui Zu
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Dinglin Xu
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Jianwei Zhang
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
- Gynecology, Obstetrics and Reproductive Center, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| |
Collapse
|
12
|
Jin D, Huang NN, Wei JX. Hepatotoxic mechanism of cantharidin: insights and strategies for therapeutic intervention. Front Pharmacol 2023; 14:1201404. [PMID: 37383714 PMCID: PMC10293652 DOI: 10.3389/fphar.2023.1201404] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/01/2023] [Indexed: 06/30/2023] Open
Abstract
Cantharidin (CTD), a natural compound derived from Mylabris, is widely used in traditional Oriental medicine for its potent anticancer properties. However, its clinical application is restricted due to its high toxicity, particularly towards the liver. This review provides a concise understanding of the hepatotoxic mechanisms of CTD and highlights novel therapeutic strategies to mitigate its toxicity while enhancing its anticancer efficacy. We systematically explore the molecular mechanisms underlying CTD-induced hepatotoxicity, focusing on the involvement of apoptotic and autophagic processes in hepatocyte injury. We further discuss the endogenous and exogenous pathways implicated in CTD-induced liver damage and potential therapeutic targets. This review also summarizes the structural modifications of CTD derivatives and their impact on anticancer activity. Additionally, we delve into the advancements in nanoparticle-based drug delivery systems that hold promise in overcoming the limitations of CTD derivatives. By offering valuable insights into the hepatotoxic mechanisms of CTD and outlining potential avenues for future research, this review contributes to the ongoing efforts to develop safer and more effective CTD-based therapies.
Collapse
Affiliation(s)
- Dian Jin
- Department of Pharmacy, Sixth People’s Hospital of Chengdu, Chengdu, China
| | - Na-Na Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing-Xia Wei
- Department of Pharmacy, Sixth People’s Hospital of Chengdu, Chengdu, China
| |
Collapse
|
13
|
Wang L, Li P, Zhou Y, Gu R, Lu G, Zhang C. Magnoflorine Ameliorates Collagen-Induced Arthritis by Suppressing the Inflammation Response via the NF-κB/MAPK Signaling Pathways. J Inflamm Res 2023; 16:2271-2296. [PMID: 37265745 PMCID: PMC10231344 DOI: 10.2147/jir.s406298] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/18/2023] [Indexed: 06/03/2023] Open
Abstract
Objective Magnoflorine (Mag) has been reported to have anxiolytics, anti-cancer, and anti-inflammatory properties. In this study, we aim to investigate the effects of Mag on the rheumatoid arthritis (RA) and explore the underlying mechanism using a collagen-induced arthritis (CIA) mouse model and a lipopolysaccharide (LPS)-stimulated macrophage inflammation model. Methods The in vivo effects of Mag on CIA were studied by inducing CIA in a mouse model using DBA/1J mice followed by treatment with vehicle, methotrexate (MTX, 1 mg/kg/d), and Mag (5 mg/kg/d, 10 mg/kg/d, and 20 mg/kg/d), and the in vitro effects of Mag on macrophages were examined by stimulation of RAW264.7 cells line and peritoneal macrophages (PMs) by LPS in the presence of different concentrations of Mag. Network pharmacology and molecular docking was then performed to predict the the binding ability between Mag and its targets. Inflammatory mediators were assayed by quantitative real-time PCR and enzyme linked immunosorbent assay (ELISA). Signaling pathway changes were subsequently determined by Western blotting and immunohistochemistry (IHC). Results In vivo experiments demonstrated that Mag decreased arthritis severity scores, joints destruction, and macrophages infiltration into the synovial tissues of the CIA mice. Network pharmacology analysis revealed that Mag interacted with TNF-α, IL-6, IL-1β, and MCP-1. Consistent with this, analysis of the serum, synovial tissue of the CIA mice, and the supernatant of the cultured RAW264.7 cells and PMs showed that Mag suppressed the expression of TNF-α, IL-6, IL-1β, MCP-1, iNOS, and IFN-β. Furthermore, Mag attenuated the phosphorylation of p65, IκBα, ERK, JNK, and p38 MAPKs in the synovial tissues of the CIA mice and LPS-stimulated RAW 264.7 cells. Conclusion Mag may exert anti-arthritic and anti-inflammatory effects by inhibiting the activation of NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Lei Wang
- College of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| | - Pengfei Li
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
| | - Yu Zhou
- College of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| | - Renjun Gu
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| | - Ge Lu
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| | - Chunbing Zhang
- College of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| |
Collapse
|
14
|
Chien TJ. The Holistic Philosophy of Traditional Chinese Medicine and Conflicts With Modern Medicine. Holist Nurs Pract 2023; 37:153-160. [PMID: 35435882 DOI: 10.1097/hnp.0000000000000508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Traditional Chinese medicine (TCM) has sparked the public's attention for its potential in new drug development and its holistic view toward health, which is totally different from the reductionistic science of modern medicine. Although many scholars try to connect TCM with precision medicine or apply new methods and technology to integrate TCM with modern medicine, the misunderstandings and gap between TCM and modern medicine limit the development of evidence-based TCM. Traditional Chinese medicine is actually a medical science encompassing not only medicine but also philosophy and art in direct contrast to molecular-based modern medicine. As more and more multidisciplinary studies are being published, finding ways to integrate TCM with modern or precision medicine through artificial intelligence, new study design and technology may become a critical issue. This article aims to briefly review the unique philosophy of TCM and its conflicts with modern medicine, with a focus on the potential integration of TCM and modern medicine. We also provide insight for the key attributes of TCM and the associated investigation with Western research approaches.
Collapse
Affiliation(s)
- Tsai-Ju Chien
- Division of Hemato-Oncology, Department of Internal Medicine, Branch of Zhong-Zhou, Taipei City Hospital, Taipei, Taiwan; Division of Hemato-Oncology, Department of Internal Medicine, Branch of Jen-Ai, Taipei City Hospital, Taipei, Taiwan; and Institute of Traditional Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
15
|
Hou J, Zhong L, Liu J, Liu F, Xia C. Interaction of the main active components in Shengmai formula mediated by organic anion transporter 1 (OAT1). JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115515. [PMID: 35777609 DOI: 10.1016/j.jep.2022.115515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/20/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shengmai formula (SMF) is a classical traditional Chinese medicine prescription, which is widely used in the treatment of cardiovascular and cerebrovascular diseases. Our previous studies have demonstrated that some components in SMF can interact with each other through breast cancer resistance protein, sodium taurocholate co-transporting polypeptide, organic anion transporting polypeptide 1B1 and 1B3. Organic anion transporter 1 (OAT1) is highly expressed in kidney, mediating the elimination of many endogenous and exogenous substances. However, the interaction between the main active components in SMF and OAT1 is not clear. AIM OF THE STUDY This study aimed to investigate the interactions of the major bioactive components in SMF mediated by OAT1. MATERIALS AND METHODS Four main fractions, namely, ginseng total saponins (GTS), ophiopogon total saponins (OTS), ophiopogon total flavonoids (OTF), fructus schisandrae total lignans (STL), and 12 active components, namely, ginsenoside Rg1, Re, Rd and Rb1, ophiopogonin D and D', methylophiopogonanone A and B, schizandrol A and B, schizandrin A and B, were selected to explore the interactions of SMF with OAT1 using cell and rat models. RESULTS The above four main fractions in SMF all exhibited inhibitory effects on the uptake of 6-carboxyfluorescein (6-CF), a classic substrate of OAT1. Among the 12 main effective components, only ginsenoside Re, Rd, and methylophiopogonanone A showed inhibition of 6-CF uptake. Additionally, we found that schizandrin B was transported by HEK293-OAT1 cells, and schizandrin B uptake was markedly inhibited by GTS, OTS, OTF, ginsenoside Re, Rd, and methylophiopogonanone A. In rats, ginsenoside Re, Rd, and methylophiopogonanone A jointly increased the AUC(0-t), AUC(0-∞), and Cmax of schizandrin B, but they decreased its clearance in plasma and excretion in urine. CONCLUSIONS Ginsenoside Re, Rd, and methylophiopogonanone A were the potential inhibitors of OAT1, and may interact with some drugs serving as OAT1 substrates clinically. Schizandrin B was a potential OAT1 substrate, and its OAT1-mediated transport was inhibited by ginsenoside Re, Rd, and methylophiopogonanone A. OAT1-mediated interactions of the main active components in SMF can be regarded as one of the important compatibility mechanisms of traditional Chinese medicine preparations.
Collapse
Affiliation(s)
- Jinxia Hou
- Clinical Pharmacology Institute, Nanchang University, Nanchang, 330031, PR China; Pharmacy Department, Jiangxi Provincial People's Hospital, Nanchang, 330006, PR China
| | - Lanping Zhong
- Clinical Pharmacology Institute, Nanchang University, Nanchang, 330031, PR China
| | - Jianming Liu
- Clinical Pharmacology Institute, Nanchang University, Nanchang, 330031, PR China
| | - Fanglan Liu
- Clinical Pharmacology Institute, Nanchang University, Nanchang, 330031, PR China
| | - Chunhua Xia
- Clinical Pharmacology Institute, Nanchang University, Nanchang, 330031, PR China.
| |
Collapse
|
16
|
Yang FF, Shuai MS, Guan X, Zhang M, Zhang QQ, Fu XZ, Li ZQ, Wang DP, Zhou M, Yang YY, Liu T, He B, Zhao YL. Synthesis and antibacterial activity studies in vitro of indirubin-3'-monoximes. RSC Adv 2022; 12:25068-25080. [PMID: 36199871 PMCID: PMC9438470 DOI: 10.1039/d2ra01035f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/21/2022] [Indexed: 11/21/2022] Open
Abstract
Multi-drug-resistant microbial pathogens are a serious global health problem. New compounds with antibacterial activity serve as good candidates for developing novel antibacterial drugs which is very urgent and important. In this work, based on the unique scaffold of indirubin, an active ingredient of traditional Chinese medicine formulation Danggui Luhui Wan, we synthesized 29 indirubin-3'-monoximes and preliminarily evaluated their antibacterial activities. The antibacterial activity results demonstrated that the synthesized indirubin-3'-monoximes 5a-5z and 5aa-5ad displayed good potency against S. aureus ATCC25923 (MIC = 0.4-25.6 μg mL-1). Among them, we found that the 5-F, 5-Cl and 7-CF3 substituted indirubin-3'-monoximes 5r, 5s and 5aa also showed better antibacterial efficiency for S. aureus (MICs up to 0.4 μg mL-1) than the prototype natural product indirubin (MIC = 32 μg mL-1). More importantly, indirubin-3'-monoxime 5aa has certain synergistic effect with levofloxacin against clinic multidrug-resistant S. aureus (fractional inhibitory concentration index: 0.375). In addition, relevant experiments including electron microscopy observations, PI staining and the leakage of extracellular potassium ions and nucleic acid (260 nm) have been performed after treating S. aureus with indirubin-3'-monoxime 5aa, and the results revealed that indirubin-3'-monoximes could increase the cell membrane permeability of S. aureus. Although indirubin-3'-monoxime 5aa showed some cytotoxicity toward SH-SY5Y cells relative to compounds 5r and 5s, the skin irritation test of male mice after shaving showed that compound 5aa at a concentration of 12.8 μg mL-1 had no toxicity to mouse skin, and it could be used as a leading compound for skin antibacterial drugs.
Collapse
Affiliation(s)
- Fen-Fen Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University Guiyang 550004 People's Republic of China
| | - Ming-Shan Shuai
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University Guiyang 550004 People's Republic of China
| | - Xiang Guan
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University Guiyang 550004 People's Republic of China
| | - Mao Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University Guiyang 550004 People's Republic of China
| | - Qing-Qing Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University Guiyang 550004 People's Republic of China
| | - Xiao-Zhong Fu
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University Guiyang 550004 People's Republic of China
| | - Zong-Qin Li
- Department of Neurology Sichuan Mianyang 404 Hospital Mianyang 621000 People's Republic of China
| | - Da-Peng Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University Guiyang 550025 People's Republic of China
| | - Meng Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University Guiyang 550004 People's Republic of China
| | - Yuan-Yong Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University Guiyang 550004 People's Republic of China
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University Guiyang 550004 People's Republic of China
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University Guiyang 550004 People's Republic of China
| | - Yong-Long Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University Guiyang 550004 People's Republic of China
| |
Collapse
|
17
|
Alhusban M, Pandey P, Ahn J, Avula B, Haider S, Avonto C, Ali Z, Khan SI, Ferreira D, Khan IA, Chittiboyina AG. Computational Tools to Expedite the Identification of Potential PXR Modulators in Complex Natural Product Mixtures: A Case Study with Five Closely Related Licorice Species. ACS OMEGA 2022; 7:26824-26843. [PMID: 35936409 PMCID: PMC9352242 DOI: 10.1021/acsomega.2c03240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The genus Glycyrrhiza, comprising approximately 36 spp., possesses complex structural diversity and is documented to possess a wide spectrum of biological activities. Understanding and finding the mechanisms of efficacy or safety for a plant-based therapy is very challenging, yet it is crucial and necessary to understand the polypharmacology of traditional medicines. Licorice extract was shown to modulate the xenobiotic receptors, which might manifest as a potential route for natural product-induced drug interactions. However, different mechanisms could be involved in this phenomenon. Since the induced herb-drug interaction of licorice supplements via Pregnane X receptor (PXR) is understudied, we ventured out to analyze the potential modulators of PXR in complex mixtures such as whole extracts by applying computational mining tools. A total of 518 structures from five species of Glycyrrhiza: 183 (G. glabra), 180 (G. uralensis), 100 (G. inflata), 33 (G. echinata), and 22 (G. lepidota) were collected and post-processed to yield 387 unique compounds. Visual inspection of top candidates with favorable ligand-PXR interactions and the highest docking scores were identified. The in vitro testing revealed that glabridin (GG-14) is the most potent PXR activator among the tested compounds, followed by licoisoflavone A, licoisoflavanone, and glycycoumarin. A 200 ns molecular dynamics study with glabridin confirmed the stability of the glabridin-PXR complex, highlighting the importance of computational methods for rapid dereplication of potential xenobiotic modulators in a complex mixture instead of undertaking time-consuming classical biological testing of all compounds in a given botanical.
Collapse
Affiliation(s)
- Manal Alhusban
- Department
of BioMolecular Sciences, Division of Pharmacognosy, University of Mississippi, University, Mississippi 38677, United States
| | - Pankaj Pandey
- National
Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Jongmin Ahn
- National
Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Bharathi Avula
- National
Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Saqlain Haider
- National
Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Cristina Avonto
- National
Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Zulfiqar Ali
- National
Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Shabana I. Khan
- Department
of BioMolecular Sciences, Division of Pharmacognosy, University of Mississippi, University, Mississippi 38677, United States
- National
Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Daneel Ferreira
- Department
of BioMolecular Sciences, Division of Pharmacognosy, University of Mississippi, University, Mississippi 38677, United States
- National
Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Ikhlas A. Khan
- Department
of BioMolecular Sciences, Division of Pharmacognosy, University of Mississippi, University, Mississippi 38677, United States
- National
Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Amar G. Chittiboyina
- National
Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
18
|
Qian X, Zhang L, Xie F, Cheng Y, Cui D. Network-Based Pharmacological Study on the Mechanism of Guishao-Liujun Decoction in the Treatment of Gastric Cancer. Front Pharmacol 2022; 13:937439. [PMID: 35865953 PMCID: PMC9294375 DOI: 10.3389/fphar.2022.937439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/09/2022] [Indexed: 01/17/2023] Open
Abstract
Objective: The aim of the study was to use a network pharmacological method to examine the mechanism of Guishao-Liujun decoction against gastric cancer (GC). Methods: The traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP) and the Traditional Chinese Medicine Integrated Database (TCMID) were used to obtain the chemical composition and targets of all the drugs of Guishao-Liujun decoction, and the targets of GC were screened using GeneCards and Online Mendelian Inheritance in Man (OMIM) databases. The obtained targets were imported into Cytoscape 3.7.2 software by using the R language to take the intersection for a Venn analysis to construct active ingredient target networks, and they were imported into the STRING database to construct protein-protein interaction (PPI) networks, with the BisoGenet plugin in Cytoscape 3.7.2 being used for analyzing network topology. On the potential target of Guishao-Liujun decoction for GC, gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed using the R-language bioconductor platform, and the outcomes were imported into Cytoscape 3.7.2 software to obtain the KEGG network map. The core targets were docked with the active components by the macromolecular docking software application AutoDock Vina. Results: A total of 243 chemical components and 1,448 disease targets including 127 intersecting targets were discovered. AKT1, TP53, and GO functional analysis were mainly associated with ubiquitination and oxidase reduction activity. In GC treatment, the KEGG analysis revealed that Guishao-Liujun decoction mainly acted through the tumor necrosis factor (TNF), interleukin 17 (IL-17), and cancer-related signaling pathways, with the best binding performance with TP53, as indicated by the outcomes of macromolecular docking. Conclusion: In the treatment of GC, Guishao-Liujun decoction works with a variety of components and targets, establishing the groundwork for further research into its mechanism of action.
Collapse
Affiliation(s)
- Xiaoqing Qian
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lingle Zhang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Feng Xie
- Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yingsheng Cheng
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
Yang R, Zhao G, Cheng B, Yan B. Identification of potential matrix metalloproteinase-2 inhibitors from natural products through advanced machine learning-based cheminformatics approaches. Mol Divers 2022:10.1007/s11030-022-10467-9. [PMID: 35773549 DOI: 10.1007/s11030-022-10467-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022]
Abstract
Matrix metalloproteinase-2 (MMP-2) is capable of degrading Collage TypeIV in the vascular basement membrane and extracellular matrix. Studies have shown that MMP-2 is tightly associated with the biological behavior of malignant tumors. Therefore, the identification of inhibitors targeting MMP-2 could be effective in treating the disease by maintaining extracellular matrix homeostasis. In the pharmaceutical and biomedical fields, many computational tools are widely used, which improve the efficiency of the whole process to some extent. Apart from the conventional cheminformatics approaches (e.g., pharmacophore model and molecular docking), virtual screening strategies based on machine learning also have promising applications. In this study, we collected 2871 compound activity data against MMP-2 from the ChEMBL database and divided the training and test sets in a 3:1 ratio. Four machine learning algorithms were then selected to construct the classification models, and the best-performing model, i.e., the stacking-based fusion model with the highest AUC value in both training and test datasets, was used for the virtual screening of ZINC database. Next, we screened 17 potential MMP-2 inhibitors from the results predicted by the machine learning model via ADME/T analysis. The interactions between these compounds and the target protein were explored through molecular docking calculations, and the results showed that ZINC712249, ZINC4270723, and ZINC15858504 had lower binding free energies than the co-crystal ligand. To further examine the binding stability of the complexes, we performed molecular dynamics simulations and finally identified these three hits as the most promising natural products for MMP-2 inhibitors.
Collapse
Affiliation(s)
- Ruoqi Yang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Guiping Zhao
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Bin Cheng
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Bin Yan
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
20
|
He T, Wang Q, Ao J, Chen K, Li X, Zhang J, Duan C. Endoplasmic reticulum stress contributes to autophagy and apoptosis in cantharidin-induced nephrotoxicity. Food Chem Toxicol 2022; 163:112986. [PMID: 35398186 DOI: 10.1016/j.fct.2022.112986] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/22/2022] [Accepted: 04/01/2022] [Indexed: 10/18/2022]
Abstract
Mylabris, as a natural product of traditional Chinese medicine (TCM), exhibiting typical antitumor activity, and cantharidin (CTD) is the major bioactive component. However, drug-induced nephrotoxicity (DIN) extremely limited its clinical application. In this study, we proved that activation of the endoplasmic reticulum (ER) stress-dependent PERK/CHOP pathway exerts a toxic role in rats and HK-2 cells through inducing autophagy and apoptosis. Results showed that CTD could cause renal function damage, cytotoxicity, and apoptosis. The ER dilatation and autolysosomes were observed after CTD treatment. Furthermore, the distribution of LC3, ATF4, and CHOP proteins was observed in the nucleus and cytoplasm. In addition, the mRNA levels of ER stress-regulated genes (PERK, eIF2α, CHOP, and ATF4) were increased, and the expression levels of GRP78, ATF4, CHOP, LC3, Beclin-1, Atg3, Atg7, Caspase 3, and Bax/Bcl-2 proteins were increased both in vitro and in vivo. Consistently, this upregulation could be inhibited by an ER stress inhibitor 4-Phenylbutyric acid (4-PBA), indicating that ER stress is partly responsible for activation of autophagy and apoptosis in CTD-induced DIN. In conclusion, CTD could induce DIN by triggering ER stress, further activating autophagy and apoptosis both in vivo and in vitro.
Collapse
Affiliation(s)
- Tianmu He
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563000, China; School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Qiyi Wang
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Jingwen Ao
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Kuan Chen
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Xiaofei Li
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563000, China; School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Jianyong Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.
| | - Cancan Duan
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
21
|
Wu N, Yuan T, Yin Z, Yuan X, Sun J, Wu Z, Zhang Q, Redshaw C, Yang S, Dai X. Network Pharmacology and Molecular Docking Study of the Chinese Miao Medicine Sidaxue in the Treatment of Rheumatoid Arthritis. Drug Des Devel Ther 2022; 16:435-466. [PMID: 35221674 PMCID: PMC8865873 DOI: 10.2147/dddt.s330947] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 01/24/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose This study aimed to investigate the molecular mechanisms of Compound Sidaxue (SX), a prescription of Chinese Miao medicine, in treating rheumatoid arthritis (RA) using network pharmacology and in vivo experimental approaches. Methods Network pharmacology was adopted to detect the active components of four Traditional Chinese herbal medicine (TCM) of SX, and the key targets and signaling pathways in the treatment of RA were predicted, and the key components and targets were screened for molecular docking. The predicted targets and pathways were validated in bovine type II collagen and incomplete Freund’s adjuvant emulsifier-induced rat RA model. Results In this study, we identified 33 active components from SX, predicted to act on 44 RA-associated targets by network pharmacology. PPI network demonstrated that TNF-α, VEGF-A, IL-2, IL-6, AKT, PI3K, STAT1 may serve as the key targets of SX for the treatment of RA. The main functional pathways involving these key targets include PI3K-AKT signaling pathway, TNF signaling pathway, NF-κB signaling pathway. Molecular docking analysis found that the active components β-amyrin, cajanin, eleutheroside A have high affinity for TNF-α, VEGFA, IL-2, AKT, and PI3K, etc. SX can improve joint swelling in Collagen-induced arthritis (CIA) rats, reduce inflammatory cell infiltration and angiogenesis in joint synovial tissue, and down-regulate IL-2, IL-6, TNF-α, VEGF, PI3K, AKT, p-AKT, NF-κBp65, the expression of p-NF-κBp65, STAT1, and PTGS2 are used to control the exacerbation of inflammation and alleviate the proliferation of synovial pannus, and at the same time play the role of cartilage protection to achieve the effect of treating RA. Conclusion Through a network pharmacology approach and animal study, we predicted and validated the active compounds of SX and their potential targets for RA treatment. The results suggest that SX can markedly alleviate CIA rat by modulating the VEGF/PI3K/AKT signaling pathway, TNF-α signaling pathway, IL/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Ning Wu
- Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
| | - Taohua Yuan
- Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
| | - ZhiXin Yin
- Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
| | - Xiaotian Yuan
- Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
| | - Jianfei Sun
- Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
| | - Zunqiu Wu
- Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
| | - Qilong Zhang
- Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
| | - Carl Redshaw
- Department of Chemistry, University of Hull, Hull, Yorkshire, HU6 7RX, UK
| | - Shenggang Yang
- Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
- Correspondence: Shenggang Yang, Guizhou Medical University, Guiyang, Guizhou, 550025, People’s Republic of China, Tel/Fax +86 13158000576, Email
| | - Xiaotian Dai
- Department of Mathematics and Statistics, University of Calgary, Calgary, AB, Canada
- Xiaotian Dai, Department of Mathematics and Statistics, University of Calgary, Calgary, AB, T2N 1N4, Canada, Tel/Fax +1 435 754 4980, Email
| |
Collapse
|
22
|
Batbold U, Liu JJ. Artemisia santolinifolia-Mediated Chemosensitization via Activation of Distinct Cell Death Modes and Suppression of STAT3/Survivin-Signaling Pathways in NSCLC. Molecules 2021; 26:molecules26237200. [PMID: 34885780 PMCID: PMC8658962 DOI: 10.3390/molecules26237200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 01/27/2023] Open
Abstract
Conventional chemotherapy remains an integral part of lung cancer therapy, regardless of its toxicity and drug resistance. Consequently, the discovery of an alternative to conventional chemotherapy is critical. Artemisia santolinifolia ethanol extract (AS) was assessed for its chemosensitizer ability when combined with the conventional anticancer drug, docetaxel (DTX), against non-small cell lung cancer (NSCLC). SRB assay was used to determine cell viability for A549 and H23 cell lines. The potential for this combination was examined by the combination index (CI). Further cell death, analyses with Annexin V/7AAD double staining, and corresponding protein expressions were analyzed. Surprisingly, AS synergistically enhanced the cytotoxic effect of DTX by inducing apoptosis in H23 cells through the caspase-dependent pathway, whereas selectively increased necrotic cell population in A549 cells, following the decline in GPX4 level and reactive oxygen species (ROS) activation with the highest rate in the combination treatment group. Furthermore, our results highlight the chemosensitization ability of AS when combined with DTX. It was closely associated with synergistic inhibition of oncogenesis signaling molecule STAT3 in both cell lines and concurrently downregulating prosurvival protein Survivin. Conclusively, AS could enhance DTX-induced cancer cells apoptosis by abrogating substantial prosurvival proteins' expressions and triggering two distinct cell death pathways. Our data also highlight that AS might serve as an adjunctive therapeutic option along with a conventional chemotherapeutic agent in the management of NSCLC patients.
Collapse
Affiliation(s)
- Uyanga Batbold
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Jun-Jen Liu
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Correspondence:
| |
Collapse
|
23
|
Cao Z, Yang F, Wang J, Gu Z, Lin S, Wang P, An J, Liu T, Li Y, Li Y, Lin H, Zhao Y, He B. Indirubin Derivatives as Dual Inhibitors Targeting Cyclin-Dependent Kinase and Histone Deacetylase for Treating Cancer. J Med Chem 2021; 64:15280-15296. [PMID: 34624191 DOI: 10.1021/acs.jmedchem.1c01311] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
To utilize the unique scaffold of a natural product indirubin, we herein adopted the strategy of combined pharmacophores to design and synthesize a series of novel indirubin derivatives as dual inhibitors against cyclin-dependent kinase (CDK) and histone deacetylase (HDAC). Among them, the lead compound 8b with remarkable CDK2/4/6 and HDAC6 inhibitory activity of IC50 = 60.9 ± 2.9, 276 ± 22.3, 27.2 ± 4.2, and 128.6 ± 0.4 nM, respectively, can efficiently induce apoptosis and S-phase arrest in several cancer cell lines. In particular, compound 8b can prevent the proliferation of a non-small-cell lung cancer cell line (A549) through the Mcl-1/XIAP/PARP axis, in agreement with the unique modes of action of the combined agents of HDAC inhibitors and CDK inhibitors. In an A549 xerograph model, compound 8b showed significant antitumor efficacy correlated with its dual inhibition. Our data demonstrated that compound 8b as a single agent could be a promising drug candidate for cancer therapy in combination with CDK and HDAC inhibitors.
Collapse
Affiliation(s)
- Zhuoxian Cao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Fenfen Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Jie Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Zhicheng Gu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Shuxian Lin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Pan Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Jianxiong An
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Yan Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Yongjun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Hening Lin
- Howard Hughes Medical Institute; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yonglong Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
24
|
Bi Y, Han X, Lai Y, Fu Y, Li K, Zhang W, Wang Q, Jiang X, Zhou Y, Liang H, Fan H. Systems pharmacological study based on UHPLC-Q-Orbitrap-HRMS, network pharmacology and experimental validation to explore the potential mechanisms of Danggui-Shaoyao-San against atherosclerosis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114278. [PMID: 34087397 DOI: 10.1016/j.jep.2021.114278] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/18/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Atherosclerosis (AS) plays an important role in the pathogenesis of cardiovascular and cerebrovascular diseases. Danggui-Shaoyao-San (DSS) is not only a representative Chinese formula to treat gynecological disorder, but also found its use in AS-related diseases. However, the active ingredients and the anti-AS effects are vague yet. AIM OF THE STUDY An integrated strategy combined ultrahigh-performance liquid chromatography quadrupole-Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap-HRMS), network pharmacology and experiments was carried out to investigate the potential materials and pharmacological mechanisms of DSS for AS. MATERIALS AND METHODS First, UHPLC-Q-Orbitrap-HRMS was applied to identify the active compositions of DSS. Then, the putative targets of DSS relevant to AS were predicted from TCMSP and BATMAN, which were further determined through bioinformatic analyses, including protein-protein interactions (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG). Finally, Western blot, qPCR and ELISA were carried out for target validation in human umbilical vein endothelial cells (HUVECs). RESULTS A total of 37 active ingredients of DSS, connecting 47 key targets were identified. The functional enrichment showed that DSS may treat AS through regulating a series of signaling pathways which involving inflammatory responses, immune systems and metabolism. The in vitro experiment revealed that DSS ameliorated AS mainly through anti-inflammatory effects, by reducing the levels of vascular cell adhesion molecule-1 (VCAM1), intercellular adhesion molecule-1 (ICAM1), IL-6, TNF-α, cyclooxygenase-2 (Cox-2) and IL-1β. DSS also inhibited the phosphorylation of IκB-α, NF-κB (p65), p38 and JNK in lipopolysaccharide (LPS)-induced HUVEC injury model. Moreover, as the main bioactive compounds of DSS, paeoniflorin (PF), ferulic acid (FA) and pachymic acid (PA) inhibited IL-6 and TNF-α secretion as well as IκB-α, NF-κB (p65), p38 and JNK activation. All these findings were consistent with the predicted targets and pathways. CONCLUSION Collectively, the basic pharmacological effects and relevant mechanisms of DSS in the treatment of AS were revealed. The results suggest that DSS is a potential drug for AS treatment, and PF, FA, PA may be the core compositions contributing to the pharmacological function of this formula.
Collapse
Affiliation(s)
- Yiming Bi
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xin Han
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yigui Lai
- Department of Traditional Chinese Medicine, People's Hospital of Yangjiang, Yangjiang, 529500, China
| | - Yingchang Fu
- Department of Traditional Chinese Medicine, People's Hospital of Yangjiang, Yangjiang, 529500, China
| | - Kongzheng Li
- Department of Traditional Chinese Medicine, People's Hospital of Yangjiang, Yangjiang, 529500, China
| | - Wei Zhang
- Department of Traditional Chinese Medicine, People's Hospital of Yangjiang, Yangjiang, 529500, China
| | - Qiang Wang
- Department of Traditional Chinese Medicine, People's Hospital of Yangjiang, Yangjiang, 529500, China
| | - Xuefeng Jiang
- Department of Traditional Chinese Medicine, People's Hospital of Yangjiang, Yangjiang, 529500, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yingchun Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Hongfeng Liang
- Department of Traditional Chinese Medicine, People's Hospital of Yangjiang, Yangjiang, 529500, China.
| | - Huijie Fan
- Department of Traditional Chinese Medicine, People's Hospital of Yangjiang, Yangjiang, 529500, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, China.
| |
Collapse
|
25
|
Wu Y, Cheng Y, Yang Y, Wang D, Yang X, Fu C, Zhang J, Hu Y. Mechanisms of Gegen Qinlian Pill to ameliorate irinotecan-induced diarrhea investigated by the combination of serum pharmacochemistry and network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2021; 276:114200. [PMID: 33989737 DOI: 10.1016/j.jep.2021.114200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/17/2021] [Accepted: 05/07/2021] [Indexed: 05/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine suggests the use of natural extracts and compounds is a promising strategy to prevent irinotecan (CPT-11)-induced gut toxicity and resulting diarrhea. Previous work from our lab indicated the protective effect of Gegen Qinlian decoction; given this, we further speculated that Gegen Qinlian Pill (GQP) would exhibit similar therapeutic effects. The effective material basis as well as potential mechanisms underlying the effect of GQP for the treatment of CPT-11-induced diarrhea have not been fully elucidated. AIM OF THE STUDY The application of natural extracts or compounds derived from Chinese medicine is deemed to a promising strategy to prevent irinotecan (CPT-11)-induced gut toxicity. The aim of this study was to investigated the beneficial effects of GQP on CPT-11-induced gut toxicity and further explored its anti-diarrheal mechanism. METHODS First, the beneficial effect of GQP in alleviating diarrhea in mice following CPT-11 administration was investigated. We also obtained the effective ingredients in GQP from murine serum samples using HPLC-Q-TOF-MS analysis. Based on these active components, we next established an interaction network linking "compound-target-pathway". Finally, a predicted mechanism of action was obtained using in vivo GQP validation based on Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. RESULTS A total of 19, GQP-derived chemical compounds were identified in murine serum samples. An interaction network linking "compound-target-pathway" was then established to illuminate the interaction between the components present in serum and their targets that mitigated diarrhea. These results indicated GQP exerted a curative effect on diarrhea and diarrhea-related diseases through different targets, which cumulatively regulated inflammation, oxidative stress, and proliferation processes. CONCLUSION Taken together, this study provides a feasible strategy to elucidate the effective constituents in traditional Chinese medicine formulations. More specifically, this work detailed the basic pharmacological effects and underlying mechanism behind GQP's effects in the treatment of CPT-11-induced gut toxicity.
Collapse
Affiliation(s)
- Yihan Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yanfen Cheng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yuhan Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Di Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xiaoqin Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Chaomei Fu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jinming Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yichen Hu
- School of Medicine, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
26
|
Zhang Y, Yuan T, Li Y, Wu N, Dai X. Network Pharmacology Analysis of the Mechanisms of Compound Herba Sarcandrae (Fufang Zhongjiefeng) Aerosol in Chronic Pharyngitis Treatment. Drug Des Devel Ther 2021; 15:2783-2803. [PMID: 34234411 PMCID: PMC8254411 DOI: 10.2147/dddt.s304708] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/09/2021] [Indexed: 12/22/2022] Open
Abstract
Purpose This study aimed to investigate the molecular mechanisms of compound herba Sarcandrae aerosol, also known as the Fufang Zhongjiefeng (FFZJF) aerosol, in treating chronic pharyngitis (CP) using network pharmacology and in vivo experimental approaches. Methods Active compounds and putative targets of five herbs in FFZJF were identified from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, Chemistry Database, and Swiss Target Prediction databases. The therapeutic targets of CP were obtained from OMIM, Durgbank, DisGeNT, and GAD databases. The active compounds-target networks were constructed using Cytoscape 3.6.1. The overlapping targets of FFZJF active compounds and CP targets were further analyzed using the String database to construct protein–protein interaction (PPI) network. KEGG pathway and Gene Ontology enrichment analysis was performed using the Database for Annotation, Visualization, and Integrated Discovery. The predicted targets and pathways were validated in a group A β-hemolytic streptococcus-induced rat CP model. Results There were 45 active compounds identified from FFZJF and 11 potential protein targets identified for CP treatment. PPI network demonstrated that IL6, PTGS2, TLR-4, and TNF may serve as the key targets of FFZJF for the treatment of CP. The main functional pathways involving these key targets include cytokine secretion, inflammatory response, MyD88-dependent toll-like receptor signaling pathway, toll-like receptor signaling pathway, TNF signaling pathway, and NF-κB signaling pathway. In a rat CP model, the elevation of serum TNF-α, IL1β, and IL6 levels, as well as the upregulation of TLR-4, MyD88, NF-κB P65 in the pharyngeal mucosal tissues could be effectively reduced by FFZJF treatment in a dose-dependent manner. Conclusion Through a network pharmacology approach and animal study, we predicted and validated the active compounds of FFZJF and their potential targets for CP treatment. The results suggest that FFZJF can markedly alleviate GAS-induced chronic pharyngitis by modulating the TLR-4/MyD88/NF-κB signaling pathways.
Collapse
Affiliation(s)
- Yanping Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People's Republic of China
| | - Taohua Yuan
- Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Yunsong Li
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People's Republic of China
| | - Ning Wu
- Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Xiaotian Dai
- Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
27
|
Tang Q, Wang Q, Sun Z, Kang S, Fan Y, Hao Z. Bergenin Monohydrate Attenuates Inflammatory Response via MAPK and NF-κB Pathways Against Klebsiella pneumonia Infection. Front Pharmacol 2021; 12:651664. [PMID: 34017253 PMCID: PMC8129520 DOI: 10.3389/fphar.2021.651664] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022] Open
Abstract
Background:Klebsiella pneumonia has emerged as a critical pathogen causing severe clinical problems, such as pneumonia and sepsis. Meanwhile, intensified drug resistance induced by antibiotic therapy necessitates discovering novel and active molecules from Traditional Chinese Medicine (TCM) for treatment. Methods and results: In this study, the isolated Bergenin monohydrate showed an anti-inflammatory effect in Klebsiella-infected mice. We initially investigated the anti-inflammatory effects and cytoprotection against oxidative stress in vitro and in vivo. Interestingly, a specific dose of Bm can effectively ameliorate lung injury and suppress the expression of inflammatory cytokines such as TNF-α, IL-6, IL-1β and PEG2. Moreover, Bm was also shown to reduced the levels of MPO, MDA and increased SOD and GSH activities. Moreover, we assessed the intracellular signaling molecules including p38, ERK, JNK, IκB, NF-κB-p65 by western blotting and verified through MAPK and NF-κB pathways inhibition experiments. These results reveal that Bm executed its effects via the classical MAPK signaling pathway and NF-κB pathway. Conclusion: Given its underlying anti-inflammatory effect, Bm may be used as a promising therapeutic against Klebsiella-induced infection, thus providing a benefit for the future clinical therapy of pneumonia and medicine design.
Collapse
Affiliation(s)
- Qihe Tang
- Agricultural Bio-pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China.,College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Qingyu Wang
- National Centre for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhuojian Sun
- Agricultural Bio-pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
| | - Songyao Kang
- Agricultural Bio-pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
| | - Yimeng Fan
- National Centre for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhihui Hao
- National Centre for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
28
|
Functional metabolomics innovates therapeutic discovery of traditional Chinese medicine derived functional compounds. Pharmacol Ther 2021; 224:107824. [PMID: 33667524 DOI: 10.1016/j.pharmthera.2021.107824] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/11/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022]
Abstract
Traditional Chinese medicines (TCMs) produce chemically diverse functional compounds that are importantly chemical resource for facilitating new drug discovery and development against a diversity of diseases. However, modern exploration of TCM derived functional compounds is significantly hindered by the inefficient elucidation of pharmacological functions over past decades, because conventional research methods are incapable of efficiently elucidating therapeutic potential of TCM conferred by multiple functional compounds. Functional metabolomics has the priority-capacity to characterize systems therapeutic actions of TCM by precisely capturing molecular interactions between disease response metabolite biomarkers (DRMB) and functional compounds (secondary metabolites), which underline pharmacological efficiency and associated therapeutic mechanisms. In this critical review, we innovatively summarize systems therapeutic feature of TCM derived functional compounds from a functional-metabolism perspective, then systems metabolic targets (SMT) identified by functional metabolomics method are strategically proposed to better understanding of therapeutic discovery of TCM derived functional compounds. In addition, we propose the perspective strategy as Spatial Temporal Operative Real Metabolomics (STORM) to considerably improve analytical capacity of functional metabolomics method by selectively incorporating the cutting edge technologies of mass spectrometry imaging, isotope-metabolic fluxomics, synthetic and biosynthetic chemistry, which could considerably enhance the precision and resolution of elucidating pharmacological efficiency and associated therapeutic mechanisms of TCM derived functional compounds. Collectively, such critical review is expected to provide novel perspective-strategy that could significantly improve modern exploration and exploitation of TCM derived functional compounds that further promote new drug discovery and development against the complex diseases.
Collapse
|
29
|
Li J, Liu H, Yang Z, Yu Q, Zhao L, Wang Y. Synergistic Effects of Cryptotanshinone and Senkyunolide I in Guanxinning Tablet Against Endogenous Thrombus Formation in Zebrafish. Front Pharmacol 2021; 11:622787. [PMID: 33519488 PMCID: PMC7841298 DOI: 10.3389/fphar.2020.622787] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/11/2020] [Indexed: 12/27/2022] Open
Abstract
Thrombosis is a key pathological event in cardiovascular diseases, and is also the most important targeting process for their clinical management. New drug development in thrombosis treatment is still in great demand. According to the traditional Chinese medicine (TCM) theory, thrombosis belongs to the syndrome of blood stasis. Salvia miltiorrhiza Bunge and Ligusticum striatum DC. are two common TCM herbs with long-term documented function in promoting blood circulation and inhibiting thrombosis, especially when used together. Guanxinning Tablet, a modern Chinese drug which contains extracts of the two herbs, also showed strong therapeutic effects in coronary heart disease. However, the pharmacological mechanism is still lacking for the compatibility of the two herbs. Here, through zebrafish-based in vivo fluorescence screening, we demonstrated the synergistic effects between S. miltiorrhiza Bunge and L. striatum DC. in regulating endogenous thrombosis. Moreover, combined with high-resolution mass spectrometry, the main compounds of the botanical drugs were analyzed and screened in our model system. Interestingly, cryptotanshinone and senkyunolide I, two representative compounds, respectively derived from the two herbs, also showed synergistic antithrombotic effects. Further analysis suggested that they may regulate thrombi formation at different levels via multiple signaling pathways, including oxidative stress, platelet activation and coagulation cascade. Taken together, our findings provided solid biological supports toward the drug compatibility theory of TCM, and suggested cryptotanshinone and senkyunolide I as promising drug candidates in thrombosis management.
Collapse
Affiliation(s)
- Jun Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hao Liu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zhenzhong Yang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qingqing Yu
- The Department of Medicine, Chiatai Qingchunbao Pharmaceutical Co., Ltd., Hangzhou, China
| | - Lu Zhao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin, China
| |
Collapse
|
30
|
Mechanism of Action of Bu-Fei-Yi-Shen Formula in Treating Chronic Obstructive Pulmonary Disease Based on Network Pharmacology Analysis and Molecular Docking Validation. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9105972. [PMID: 33313323 PMCID: PMC7718855 DOI: 10.1155/2020/9105972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023]
Abstract
Objective To explore the mechanism of action of Bu-Fei-Yi-Shen formula (BFYSF) in treating chronic obstructive pulmonary disease (COPD) based on network pharmacology analysis and molecular docking validation. Methods First of all, the pharmacologically active ingredients and corresponding targets in BFYSF were mined by the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database, the analysis platform, and literature review. Subsequently, the COPD-related targets (including the pathogenic targets and known therapeutic targets) were identified through the TTD, CTD, DisGeNet, and GeneCards databases. Thereafter, Cytoscape was employed to construct the candidate component-target network of BFYSF in the treatment of COPD. Moreover, the cytoHubba plug-in was utilized to calculate the topological parameters of nodes in the network; then, the core components and core targets of BFYSF in the treatment of COPD were extracted according to the degree value (greater than or equal to the median degree values for all nodes in the network) to construct the core network. Further, the Autodock vina software was adopted for molecular docking study on the core active ingredients and core targets, so as to verify the above-mentioned network pharmacology analysis results. Finally, the Omicshare database was applied in enrichment analysis of the biological functions of core targets and the involved signaling pathways. Results In the core component-target network of BFYSF in treating COPD, there were 30 active ingredients and 37 core targets. Enrichment analysis suggested that these 37 core targets were mainly involved in the regulation of biological functions, such as response to biological and chemical stimuli, multiple cellular life processes, immunity, and metabolism. Besides, multiple pathways, including IL-17, Toll-like receptor (TLR), TNF, and HIF-1, played certain roles in the effect of BFYSF on treating COPD. Conclusion BFYSF can treat COPD through the multicomponent, multitarget, and multipathway synergistic network, which provides basic data for intensively exploring the mechanism of action of BFYSF in treating COPD.
Collapse
|