1
|
Sentenská L, Poy D, Andrade MCB, Uhl GB. Alternative mating tactics in brown widow spiders: mating with or without male self-sacrifice does not affect the copulatory mechanism. Front Zool 2025; 22:6. [PMID: 40170081 PMCID: PMC11963396 DOI: 10.1186/s12983-025-00560-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/12/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Male self-sacrifice during mating is one of the most extreme forms of male reproductive investment. In two species of widow spiders (genus Latrodectus), males trigger sexual cannibalism by "somersaulting" into the fangs of the female after copulatory coupling is achieved. In this position, sperm are transferred with the secondary sexual organs, the transformed pedipalps of the male, while the female starts feeding on his opisthosoma. In Latrodectus hasselti and L. geometricus, matings also occur with subadult females (i.e. females in their last moulting stage) but during these "immature" matings, males do not perform the somersault. Consequently, mating positions differ dramatically between matings with adult and subadult females. Here, we investigate the copulatory mechanism of adult and immature matings in the brown widow L. geometricus by shock-freezing copulating pairs and 3D X-ray microtomography. We hypothesize differences in the copulatory mechanism and depth of insertion of the sperm transfer structures between the two mating tactics. RESULTS We found that the copulatory mechanism does not differ between adult and immature mating tactics and do not depend on whether a somersault occurs. Furthermore, the somersault does not improve intromission depth of the male sperm transfer organs into the female sperm storage organs. CONCLUSIONS Our results suggest that the somersault has evolved solely due to the selective advantages of sexual cannibalism. The costs and benefits of both mating tactics need to be further explored using paternity studies in order to understand their relative adaptive value.
Collapse
Affiliation(s)
- Lenka Sentenská
- Zoological Institute and Museum; General and Systematic Zoology, University of Greifswald, Loitzer Strasse 26, 17489, Greifswald, Germany.
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada.
- Department of Botany and Zoology, Masaryk University, Kotlářská 2, Brno, 611 37, Czechia.
| | - Dante Poy
- Division of Arachnology, Museo Argentino de Ciencias Naturales-CONICET, Buenos Aires, Argentina
| | - Maydianne C B Andrade
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Gabriele B Uhl
- Zoological Institute and Museum; General and Systematic Zoology, University of Greifswald, Loitzer Strasse 26, 17489, Greifswald, Germany
| |
Collapse
|
2
|
Cirino LA, Rodríguez AN, DeLong SA, Rodríguez RL. The function of prolonged copulations in Enchenopa treehoppers (Hemiptera: Membracidae). J Evol Biol 2024; 37:905-914. [PMID: 38842091 DOI: 10.1093/jeb/voae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
Copulations are very brief in many species, sometimes taking only seconds, but in other species, they can be quite prolonged. Potential explanations for prolonged copulations include time requirements for the transfer of sperm and/or other ejaculate substances. Ejaculate substances could function to regulate female receptivity to subsequent matings, provide nutritional nuptial gifts, or hasten egg oviposition at a potential survival cost to the female. We investigated prolonged copulation in a member of the Enchenopa binotata complex of treehoppers (Hemiptera: Membracidae), in which females rarely remate and copulation can last several hours. We assigned females to treatments in which we interrupted copulation at different times. We also included a control where copulation was not interrupted. We found that females that experienced shorter copulations were more likely to be subsequently receptive to an attractive male. We also found that few females produced offspring when they engaged in short copulations compared to those with longer copulations. We did not find any differences in female survival. Our results support the sperm transfer and receptivity regulation hypotheses. We discuss potential reasons for why these processes should take so long in a species with low female remating.
Collapse
Affiliation(s)
- Lauren A Cirino
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Ariel N Rodríguez
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Sage A DeLong
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Rafael L Rodríguez
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| |
Collapse
|
3
|
Kępa M, Tomańska A, Staszewska J, Tarnowska M, Klećkowska-Nawrot J, Goździewska-Harłajczuk K, Kuźniarski A, Gębarowski T, Janeczek M. Functional Anatomy of the Thoracic Limb of the Komodo Dragon ( Varanus komodoensis). Animals (Basel) 2023; 13:2895. [PMID: 37760295 PMCID: PMC10525242 DOI: 10.3390/ani13182895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Since the Komodo dragon has been included on The International Union for Conservation of Nature (IUCN) Red List of Threatened Species, it is crucial to know in detail its biology as there is a limited availability of research material on these animals-mainly those who died in zoos or whose remains were found in the wild. Anatomy is essential for understanding physiology, identification of diseases, adaptations in the environment, and behavior. In this dissection study, the relationship of individual anatomical structures was analyzed, the anatomy of the active and passive movement system of the thoracic limb was described, photographs were taken, and a radiographic examination was conducted. This species has its own differences, even within closely related lizard species. Varanus komodoensis possesses triceps muscles with three heads, and the wrist is extended with additional bones for greater flexibility of the hand. The muscles of the forelimb are analogous to the hind limb; however, they differ in the mass of individual muscles, especially those predisposed to perform the most important antigravity and locomotive functions.
Collapse
Affiliation(s)
- Michał Kępa
- Department of Biostructure and Animal Physiology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Kożuchowska St. 1, 51-631 Wrocław, Poland; (M.K.); (J.S.); (J.K.-N.); (K.G.-H.); (M.J.)
| | - Anna Tomańska
- Department of Biostructure and Animal Physiology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Kożuchowska St. 1, 51-631 Wrocław, Poland; (M.K.); (J.S.); (J.K.-N.); (K.G.-H.); (M.J.)
| | - Joanna Staszewska
- Department of Biostructure and Animal Physiology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Kożuchowska St. 1, 51-631 Wrocław, Poland; (M.K.); (J.S.); (J.K.-N.); (K.G.-H.); (M.J.)
| | - Małgorzata Tarnowska
- Division of Histology and Embryology, Department of Biostructure and Animal Physiology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Norwida St. 25, 50-375 Wrocław, Poland;
| | - Joanna Klećkowska-Nawrot
- Department of Biostructure and Animal Physiology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Kożuchowska St. 1, 51-631 Wrocław, Poland; (M.K.); (J.S.); (J.K.-N.); (K.G.-H.); (M.J.)
| | - Karolina Goździewska-Harłajczuk
- Department of Biostructure and Animal Physiology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Kożuchowska St. 1, 51-631 Wrocław, Poland; (M.K.); (J.S.); (J.K.-N.); (K.G.-H.); (M.J.)
| | - Amadeusz Kuźniarski
- Department of Prosthetic Dentistry, Faculty of Dentistry, Wrocław Medical University, Krakowska St. 26, 50-425 Wrocław, Poland;
| | - Tomasz Gębarowski
- Department of Biostructure and Animal Physiology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Kożuchowska St. 1, 51-631 Wrocław, Poland; (M.K.); (J.S.); (J.K.-N.); (K.G.-H.); (M.J.)
| | - Maciej Janeczek
- Department of Biostructure and Animal Physiology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Kożuchowska St. 1, 51-631 Wrocław, Poland; (M.K.); (J.S.); (J.K.-N.); (K.G.-H.); (M.J.)
| |
Collapse
|
4
|
Keeffe RM, Brennan PLR. Vaginas. Curr Biol 2023; 33:R670-R674. [PMID: 37339591 DOI: 10.1016/j.cub.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
What is the vagina? This seemingly simple question has a rather complex answer, depending on whether we use a functional or a developmental definition. The terminal portion of the female reproductive tract that opens to the environment initially served as a conduit for eggs to be laid, and in species with external fertilization the distal oviduct may be specialized for oviposition but there is no vagina. In animals with internal fertilization, this terminal section of the oviduct interacts with the sperm and the intromittent organ leading to functional specialization of this region that we often call a vagina in insects and some vertebrates. Here we address the evolution, morphology and diverse functions of the vagina and some of the unknown questions that remain to be addressed in the study of this remarkable structure.
Collapse
Affiliation(s)
- Rachel M Keeffe
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075, USA
| | - Patricia L R Brennan
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075, USA.
| |
Collapse
|
5
|
Folwell MJ, Sanders KL, Brennan PLR, Crowe-Riddell JM. First evidence of hemiclitores in snakes. Proc Biol Sci 2022; 289:20221702. [PMID: 36515117 PMCID: PMC9748774 DOI: 10.1098/rspb.2022.1702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Female genitalia are conspicuously overlooked in comparison to their male counterparts, limiting our understanding of sexual reproduction across vertebrate lineages. This study is the first complete description of the clitoris (hemiclitores) in female snakes. We describe morphological variation in size and shape (n = 9 species, 4 families) that is potentially comparable to the male intromittent organs in squamate reptiles (hemipenes). Dissection, diffusible iodine contrast-enhanced micro-CT and histology revealed that, unlike lizard hemiclitores, the snake hemiclitores are non-eversible structures. The two individual hemiclitores are separated medially by connective tissue, forming a triangular structure that extends posteriorly. Histology of the hemiclitores in Australian death adders (Acanthophis antarcticus) showed erectile tissue and strands/bundles of nerves, but no spines (as is found in male hemipenes). These histological features suggest the snake hemiclitores have functional significance in mating and definitively show that the hemiclitores are not underdeveloped hemipenes or scent glands, which have been erroneously indicated in other studies. Our discovery supports that hemiclitores have been retained across squamates and provides preliminary evidence of differences in this structure among snake species, which can be used to further understand systematics, reproductive evolution and ecology across squamate reptiles.
Collapse
Affiliation(s)
- Megan J. Folwell
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Kate L. Sanders
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | | | - Jenna M. Crowe-Riddell
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia,School of Agriculture, Biomedicine and Environment, La Trobe University, VIC 3086, Australia,Museum of Zoology, University of Michigan, Ann Arbor, MI 48108, USA,Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Folwell M, Sanders K, Crowe-Riddell J. The Squamate Clitoris: A Review and Directions for Future Research. Integr Comp Biol 2022; 62:icac056. [PMID: 35662336 DOI: 10.1093/icb/icac056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The clitoris is a part of the genitalia of female amniotes that typically functions to stimulate sensory arousal. It usually consists of a small organ that is dimorphic and homologous to the penis. The developing amniote embryo forms a genital tubule, then sex hormones initiate a developmental cascade to form either a penis or clitoris. In squamates (lizards and snakes) the genital tubule develops into a paired hemiphallus structure called the "hemiclitores" in the female and the "hemipenes" in the male. The complex evolution of squamate hemipenes has been extensively researched since early discoveries in the 1800's, and this has uncovered huge diversity in hemipenis size, shape, and ornamentation (e.g., protrusions of spines, hooks, chalices, cups). In contrast, the squamate hemiclitoris has been conspicuously under investigated, and the studies that describe this anatomy are fraught with inconsistences. This paper aims to clarify the current state of knowledge of the squamate hemiclitoris, providing a foundation for further research on its morphology and functional role. We show that while several studies have described the gross anatomy of hemiclitores in lizards, comparative information is entirely lacking for snakes. Several papers cite earlier authors as having reported discoveries of the snake hemiclitores in vipers and colubrid snakes. However, our examination of this reveals only erroneous reports of hemiclitores in snakes and shows that these stem from misinterpretations of the true anatomy or species involved. An especially problematic source of confusion is the presence of intersex individuals in some snake populations; these form reproductively functional ovaries and a single hemipenis, with the latter sometimes mistaken for a hemiclitoris (the intersex hemipenis is usually smaller and less spinous than the male hemipenis). Further research is recommended to identify the defining anatomical features of the squamate hemiclitores. Such studies will form a vital basis of future comparative analyses of variation in female genitalia in squamates and other amniotes.
Collapse
Affiliation(s)
- Megan Folwell
- The University of Adelaide, Faculty of Biological Science
| | - Kate Sanders
- University of Adelaide, Faculty of Biological Science
| | | |
Collapse
|
7
|
Brennan PLR, Sterett M, DiBuono M, Lara Granados G, Klo K, Marsden R, Schleinig P, Tanner L, Purdy S. Intra-horn Penile Intromission in the Alpaca Vicugna pacos and Consequences to Genital Morphology. Integr Comp Biol 2021; 61:624-633. [PMID: 33970265 DOI: 10.1093/icb/icab050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Copulatory behavior and genital morphology interact to deliver sperm more effectively during mating, but the nature of this interaction has not been explored in depth in most vertebrates. Alpacas have unusually long copulations lasting 15-20 min, and a unique copulatory behavior, where the penis intromits all the way past the cervix, into the uterine horns. Here we describe the morphology of male and female genitalia and report unique morphological characteristics that may be associated with this unusual insemination mode. Vaginal shape is highly variable, and seemingly not associated with age or parity. The cranial vagina varies between bulbous and cylindrical, while the caudal vagina is typically narrower and always cylindrical. The cervix consists of a series of two to three spirals or rings, and it is often found in a relaxed state that may prevent damage caused by the cartilaginous penis tip as it pushes through the cervix to reach the uterine horns. The uterus and uterine horns have a complex shape with multiple constrictions. The cartilaginous penis tip has a sharp urethral process that may help to push against these constrictions. The diameter of the vaginal lumen is much greater than the diameter of the penis suggesting that there is little direct interaction between them, and that female vaginal shape is not under strong copulatory selection. In effect, the entire female reproductive tract of the female is interacting with the penis during copulation.
Collapse
Affiliation(s)
- Patricia L R Brennan
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075, USA
| | - Maya Sterett
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075, USA
| | - Mary DiBuono
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075, USA
| | - Genesis Lara Granados
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075, USA
| | - Kay Klo
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075, USA
| | - Rebecca Marsden
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075, USA
| | - Pearl Schleinig
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075, USA
| | - Louise Tanner
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075, USA
| | - Stephen Purdy
- North American Camelid Studies Program, Nunoa Project, Belchertown, MA 01007, USA
| |
Collapse
|
8
|
Moore BC, Brennan PLR, Francis R, Penland S, Shiavone K, Wayne K, Woodward AR, Does MD, Kim DK, Kelly DA. Glans inflation morphology and female cloaca copulatory interactions of the male American alligator phallus†. Biol Reprod 2020; 104:374-386. [PMID: 33112370 DOI: 10.1093/biolre/ioaa197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/15/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022] Open
Abstract
The phallic glans of the American alligator (Alligator mississippiensis) is the distal termination of the semen-conducting sulcus spermaticus and during copulation has the closest, most intimate mechanical interactions with the female urodeum, the middle cloacal chamber that contains the opening to the vaginal passages and oviducts. However, the details of this interface leading to insemination and gamete uptake are unclear. Here, we: (1) histologically characterize the underlying tissue types and morphologically quantify the shape changes associated with glans inflation into the copulatory conformation, (2) digitally reconstruct from MRI the 3D shape of functional tissue compartments, and (3) diffusible iodine-based contrast-enhanced computed tomography image the copulatory fit between male phallus and female cloaca. We discuss these results in relation to tissue type material properties, the transfer on intromittent forces, establishing potential copulatory lock, inflated glans volume scaling with body mass/length, the mechanics of semen targeting and insemination, and potential female cryptic choice impacting multiple clutch paternity. In part, this study further clarifies the phallic morphological variation observed among crocodylians and begins to investigate the role(s) these divergent male forms play during copulation interacting with female cloacal forms to increase reproductive success.
Collapse
Affiliation(s)
- Brandon C Moore
- College of Veterinary Medicine, Department of Biomedical Science, University of Missouri, Columbia, MO, USA.,Biology Department, Sewanee: The University of the South, Sewanee, TN, USA
| | | | - Rachel Francis
- Biology Department, Sewanee: The University of the South, Sewanee, TN, USA
| | - Samuel Penland
- Biology Department, Sewanee: The University of the South, Sewanee, TN, USA
| | - Kelsie Shiavone
- Biology Department, Sewanee: The University of the South, Sewanee, TN, USA
| | - Kathryn Wayne
- Biology Department, Sewanee: The University of the South, Sewanee, TN, USA
| | - Allan R Woodward
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, Gainesville, FL, USA
| | - Mark D Does
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Dong Kyu Kim
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Diane A Kelly
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst MA, USA
| |
Collapse
|