1
|
Aalto AL, Luukkonen V, Meinander A. Ubiquitin signalling in Drosophila innate immune responses. FEBS J 2024; 291:4397-4413. [PMID: 38069549 DOI: 10.1111/febs.17028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/24/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Cells respond to invading pathogens and danger signals from the environment by adapting gene expression to meet the need for protective effector molecules. While this innate immune response is required for the cell and the organism to recover, excess immune activation may lead to loss of homeostasis, thereby promoting chronic inflammation and cancer progression. The molecular basis of innate immune defence is comprised of factors promoting survival and proliferation, such as cytokines, antimicrobial peptides and anti-apoptotic proteins. As the molecular mechanisms regulating innate immune responses are conserved through evolution, the fruit fly Drosophila melanogaster serves as a convenient, affordable and ethical model organism to enhance understanding of immune signalling. Fly immunity against bacterial infection is built up by both cellular and humoral responses, where the latter is regulated by the Imd and Toll pathways activating NF-κB transcription factors Relish, Dorsal and Dif, as well as JNK activation and JAK/STAT signalling. As in mammals, the Drosophila innate immune signalling pathways are characterised by ubiquitination of signalling molecules followed by ubiquitin receptors binding to the ubiquitin chains, as well as by rapid changes in protein levels by ubiquitin-mediated targeted proteasomal and lysosomal degradation. In this review, we summarise the molecular signalling pathways regulating immune responses to pathogen infection in Drosophila, with a focus on ubiquitin-dependent control of innate immunity and inflammatory signalling.
Collapse
Affiliation(s)
- Anna L Aalto
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship, Åbo Akademi University, Turku, Finland
| | - Veera Luukkonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Annika Meinander
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship, Åbo Akademi University, Turku, Finland
| |
Collapse
|
2
|
Wohlfromm F, Ivanisenko NV, Pietkiewicz S, König C, Seyrek K, Kähne T, Lavrik IN. Arginine methylation of caspase-8 controls life/death decisions in extrinsic apoptotic networks. Oncogene 2024; 43:1955-1971. [PMID: 38730267 PMCID: PMC11178496 DOI: 10.1038/s41388-024-03049-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/26/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024]
Abstract
Procaspase-8 is a key mediator of death receptor (DR)-mediated pathways. Recently, the role of post-translational modifications (PTMs) of procaspase-8 in controlling cell death has received increasing attention. Here, using mass spectrometry screening, pharmacological inhibition and biochemical assays, we show that procaspase-8 can be targeted by the PRMT5/RIOK1/WD45 methylosome complex. Furthermore, two potential methylation sites of PRMT5 on procaspase-8, R233 and R435, were identified in silico. R233 and R435 are highly conserved in mammals and their point mutations are among the most common mutations of caspase-8 in cancer. The introduction of mutations at these positions resulted in inhibitory effects on CD95L-induced caspase-8 activity, effector caspase activation and apoptosis. In addition, we show that procaspase-8 can undergo symmetric di-methylation. Finally, the pharmacological inhibition of PRMT5 resulted in the inhibitory effects on caspase activity and apoptotic cell death. Taken together, we have unraveled the additional control checkpoint in procaspase-8 activation and the arginine methylation network in the extrinsic apoptosis pathway.
Collapse
Affiliation(s)
- Fabian Wohlfromm
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems (CDS), Otto von Guericke University, 39106, Magdeburg, Germany
| | - Nikita V Ivanisenko
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems (CDS), Otto von Guericke University, 39106, Magdeburg, Germany
| | - Sabine Pietkiewicz
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems (CDS), Otto von Guericke University, 39106, Magdeburg, Germany
| | - Corinna König
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems (CDS), Otto von Guericke University, 39106, Magdeburg, Germany
| | - Kamil Seyrek
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems (CDS), Otto von Guericke University, 39106, Magdeburg, Germany
| | - Thilo Kähne
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, 39120, Magdeburg, Germany
| | - Inna N Lavrik
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems (CDS), Otto von Guericke University, 39106, Magdeburg, Germany.
| |
Collapse
|
3
|
Gao J, Lu Q, Zhong J, Li Z, Pan L, Feng C, Tang S, Wang X, Tao Y, Zhou X, Wang Q. Identification and validation of an H2AZ1-based index model: a novel prognostic tool for hepatocellular carcinoma. Aging (Albany NY) 2024; 16:2542-2562. [PMID: 38305811 PMCID: PMC10911386 DOI: 10.18632/aging.205497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 12/26/2023] [Indexed: 02/03/2024]
Abstract
The H2A.Z variant histone 1 (H2AZ1) is aberrantly expressed in various tumors, correlating with an unfavorable prognosis. However, its role in hepatocellular carcinoma (HCC) remains unclear. We aimed to elucidate the pathways affected by H2AZ1 and identify promising therapeutic targets for HCC. Following bioinformatic analysis of gene expression and clinical data from The Cancer Genome Atlas and Gene Expression Omnibus database, we found 6,344 dysregulated genes related to H2AZ1 overexpression in HCC tissues (P < 0.05). We performed weighted gene co-expression network analysis to identify the gene module most related to H2AZ1. The H2AZ1-based index was further developed using Cox regression analysis, which revealed that the poor prognosis in the high H2AZ1-based index group could be attributed to elevated tumor stemness (P < 0.05). Moreover, the clinical model showed good prognostic potential (AUC > 0.7). We found that H2AZ1 knockdown led to reduced superoxide dismutase (SOD) activity, elevated malondialdehyde (MDA) levels, and increased apoptosis rate in tumor cells (P < 0.001). Thus, we developed an H2AZ1-based index model with the potential to predict the prognosis of patients with HCC. Our findings provide initial evidence that H2AZ1 overexpression plays a pivotal role in HCC initiation and progression.
Collapse
Affiliation(s)
- Jiamin Gao
- Laboratory of Infectious Disease, Nanning Infectious Disease Hospital Affiliated to Guangxi Medical University and The Fourth People’s Hospital of Nanning, Nanning, China
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Qinchen Lu
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Jialing Zhong
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhijian Li
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lixin Pan
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Chao Feng
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Shaomei Tang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Xi Wang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Yuting Tao
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Xianguo Zhou
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
- Department of Blood Transfusion, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Qiuyan Wang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| |
Collapse
|
4
|
Madeira C, Dias M, Ferreira A, Gouveia R, Cabral H, Diniz MS, Vinagre C. Does Predation Exacerbate the Risk of Endosymbiont Loss in Heat Stressed Hermatypic Corals? Molecular Cues Provide Insights Into Species-Specific Health Outcomes in a Multi-Stressor Ocean. Front Physiol 2022; 13:801672. [PMID: 35299660 PMCID: PMC8922028 DOI: 10.3389/fphys.2022.801672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/31/2022] [Indexed: 11/30/2022] Open
Abstract
Ocean warming has been a major driver of coral reef bleaching and mass mortality. Coupled to other biotic pressures, corals’ ability for acclimatization and adaptation may become compromised. Here, we tested the combined effects of warming scenarios (26, 30, and 32°C) and predation (wound vs. no wound) in coral health condition (paleness, bleaching, and mortality), cellular stress responses (heat shock protein 70 kDa Hsp70, total ubiquitin Ub, and total antioxidant capacity TAC), and physiological state (integrated biomarker response index, IBR) of seven Scleractinian coral species, after being exposed for 60 days. Results show that although temperature was the main factor driving coral health condition, thermotolerant species (Galaxea fascicularis, Psammocora contigua, and Turbinaria reniformis) displayed increased paleness, bleaching, and mortality in predation treatments at high temperature, whereas thermosensitive species (Acropora tenuis, Echinopora lamellosa, and Montipora capricornis brown and green morphotypes) all died at 32°C, regardless of predation condition. At the molecular level, results show that there were significant main and interactive effects of species, temperature, and predation in the biomarkers assessed. Temperature affected Hsp70, Ub, and TAC, evidencing the role of protein folding and turnover, as well as reactive oxygen species scavenging in heat stress management. Predation increased Hsp70 and Ub, suggesting the activation of the pro-phenoloxidase system and cytokine activity, whereas the combination of both stressors mainly affected TAC during moderate stress and Ub under severe stress, suggesting that redox balance and defense of homeostasis are crucial in tissue repair at high temperature. IBR levels showed an increasing trend at 32°C in predated coral fragments (although non-significant). We conclude that coral responses to the combination of high temperature and predation pressure display high inter-species variability, but these stressors may pose a higher risk of endosymbiont loss, depending on species physiology and stress intensity.
Collapse
Affiliation(s)
- Carolina Madeira
- i4HB – Associate Laboratory Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
- MARE – Marine and Environmental Sciences Centre, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
- *Correspondence: Carolina Madeira, , orcid.org/0000-0003-1632-634X
| | - Marta Dias
- MARE – Marine and Environmental Sciences Centre, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
- Marta Dias, , orcid.org/0000-0003-0447-6009
| | - Ana Ferreira
- Biology Department, Oceanário de Lisboa, Lisbon, Portugal
| | - Raúl Gouveia
- Biology Department, Oceanário de Lisboa, Lisbon, Portugal
| | - Henrique Cabral
- MARE – Marine and Environmental Sciences Centre, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
- INRAE – National Research Institute for Agriculture, Food and Environment, UR EABX, Cestas, France
| | - Mário S. Diniz
- i4HB – Associate Laboratory Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
| | - Catarina Vinagre
- MARE – Marine and Environmental Sciences Centre, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
- CCMAR – Centre of Marine Sciences, University of Algarve, Faro, Portugal
| |
Collapse
|
5
|
Fennell LM, Gomez Diaz C, Deszcz L, Kavirayani A, Hoffmann D, Yanagitani K, Schleiffer A, Mechtler K, Hagelkruys A, Penninger J, Ikeda F. Site-specific ubiquitination of the E3 ligase HOIP regulates apoptosis and immune signaling. EMBO J 2020; 39:e103303. [PMID: 33215740 PMCID: PMC7737615 DOI: 10.15252/embj.2019103303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 01/01/2023] Open
Abstract
HOIP, the catalytic component of the linear ubiquitin chain assembly complex (LUBAC), is a critical regulator of inflammation. However, how HOIP itself is regulated to control inflammatory responses is unclear. Here, we discover that site-specific ubiquitination of K784 within human HOIP promotes tumor necrosis factor (TNF)-induced inflammatory signaling. A HOIP K784R mutant is catalytically active but shows reduced induction of an NF-κB reporter relative to wild-type HOIP. HOIP K784 is evolutionarily conserved, equivalent to HOIP K778 in mice. We generated HoipK778R/K778R knock-in mice, which show no overt developmental phenotypes; however, in response to TNF, HoipK778R/K778R mouse embryonic fibroblasts display mildly suppressed NF-κB activation and increased apoptotic markers. On the other hand, HOIP K778R enhances the TNF-induced formation of TNFR complex II and an interaction between TNFR complex II and LUBAC. Loss of the LUBAC component SHARPIN leads to embryonic lethality in HoipK778R/K778R mice, which is rescued by knockout of TNFR1. We propose that site-specific ubiquitination of HOIP regulates a LUBAC-dependent switch between survival and apoptosis in TNF signaling.
Collapse
Affiliation(s)
- Lilian M Fennell
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna Biocenter (VBC)ViennaAustria
| | - Carlos Gomez Diaz
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna Biocenter (VBC)ViennaAustria
| | - Luiza Deszcz
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna Biocenter (VBC)ViennaAustria
| | - Anoop Kavirayani
- Vienna Biocenter Core Facilities (VBCF)Vienna Biocenter (VBC)ViennaAustria
| | - David Hoffmann
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna Biocenter (VBC)ViennaAustria
| | - Kota Yanagitani
- Medical Institute of Bioregulation (MIB)Kyushu UniversityFukuokaJapan
| | - Alexander Schleiffer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna Biocenter (VBC)ViennaAustria
- Research Institute of Molecular Pathology (IMP)Vienna Biocenter (VBC)ViennaAustria
| | - Karl Mechtler
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna Biocenter (VBC)ViennaAustria
- Research Institute of Molecular Pathology (IMP)Vienna Biocenter (VBC)ViennaAustria
| | - Astrid Hagelkruys
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna Biocenter (VBC)ViennaAustria
| | - Josef Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna Biocenter (VBC)ViennaAustria
- Department of Medical GeneticsLife Sciences InstituteUniversity of British ColumbiaVancouverBCCanada
| | - Fumiyo Ikeda
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna Biocenter (VBC)ViennaAustria
- Medical Institute of Bioregulation (MIB)Kyushu UniversityFukuokaJapan
| |
Collapse
|
6
|
Thymosin β4 dynamics during chicken enteroid development. Mol Cell Biochem 2020; 476:1303-1312. [PMID: 33301106 PMCID: PMC7873109 DOI: 10.1007/s11010-020-04008-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/26/2020] [Indexed: 11/11/2022]
Abstract
The sheared avian intestinal villus-crypts exhibit high tendency to self-repair and develop enteroids in culture. Presuming that this transition process involves differential biomolecular changes, we employed matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF–MS) to find whether there were differences in the spectral profiles of sheared villi versus the enteroids, assessed in the mass range of 2–18 kDa. The results showed substantial differences in the intensities of the spectral peaks, one particularly corresponding to the mass of 4963 Da, which was significantly low in the sheared villus-crypts compared with the enteroids. Based on our previous results with other avian tissues and further molecular characterization by LC-ESI-IT-TOF–MS, and multiple reaction monitoring (MRM), the peak was identified to be thymosin β4 (Tβ4), a ubiquitously occurring regulatory peptide implicated in wound healing process. The identity of the peptide was further confirmed by immunohistochemistry which showed it to be present in a very low levels in the sheared villi but replete in the enteroids. Since Tβ4 sequesters G-actin preventing its polymerization to F-actin, we compared the changes in F-actin by its immunohistochemical localization that showed no significant differences between the sheared villi and enteroids. We propose that depletion of Tβ4 likely precedes villous reparation process. The possible mechanism for the differences in Tβ4 profile in relation to the healing of the villus-crypts to developing enteroids is discussed.
Collapse
|
7
|
Chen T, Sun Q, Ma Y, Zeng W, Liu R, Qu D, Huang L, Xu H. A transcriptome atlas of silkworm silk glands revealed by PacBio single-molecule long-read sequencing. Mol Genet Genomics 2020; 295:1227-1237. [PMID: 32524299 DOI: 10.1007/s00438-020-01691-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/25/2020] [Indexed: 02/05/2023]
Abstract
The silk gland of the silkworm Bombyx mori is a specialized organ where silk proteins are efficiently synthesized under precise regulation that largely determines the properties of silk fibers. To understand the genes involved in the regulation of silk protein synthesis, considerable research has focused on the transcripts expressed in silk glands; however, the complete transcriptome profile of this organ has yet to be elucidated. Here, we report a full-length silk gland transcriptome obtained by PacBio single-molecule long-read sequencing technology. In total, 11,697 non-redundant transcripts were identified in mixed samples of silk glands dissected from larvae at five developmental stages. When compared with the published reference, the full-length transcripts optimized the structures of 3002 known genes, and a total of 9061 novel transcripts with an average length of 2171 bp were detected. Among these, 1403 (15.5%) novel transcripts were computationally revealed to be lncRNAs, 8135 (89.8%) novel transcripts were annotated to different protein and nucleotide databases, and 5655 (62.4%) novel transcripts were predicted to have complete ORFs. Furthermore, we found 1867 alternative splicing events, 2529 alternative polyadenylation events, 784 fusion events and 6596 SSRs. This study provides a comprehensive set of reference transcripts and greatly revises and expands the available silkworm transcript data. In addition, these data will be very useful for studying the regulatory mechanisms of silk protein synthesis.
Collapse
Affiliation(s)
- Tao Chen
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
- The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Nanjing, 212018, Jiangsu, China
| | - Qiwei Sun
- International Bioinformatics Center, BGI Genomics Co., Ltd, Shenzhen, 518083, Guangdong, China
| | - Yan Ma
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Wenhui Zeng
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Rongpeng Liu
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Dawei Qu
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Lihua Huang
- International Bioinformatics Center, BGI Genomics Co., Ltd, Shenzhen, 518083, Guangdong, China
| | - Hanfu Xu
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
8
|
Seyrek K, Ivanisenko NV, Richter M, Hillert LK, König C, Lavrik IN. Controlling Cell Death through Post-translational Modifications of DED Proteins. Trends Cell Biol 2020; 30:354-369. [PMID: 32302548 DOI: 10.1016/j.tcb.2020.02.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/12/2020] [Accepted: 02/19/2020] [Indexed: 01/15/2023]
Abstract
Apoptosis is a form of programmed cell death, deregulation of which occurs in multiple disorders, including neurodegenerative and autoimmune diseases as well as cancer. The formation of a death-inducing signaling complex (DISC) and death effector domain (DED) filaments are critical for initiation of the extrinsic apoptotic pathway. Post-translational modifications (PTMs) of DED-containing DISC components such as FADD, procaspase-8, and c-FLIP comprise an additional level of apoptosis regulation, which is necessary to overcome the threshold for apoptosis induction. In this review we discuss the influence of PTMs of FADD, procaspase-8, and c-FLIP on DED filament assembly and cell death induction, with a focus on the 3D organization of the DED filament.
Collapse
Affiliation(s)
- Kamil Seyrek
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Nikita V Ivanisenko
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia
| | - Max Richter
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Laura K Hillert
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Corinna König
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Inna N Lavrik
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University, Magdeburg, Germany; The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia.
| |
Collapse
|
9
|
Upadhyay A. Structure of proteins: Evolution with unsolved mysteries. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 149:160-172. [PMID: 31014967 DOI: 10.1016/j.pbiomolbio.2019.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/16/2019] [Accepted: 04/19/2019] [Indexed: 02/07/2023]
Abstract
Evolution of macromolecules could be considered as a milestone in the history of life. Nucleic acids are the long stretches of nucleotides that contain all the possible codes and information of life. On the other hand, proteins are their actual translated outcomes, or reflections of modifications in their structure that have occurred at a slow, but steady rate over a very long period of evolution. Over the years of research, biophysicists, biochemists, molecular and structural biologists have unfurled several layers of the structural convolutions in these chemical molecules; however evolutionists look over their structures through a different prism, which may or may not coincide with others. There remains a need to outline several well-known, but less discussed features of protein structures, like intrinsically disordered states, degron signals and different types of ubiquitin chains providing degradation signals, which help the cellular proteolytic machinery to identify and target the proteins towards degradation pathways. There are several important factors, which are critical for folding of proteins into their native three-dimensional conformations by the cytoplasmic chaperones; but in real time how the chaperones fold the newly synthesized polypeptide sequences into a particular three-dimensional shape within a fraction of second is still a mystery for biologists as well as mathematicians. Multiple similar unsolved or unaddressed questions need to be addressed in detail so that future line of research can dig deeper into the finer details of these structures of the proteins.
Collapse
Affiliation(s)
- Arun Upadhyay
- Department of Biochemistry, Central University of Rajasthan, Ajmer, 305817, India.
| |
Collapse
|
10
|
Wu Y, Kang J, Zhang L, Liang Z, Tang X, Yan Y, Qian H, Zhang X, Xu W, Mao F. Ubiquitination regulation of inflammatory responses through NF-κB pathway. Am J Transl Res 2018; 10:881-891. [PMID: 29636878 PMCID: PMC5883129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/01/2018] [Indexed: 06/08/2023]
Abstract
The development of inflammation is mutually affected with damaged DNA and the abnormal expression of protein modification. Ubiquitination, a way of protein modification, plays a key role in regulating various biological functions including inflammation responses. The ubiquitin enzymes and deubiquitinating enzymes (DUBs) jointly control the ubiquitination. The fact that various ubiquitin linkage chains control the fate of the substrate suggests that the regulatory mechanisms of ubiquitin enzymes are central for ubiquitination. In inflammation diseases, the pro-inflammatory transcription factor NF-κB regulates transcription of pro-labour mediators in response to inflammatory stimuli and expression of numerous genes that control inflammation which is associated with ubiquitination. The ubiquitination regulates NF-κB signaling pathway with many receptor families, including NOD-like receptors (NLR), Toll-like receptors (TLR) and RIG-I-like receptors (RLR), mainly by K63-linked polyubiquitin chains. In this review, we highlight the study of ubiquitination in the inflammatory signaling pathway including NF-κB signaling regulated by ubiquitin enzymes and DUBs. Furthermore, it is emphasized that the interaction of ubiquitin-mediated inflammatory signaling system accurately regulates the inflammatory responses.
Collapse
Affiliation(s)
- Yunbing Wu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Jingjing Kang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Lu Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Zhaofeng Liang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Xudong Tang
- Jiangsu University of Science and TechnologyZhenjiang 212018, Jiangsu, China
| | - Yongmin Yan
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Hui Qian
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Xu Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Wenrong Xu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| |
Collapse
|
11
|
Liu J, Zhu G, Xu S, Liu S, Lu Q, Tang Z. Analysis of miRNA expression profiling in human umbilical vein endothelial cells affected by heat stress. Int J Mol Med 2017; 40:1719-1730. [PMID: 29039486 PMCID: PMC5716433 DOI: 10.3892/ijmm.2017.3174] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/28/2017] [Indexed: 12/20/2022] Open
Abstract
To investigate the regulation of endothelial cell (EC) microRNAs (miRNAs) altered by heat stress, miRNA microarrays and bioinformatics methods were used to determine changes in miRNA profiles and the pathophysiological characteristics of differentially expressed miRNAs. A total of 31 differentially expressed miRNAs were identified, including 20 downregulated and 11 upregulated miRNAs. Gene Ontology (GO) enrichment analysis revealed that the validated targets of the differentially expressed miRNAs were significantly enriched in gene transcription regulation. The pathways were also significantly enriched in the Kyoto Encyclopedia of Genes and Genomes analysis, and most were cancer-related, including the mitogen-activated protein kinase signaling pathway, pathways involved in cancer, the Wnt signaling pathway, the Hippo signaling pathway, proteoglycans involved in cancer and axon guidance. The miRNA-gene and miRNA-GO network analyses revealed several hub miRNAs, genes and functions. Notably, miR-3613-3p played a dominant role in both networks. MAP3K2, MGAT4A, TGFBR1, UBE2R2 and SMAD4 were most likely to be controlled by the altered miRNAs in the miRNA-gene network. The miRNA-GO network analysis revealed significantly complicated associations between miRNAs and different functions, and that the significantly enriched functions targeted by the differentially expressed miRNAs were mostly involved in regulating gene transcription. The present study demonstrated that miRNAs are involved in the pathophysiology of heat-treated ECs. Understanding the functions of miRNAs may provide novel insights into the molecular mechanisms underlying the heat-induced pathophysiology of ECs.
Collapse
Affiliation(s)
- Jie Liu
- Department of Emergency, Wuhan General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| | - Guoguo Zhu
- Department of Emergency, Wuhan General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| | - Siya Xu
- Department of Emergency, Wuhan General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| | - Shixin Liu
- Department of Emergency, Wuhan General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| | - Qiping Lu
- Department of General Surgery, Wuhan General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| | - Zhongzhi Tang
- Department of Emergency, Wuhan General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| |
Collapse
|
12
|
Kamber Kaya HE, Ditzel M, Meier P, Bergmann A. An inhibitory mono-ubiquitylation of the Drosophila initiator caspase Dronc functions in both apoptotic and non-apoptotic pathways. PLoS Genet 2017; 13:e1006438. [PMID: 28207763 PMCID: PMC5313150 DOI: 10.1371/journal.pgen.1006438] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 10/21/2016] [Indexed: 11/19/2022] Open
Abstract
Apoptosis is an evolutionary conserved cell death mechanism, which requires activation of initiator and effector caspases. The Drosophila initiator caspase Dronc, the ortholog of mammalian Caspase-2 and Caspase-9, has an N-terminal CARD domain that recruits Dronc into the apoptosome for activation. In addition to its role in apoptosis, Dronc also has non-apoptotic functions such as compensatory proliferation. One mechanism to control the activation of Dronc is ubiquitylation. However, the mechanistic details of ubiquitylation of Dronc are less clear. For example, monomeric inactive Dronc is subject to non-degradative ubiquitylation in living cells, while ubiquitylation of active apoptosome-bound Dronc triggers its proteolytic degradation in apoptotic cells. Here, we examined the role of non-degradative ubiquitylation of Dronc in living cells in vivo, i.e. in the context of a multi-cellular organism. Our in vivo data suggest that in living cells Dronc is mono-ubiquitylated on Lys78 (K78) in its CARD domain. This ubiquitylation prevents activation of Dronc in the apoptosome and protects cells from apoptosis. Furthermore, K78 ubiquitylation plays an inhibitory role for non-apoptotic functions of Dronc. We provide evidence that not all of the non-apoptotic functions of Dronc require its catalytic activity. In conclusion, we demonstrate a mechanism whereby Dronc’s apoptotic and non-apoptotic activities can be kept silenced in a non-degradative manner through a single ubiquitylation event in living cells. Apoptosis is a programmed cell death mechanism which is conserved from flies to humans. Apoptosis is mediated by proteases, termed caspases that cleave cellular proteins and trigger the death of the cell. Activation of caspases is regulated at various levels such as protein-protein interaction for initiator caspases and ubiquitylation. Caspase 9 in mammals and its Drosophila ortholog Dronc carry a protein-protein interaction domain (CARD) in their prodomain which interacts with scaffolding proteins to form the apoptosome, a cell-death platform. Here, we show that Dronc is mono-ubiquitylated at Lysine 78 in its CARD domain. This ubiquitylation interferes with the formation of the apoptosome, causing inhibition of apoptosis. In addition to its apoptotic function, Dronc also participates in events where caspase activity is not required for cell killing, but for regulating other functions, so-called non-apoptotic functions of caspases such as apoptosis-induced proliferation. We found that mono-ubiquitylation of Lysine 78 plays an inhibitory role for these non-apoptotic functions of Dronc. Interestingly, we demonstrate that the catalytic activity of Dronc is not strictly required in these processes. Our in vivo study sheds light on how a single mono-ubiquitylation event could inhibit both apoptotic and non-apoptotic functions of a caspase.
Collapse
Affiliation(s)
- Hatem Elif Kamber Kaya
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Mark Ditzel
- Institute for Genetics and Molecular Medicine, Edinburgh Cancer Research Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, London, United Kingdom
| | - Andreas Bergmann
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
13
|
Topkara VK, Chambers KT, Yang KC, Tzeng HP, Evans S, Weinheimer C, Kovacs A, Robbins J, Barger P, Mann DL. Functional significance of the discordance between transcriptional profile and left ventricular structure/function during reverse remodeling. JCI Insight 2016; 1:e86038. [PMID: 27158672 DOI: 10.1172/jci.insight.86038] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
To elucidate the mechanisms for reverse LV remodeling, we generated a conditional (doxycycline [dox] off) transgenic mouse tetracycline transactivating factor-TRAF2 (tTA-TRAF2) that develops a dilated heart failure (HF) phenotype upon expression of a proinflammatory transgene, TNF receptor-associated factor 2 (TRAF2), and complete normalization of LV structure and function when the transgene is suppressed. tTA-TRAF2 mice developed a significant increase in LV dimension with decreased contractile function, which was completely normalized in the tTA-TRAF2 mice fed dox for 4 weeks (tTA-TRAF2dox4W). Normalization of LV structure and function was accompanied by partial normalization (~60%) of gene expression associated with incident HF. Similar findings were observed in patients with dilated cardiomyopathy who underwent reverse LV remodeling following mechanical circulatory support. Persistence of the HF gene program was associated with an exaggerated hypertrophic response and increased mortality in tTA-TRAF2dox4W mice following transaortic constriction (TAC). These effects were no longer observed following TAC in tTA-TRAF2dox8W, wherein there was a more complete (88%) reversal of the incident HF genes. These results demonstrate that reverse LV remodeling is associated with improvements in cardiac myocyte biology; however, the persistence of the abnormal HF gene program may be maladaptive following perturbations in hemodynamic loading conditions.
Collapse
Affiliation(s)
- Veli K Topkara
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kari T Chambers
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kai-Chien Yang
- Department of Pharmacology, National Taiwan University School of Medicine, Taipei, Taiwan
| | - Huei-Ping Tzeng
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sarah Evans
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Carla Weinheimer
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Attila Kovacs
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jeffrey Robbins
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Philip Barger
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Douglas L Mann
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|