1
|
Zhang J, Griffin J, Roy K, Hoffmann A, Zangle TA. Tracking of lineage mass via quantitative phase imaging and confinement in low refractive index microwells. LAB ON A CHIP 2024; 24:4440-4449. [PMID: 39190401 PMCID: PMC11412070 DOI: 10.1039/d4lc00389f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Measurements of cell lineages are central to a variety of fundamental biological questions, ranging from developmental to cancer biology. However, accurate lineage tracing requires nearly perfect cell tracking, which can be challenging due to cell motion during imaging. Here we demonstrate the integration of microfabrication, imaging, and image processing approaches to demonstrate a platform for cell lineage tracing. We use quantitative phase imaging (QPI), a label-free imaging approach that quantifies cell mass. This gives an additional parameter, cell mass, that can be used to improve tracking accuracy. We confine lineages within microwells fabricated to reduce cell adhesion to sidewalls made of a low refractive index polymer. This also allows the microwells themselves to serve as references for QPI, enabling measurement of cell mass even in confluent microwells. We demonstrate application of this approach to immortalized adherent and nonadherent cell lines as well as stimulated primary B cells cultured ex vivo. Overall, our approach enables lineage tracking, or measurement of lineage mass, in a platform that can be customized to varied cell types.
Collapse
Affiliation(s)
- Jingzhou Zhang
- Department of Chemical Engineering, University of Utah, USA.
| | - Justin Griffin
- Department of Chemical Engineering, University of Utah, USA.
| | - Koushik Roy
- Division of Microbiology and Immunology, Department of Pathology, School of Medicine, University of Utah, USA
| | - Alexander Hoffmann
- Signaling Systems Laboratory, Institute for Quantitative and Computational Biosciences, and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Thomas A Zangle
- Department of Chemical Engineering, University of Utah, USA.
- Huntsman Cancer Institute, University of Utah, USA
| |
Collapse
|
2
|
Veling MW, Li Y, Veling MT, Litts C, Michki SN, Liu H, Ye B, Cai D. Identification of Neuronal Lineages in the Drosophila Peripheral Nervous System with a "Digital" Multi-spectral Lineage Tracing System. Cell Rep 2019; 29:3303-3312.e3. [PMID: 31801091 PMCID: PMC6913890 DOI: 10.1016/j.celrep.2019.10.124] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/27/2019] [Accepted: 10/29/2019] [Indexed: 11/19/2022] Open
Abstract
Elucidating cell lineages provides crucial understanding of development. Recently developed sequencing-based techniques enhance the scale of lineage tracing but eliminate the spatial information offered by conventional approaches. Multi-spectral labeling techniques, such as Brainbow, have the potential to identify lineage-related cells in situ. Here, we report nuclear Bitbow (nBitbow), a "digital" version of Brainbow that greatly expands the color diversity for scoring cells, and a suite of statistical methods for quantifying the lineage relationship of any two cells. Applying these tools to the Drosophila peripheral nervous system (PNS), we determined lineage relationship between all neuronal pairs. This study demonstrates nBitbow as an efficient tool for in situ lineage mapping, and the complete lineage relationship among larval PNS neurons opens new possibilities for studying how neurons gain specific features and circuit connectivity.
Collapse
Affiliation(s)
- Macy W Veling
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ye Li
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mike T Veling
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Christopher Litts
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sylvia N Michki
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hao Liu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bing Ye
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Dawen Cai
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
3
|
Hirata K, Otaki JM. Real-Time In Vivo Imaging of the Developing Pupal Wing Tissues in the Pale Grass Blue Butterfly Zizeeria maha: Establishing the Lycaenid System for Multiscale Bioimaging. J Imaging 2019; 5:jimaging5040042. [PMID: 34460480 PMCID: PMC8320941 DOI: 10.3390/jimaging5040042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 11/17/2022] Open
Abstract
To systematically analyze biological changes with spatiotemporal dynamics, it is important to establish a system that is amenable for real-time in vivo imaging at various size levels. Herein, we focused on the developing pupal wing tissues in the pale grass blue butterfly, Zizeeria maha, as a system of choice for a systematic multiscale approach in vivo in real time. We showed that the entire pupal wing could be monitored throughout development using a high-resolution bright-field time-lapse imaging system under the forewing-lift configuration; we recorded detailed dynamics of the dorsal and ventral epithelia that behaved independently for peripheral adjustment. We also monitored changes in the dorsal hindwing at the compartmental level and directly observed evaginating scale buds. We also employed a confocal laser microscopy system with multiple fluorescent dyes for three-dimensional observations at the tissue and cellular levels. We discovered extensive cellular clusters that may be functionally important as a unit of cellular communication and differentiation. We also identified epithelial discal and marginal dents that may function during development. Together, this lycaenid forewing system established a foundation to study the differentiation process of epithelial cells and can be used to study biophysically challenging mechanisms such as the determination of color patterns and scale nanoarchitecture at the multiscale levels.
Collapse
|
4
|
Xu M, Wang J, Guo X, Li T, Kuang X, Wu QF. Illumination of neural development by in vivo clonal analysis. CELL REGENERATION (LONDON, ENGLAND) 2018; 7:33-39. [PMID: 30671228 PMCID: PMC6326247 DOI: 10.1016/j.cr.2018.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/22/2018] [Accepted: 09/18/2018] [Indexed: 01/22/2023]
Abstract
Single embryonic and adult neural stem cells (NSCs) are characterized by their self-renewal and differentiation potential. Lineage tracing via clonal analysis allows for specific labeling of a single NSC and tracking of its progeny throughout development. Over the past five decades, a plethora of clonal analysis methods have been developed in tandem with integration of chemical, genetic, imaging and sequencing techniques. Applications of these approaches have gained diverse insights into the heterogeneous behavior of NSCs, lineage relationships between cells, molecular regulation of fate specification and ontogeny of complex neural tissues. In this review, we summarize the history and methods of clonal analysis as well as highlight key findings revealed by single-cell lineage tracking of stem cells in developing and adult brains across different animal models.
Collapse
Affiliation(s)
- Mingrui Xu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Jingjing Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xize Guo
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Tingting Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xia Kuang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qing-Feng Wu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
5
|
Pierpont ME, Brueckner M, Chung WK, Garg V, Lacro RV, McGuire AL, Mital S, Priest JR, Pu WT, Roberts A, Ware SM, Gelb BD, Russell MW. Genetic Basis for Congenital Heart Disease: Revisited: A Scientific Statement From the American Heart Association. Circulation 2018; 138:e653-e711. [PMID: 30571578 PMCID: PMC6555769 DOI: 10.1161/cir.0000000000000606] [Citation(s) in RCA: 383] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review provides an updated summary of the state of our knowledge of the genetic contributions to the pathogenesis of congenital heart disease. Since 2007, when the initial American Heart Association scientific statement on the genetic basis of congenital heart disease was published, new genomic techniques have become widely available that have dramatically changed our understanding of the causes of congenital heart disease and, clinically, have allowed more accurate definition of the pathogeneses of congenital heart disease in patients of all ages and even prenatally. Information is presented on new molecular testing techniques and their application to congenital heart disease, both isolated and associated with other congenital anomalies or syndromes. Recent advances in the understanding of copy number variants, syndromes, RASopathies, and heterotaxy/ciliopathies are provided. Insights into new research with congenital heart disease models, including genetically manipulated animals such as mice, chicks, and zebrafish, as well as human induced pluripotent stem cell-based approaches are provided to allow an understanding of how future research breakthroughs for congenital heart disease are likely to happen. It is anticipated that this review will provide a large range of health care-related personnel, including pediatric cardiologists, pediatricians, adult cardiologists, thoracic surgeons, obstetricians, geneticists, genetic counselors, and other related clinicians, timely information on the genetic aspects of congenital heart disease. The objective is to provide a comprehensive basis for interdisciplinary care for those with congenital heart disease.
Collapse
|