1
|
Ho EK, Kim-Yip RP, Simpkins AG, Farahani PE, Oatman HR, Posfai E, Shvartsman SY, Toettcher JE. In vivo measurements of receptor tyrosine kinase activity reveal feedback regulation of a developmental gradient. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.06.631605. [PMID: 39829924 PMCID: PMC11741313 DOI: 10.1101/2025.01.06.631605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
A lack of tools for detecting receptor activity in vivo has limited our ability to fully explore receptor-level control of developmental patterning. Here, we extend a new class of biosensors for receptor tyrosine kinase (RTK) activity, the pYtag system, to visualize endogenous RTK activity in Drosophila. We build biosensors for three Drosophila RTKs that function across developmental stages and tissues. By characterizing Torso::pYtag during terminal patterning in the early embryo, we find that Torso activity differs from downstream ERK activity in two surprising ways: Torso activity is narrowly restricted to the poles but produces a broader gradient of ERK, and Torso activity decreases over developmental time while ERK activity is sustained. This decrease in Torso activity is driven by ERK pathway-dependent negative feedback. Our results suggest an updated model of terminal patterning where a narrow domain of Torso activity, tuned in amplitude by negative feedback, locally activates signaling effectors which diffuse through the syncytial embryo to form the ERK gradient. Altogether, this work highlights the usefulness of pYtags for investigating receptor-level regulation of developmental patterning.
Collapse
Affiliation(s)
- Emily K Ho
- Department of Molecular Biology, Princeton University, Princeton 08544
| | - Rebecca P Kim-Yip
- Department of Molecular Biology, Princeton University, Princeton 08544
| | - Alison G Simpkins
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton 08544
| | - Payam E Farahani
- Department of Chemical and Biological Engineering, Princeton University, Princeton 08544
| | - Harrison R Oatman
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton 08544
| | - Eszter Posfai
- Department of Molecular Biology, Princeton University, Princeton 08544
| | - Stanislav Y Shvartsman
- Department of Molecular Biology, Princeton University, Princeton 08544
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton 08544
- Center for Computational Biology, Flatiron Institute - Simons Foundation, New York 10010
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Princeton 08544
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton 08544
| |
Collapse
|
2
|
Yang L, Zhu A, Aman JM, Denberg D, Kilwein MD, Marmion RA, Johnson ANT, Veraksa A, Singh M, Wühr M, Shvartsman SY. ERK synchronizes embryonic cleavages in Drosophila. Dev Cell 2024; 59:3061-3071.e6. [PMID: 39208802 PMCID: PMC11895397 DOI: 10.1016/j.devcel.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 06/13/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Extracellular-signal-regulated kinase (ERK) signaling controls development and homeostasis and is genetically deregulated in human diseases, including neurocognitive disorders and cancers. Although the list of ERK functions is vast and steadily growing, the full spectrum of processes controlled by any specific ERK activation event remains unknown. Here, we show how ERK functions can be systematically identified using targeted perturbations and global readouts of ERK activation. Our experimental model is the Drosophila embryo, where ERK signaling at the embryonic poles has thus far only been associated with the transcriptional patterning of the future larva. Through a combination of live imaging and phosphoproteomics, we demonstrated that ERK activation at the poles is also critical for maintaining the speed and synchrony of embryonic cleavages. The presented approach to interrogating phosphorylation networks identifies a hidden function of a well-studied signaling event and sets the stage for similar studies in other organisms.
Collapse
Affiliation(s)
- Liu Yang
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Audrey Zhu
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Javed M Aman
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Computer Science, Princeton University, Princeton, NJ 08544, USA
| | - David Denberg
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Program in Quantitative and Computational Biology, Princeton University, Princeton, NJ 08544, USA
| | - Marcus D Kilwein
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Robert A Marmion
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Alex N T Johnson
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Alexey Veraksa
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Mona Singh
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Computer Science, Princeton University, Princeton, NJ 08544, USA
| | - Martin Wühr
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Stanislav Y Shvartsman
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Program in Quantitative and Computational Biology, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Flatiron Institute, New York, NY 10010, USA.
| |
Collapse
|
3
|
Berg C, Sieber M, Sun J. Finishing the egg. Genetics 2024; 226:iyad183. [PMID: 38000906 PMCID: PMC10763546 DOI: 10.1093/genetics/iyad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/27/2023] [Indexed: 11/26/2023] Open
Abstract
Gamete development is a fundamental process that is highly conserved from early eukaryotes to mammals. As germ cells develop, they must coordinate a dynamic series of cellular processes that support growth, cell specification, patterning, the loading of maternal factors (RNAs, proteins, and nutrients), differentiation of structures to enable fertilization and ensure embryonic survival, and other processes that make a functional oocyte. To achieve these goals, germ cells integrate a complex milieu of environmental and developmental signals to produce fertilizable eggs. Over the past 50 years, Drosophila oogenesis has risen to the forefront as a system to interrogate the sophisticated mechanisms that drive oocyte development. Studies in Drosophila have defined mechanisms in germ cells that control meiosis, protect genome integrity, facilitate mRNA trafficking, and support the maternal loading of nutrients. Work in this system has provided key insights into the mechanisms that establish egg chamber polarity and patterning as well as the mechanisms that drive ovulation and egg activation. Using the power of Drosophila genetics, the field has begun to define the molecular mechanisms that coordinate environmental stresses and nutrient availability with oocyte development. Importantly, the majority of these reproductive mechanisms are highly conserved throughout evolution, and many play critical roles in the development of somatic tissues as well. In this chapter, we summarize the recent progress in several key areas that impact egg chamber development and ovulation. First, we discuss the mechanisms that drive nutrient storage and trafficking during oocyte maturation and vitellogenesis. Second, we examine the processes that regulate follicle cell patterning and how that patterning impacts the construction of the egg shell and the establishment of embryonic polarity. Finally, we examine regulatory factors that control ovulation, egg activation, and successful fertilization.
Collapse
Affiliation(s)
- Celeste Berg
- Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065 USA
| | - Matthew Sieber
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390 USA
| | - Jianjun Sun
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269 USA
| |
Collapse
|
4
|
Masuda LHP, Sabino AU, Reinitz J, Ramos AF, Machado-Lima A, Andrioli LP. Global repression by tailless during segmentation. Dev Biol 2024; 505:11-23. [PMID: 37879494 PMCID: PMC10949167 DOI: 10.1016/j.ydbio.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/27/2023]
Abstract
The orphan nuclear receptor Tailless (Tll) exhibits conserved roles in brain formation and maintenance that are shared, for example, with vertebrate orthologous forms (Tlx). However, the early expression of tll in two gap domains in the segmentation cascade of Drosophila is unusual even for most other insects. Here we investigate tll regulation on pair-rule stripes. With ectopic misexpression of tll we detected unexpected repression of almost all pair-rule stripes of hairy (h), even-skipped (eve), runt (run), and fushi-tarazu (ftz). Examining Tll embryonic ChIP-chip data with regions mapped as Cis-Regulatory Modules (CRMs) of pair-rule stripes we verified Tll interactions to these regions. With the ChIP-chip data we also verified Tll interactions to the CRMs of gap domains and in the misexpression assay, Tll-mediated repression on Kruppel (Kr), kni (kni) and giant (gt) according to their differential sensitivity to Tll. These results with gap genes confirmed previous data from the literature and argue against indirect repression roles of Tll in the striped pattern. Moreover, the prediction of Tll binding sites in the CRMs of eve stripes and the mathematical modeling of their removal using an experimentally validated theoretical framework shows effects on eve stripes compatible with the absence of a repressor binding to the CRMs. In addition, modeling increased tll levels in the embryo results in the differential repression of eve stripes, agreeing well with the results of the misexpression assay. In genetic assays we investigated eve 5, that is strongly repressed by the ectopic domain and representative of more central stripes not previously implied to be under direct regulation of tll. While this stripe is little affected in tll-, its posterior border is expanded in gt- but detected with even greater expansion in gt-;tll-. We end up by discussing tll with key roles in combinatorial repression mechanisms to contain the expression of medial patterns of the segmentation cascade in the extremities of the embryo.
Collapse
Affiliation(s)
| | - Alan Utsuni Sabino
- Departamento de Radiologia e Oncologia, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - John Reinitz
- Departments of Statistics, Ecology and Evolution, Molecular Genetics & Cell Biology, Institute of Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
| | | | - Ariane Machado-Lima
- Escola de Artes, Ciências e Humanidades da Universidade de São Paulo, São Paulo, Brazil
| | - Luiz Paulo Andrioli
- Escola de Artes, Ciências e Humanidades da Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
5
|
Ho EK, Oatman HR, McFann SE, Yang L, Johnson HE, Shvartsman SY, Toettcher JE. Dynamics of an incoherent feedforward loop drive ERK-dependent pattern formation in the early Drosophila embryo. Development 2023; 150:dev201818. [PMID: 37602510 PMCID: PMC10482391 DOI: 10.1242/dev.201818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023]
Abstract
Positional information in development often manifests as stripes of gene expression, but how stripes form remains incompletely understood. Here, we use optogenetics and live-cell biosensors to investigate the posterior brachyenteron (byn) stripe in early Drosophila embryos. This stripe depends on interpretation of an upstream ERK activity gradient and the expression of two target genes, tailless (tll) and huckebein (hkb), that exert antagonistic control over byn. We find that high or low doses of ERK signaling produce transient or sustained byn expression, respectively. Although tll transcription is always rapidly induced, hkb converts graded ERK inputs into a variable time delay. Nuclei thus interpret ERK amplitude through the relative timing of tll and hkb transcription. Antagonistic regulatory paths acting on different timescales are hallmarks of an incoherent feedforward loop, which is sufficient to explain byn dynamics and adds temporal complexity to the steady-state model of byn stripe formation. We further show that 'blurring' of an all-or-none stimulus through intracellular diffusion non-locally produces a byn stripe. Overall, we provide a blueprint for using optogenetics to dissect developmental signal interpretation in space and time.
Collapse
Affiliation(s)
- Emily K. Ho
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Harrison R. Oatman
- Program in Quantitative and Computational Biology, Princeton University, Princeton, NJ 08544, USA
| | - Sarah E. McFann
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Liu Yang
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Heath E. Johnson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Stanislav Y. Shvartsman
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Center for Computational Biology, Flatiron Institute - Simons Foundation, New York, NY 10010, USA
| | - Jared E. Toettcher
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
6
|
Ho EK, Oatman HR, McFann SE, Yang L, Johnson HE, Shvartsman SY, Toettcher JE. Dynamics of an incoherent feedforward loop drive ERK-dependent pattern formation in the early Drosophila embryo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531972. [PMID: 36945584 PMCID: PMC10028984 DOI: 10.1101/2023.03.09.531972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Positional information in developing tissues often takes the form of stripes of gene expression that mark the boundaries of a particular cell type or morphogenetic process. How stripes form is still in many cases poorly understood. Here we use optogenetics and live-cell biosensors to investigate one such pattern: the posterior stripe of brachyenteron (byn) expression in the early Drosophila embryo. This byn stripe depends on interpretation of an upstream signal - a gradient of ERK kinase activity - and the expression of two target genes tailless (tll) and huckebein (hkb) that exert antagonistic control over byn . We find that high or low doses of ERK signaling produce either transient or sustained byn expression, respectively. These ERK stimuli also regulate tll and hkb expression with distinct dynamics: tll transcription is rapidly induced under both low and high stimuli, whereas hkb transcription converts graded ERK inputs into an output switch with a variable time delay. Antagonistic regulatory paths acting on different timescales are hallmarks of an incoherent feedforward loop architecture, which is sufficient to explain transient or sustained byn dynamics and adds temporal complexity to the steady-state model of byn stripe formation. We further show that an all-or-none stimulus can be 'blurred' through intracellular diffusion to non-locally produce a stripe of byn gene expression. Overall, our study provides a blueprint for using optogenetic inputs to dissect developmental signal interpretation in space and time.
Collapse
Affiliation(s)
- Emily K Ho
- Department of Molecular Biology Princeton University, Princeton NJ 08544
| | - Harrison R Oatman
- Program in Quantitative and Computational Biology Princeton University, Princeton NJ 08544
| | - Sarah E McFann
- Department of Chemical & Biological Engineering Princeton University, Princeton NJ 08544
| | - Liu Yang
- Lewis Sigler Institute for Integrative Genomics Princeton University, Princeton NJ 08544
| | - Heath E Johnson
- Department of Molecular Biology Princeton University, Princeton NJ 08544
| | - Stanislav Y Shvartsman
- Department of Molecular Biology Princeton University, Princeton NJ 08544
- Lewis Sigler Institute for Integrative Genomics Princeton University, Princeton NJ 08544
- Flatiron Institute, New York, NY 10010
| | - Jared E Toettcher
- Department of Molecular Biology Princeton University, Princeton NJ 08544
| |
Collapse
|
7
|
Lee K, O’Neill KM, Ku J, Shvartsman SY, Kim Y. Patterning potential of the terminal system in the Drosophila embryo. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1298-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
8
|
Clark E, Battistara M, Benton MA. A timer gene network is spatially regulated by the terminal system in the Drosophila embryo. eLife 2022; 11:e78902. [PMID: 36524728 PMCID: PMC10065802 DOI: 10.7554/elife.78902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
In insect embryos, anteroposterior patterning is coordinated by the sequential expression of the 'timer' genes caudal, Dichaete, and odd-paired, whose expression dynamics correlate with the mode of segmentation. In Drosophila, the timer genes are expressed broadly across much of the blastoderm, which segments simultaneously, but their expression is delayed in a small 'tail' region, just anterior to the hindgut, which segments during germband extension. Specification of the tail and the hindgut depends on the terminal gap gene tailless, but beyond this the regulation of the timer genes is poorly understood. We used a combination of multiplexed imaging, mutant analysis, and gene network modelling to resolve the regulation of the timer genes, identifying 11 new regulatory interactions and clarifying the mechanism of posterior terminal patterning. We propose that a dynamic Tailless expression gradient modulates the intrinsic dynamics of a timer gene cross-regulatory module, delineating the tail region and delaying its developmental maturation.
Collapse
Affiliation(s)
- Erik Clark
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
- Department of Systems Biology, Harvard Medical SchoolBostonUnited States
- Department of Genetics, University of CambridgeCambridgeUnited Kingdom
| | - Margherita Battistara
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - Matthew A Benton
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
- Developmental Biology Unit, EMBLHeidelbergGermany
| |
Collapse
|
9
|
Marmion RA, Yang L, Goyal Y, Jindal GA, Wetzel JL, Singh M, Schüpbach T, Shvartsman SY. Molecular mechanisms underlying cellular effects of human MEK1 mutations. Mol Biol Cell 2021; 32:974-983. [PMID: 33476180 PMCID: PMC8108529 DOI: 10.1091/mbc.e20-10-0625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Terminal regions of Drosophila embryos are patterned by signaling through ERK, which is genetically deregulated in multiple human diseases. Quantitative studies of terminal patterning have been recently used to investigate gain-of-function variants of human MEK1, encoding the MEK kinase that directly activates ERK by dual phosphorylation. Unexpectedly, several mutations reduced ERK activation by extracellular signals, possibly through a negative feedback triggered by signal-independent activity of the mutant variants. Here we present experimental evidence supporting this model. Using a MEK variant that combines a mutation within the negative regulatory region with alanine substitutions in the activation loop, we prove that pathogenic variants indeed acquire signal-independent kinase activity. We also demonstrate that signal-dependent activation of these variants is independent of kinase suppressor of Ras, a conserved adaptor that is indispensable for activation of normal MEK. Finally, we show that attenuation of ERK activation by extracellular signals stems from transcriptional induction of Mkp3, a dual specificity phosphatase that deactivates ERK by dephosphorylation. These findings in the Drosophila embryo highlight its power for investigating diverse effects of human disease mutations.
Collapse
Affiliation(s)
- Robert A Marmion
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
| | - Liu Yang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
| | - Yogesh Goyal
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544.,Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Granton A Jindal
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544.,Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544.,Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Joshua L Wetzel
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544.,Department of Computer Science, Princeton University, Princeton, NJ 08540
| | - Mona Singh
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544.,Department of Computer Science, Princeton University, Princeton, NJ 08540
| | - Trudi Schüpbach
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Stanislav Y Shvartsman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544.,Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544.,Department of Molecular Biology, Princeton University, Princeton, NJ 08544.,Flatiron Institute, Simons Foundation, New York, NY 10010
| |
Collapse
|
10
|
Optogenetic Rescue of a Patterning Mutant. Curr Biol 2020; 30:3414-3424.e3. [PMID: 32707057 DOI: 10.1016/j.cub.2020.06.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/13/2020] [Accepted: 06/17/2020] [Indexed: 12/14/2022]
Abstract
Animal embryos are patterned by a handful of highly conserved inductive signals. Yet, in most cases, it is unknown which pattern features (i.e., spatial gradients or temporal dynamics) are required to support normal development. An ideal experiment to address this question would be to "paint" arbitrary synthetic signaling patterns on "blank canvas" embryos to dissect their requirements. Here, we demonstrate exactly this capability by combining optogenetic control of Ras/extracellular signal-related kinase (ERK) signaling with the genetic loss of the receptor tyrosine-kinase-driven terminal signaling patterning in early Drosophila embryos. Blue-light illumination at the embryonic termini for 90 min was sufficient to rescue normal development, generating viable larvae and fertile adults from an otherwise lethal terminal signaling mutant. Optogenetic rescue was possible even using a simple, all-or-none light input that reduced the gradient of Erk activity and eliminated spatiotemporal differences in terminal gap gene expression. Systematically varying illumination parameters further revealed that at least three distinct developmental programs are triggered at different signaling thresholds and that the morphogenetic movements of gastrulation are robust to a 3-fold variation in the posterior pattern width. These results open the door to controlling tissue organization with simple optical stimuli, providing new tools to probe natural developmental processes, create synthetic tissues with defined organization, or directly correct the patterning errors that underlie developmental defects.
Collapse
|