1
|
Rodrigues NTL, Bland T, Ng K, Hirani N, Goehring NW. Quantitative perturbation-phenotype maps reveal nonlinear responses underlying robustness of PAR-dependent asymmetric cell division. PLoS Biol 2024; 22:e3002437. [PMID: 39652540 PMCID: PMC11627365 DOI: 10.1371/journal.pbio.3002437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 10/30/2024] [Indexed: 12/12/2024] Open
Abstract
A key challenge in the development of an organism is to maintain robust phenotypic outcomes in the face of perturbation. Yet, it is often unclear how such robust outcomes are encoded by developmental networks. Here, we use the Caenorhabditis elegans zygote as a model to understand sources of developmental robustness during PAR polarity-dependent asymmetric cell division. By quantitatively linking alterations in protein dosage to phenotype in individual embryos, we show that spatial information in the zygote is read out in a highly nonlinear fashion and, as a result, phenotypes are highly canalized against substantial variation in input signals. Our data point towards robustness of the conserved PAR polarity network that renders polarity axis specification resistant to variations in both the strength of upstream symmetry-breaking cues and PAR protein dosage. Analogously, downstream pathways involved in cell size and fate asymmetry are robust to dosage-dependent changes in the local concentrations of PAR proteins, implying nontrivial complexity in translating PAR concentration profiles into pathway outputs. We propose that these nonlinear signal-response dynamics between symmetry-breaking, PAR polarity, and asymmetric division modules effectively insulate each individual module from variation arising in others. This decoupling helps maintain the embryo along the correct developmental trajectory, thereby ensuring that asymmetric division is robust to perturbation. Such modular organization of developmental networks is likely to be a general mechanism to achieve robust developmental outcomes.
Collapse
Affiliation(s)
| | - Tom Bland
- The Francis Crick Institute, London, United Kingdom
- Institute for the Physics of Living Systems, University College London, London, United Kingdom
| | - KangBo Ng
- The Francis Crick Institute, London, United Kingdom
- Institute for the Physics of Living Systems, University College London, London, United Kingdom
| | - Nisha Hirani
- The Francis Crick Institute, London, United Kingdom
| | - Nathan W. Goehring
- The Francis Crick Institute, London, United Kingdom
- Institute for the Physics of Living Systems, University College London, London, United Kingdom
| |
Collapse
|
2
|
Agarwal P. In preprints: quantitative decoupling between regulatory modules safeguards phenotypic robustness. Development 2024; 151:dev202691. [PMID: 38288659 DOI: 10.1242/dev.202691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Affiliation(s)
- Priti Agarwal
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
3
|
Ceron-Noriega A, Almeida MV, Levin M, Butter F. Nematode gene annotation by machine-learning-assisted proteotranscriptomics enables proteome-wide evolutionary analysis. Genome Res 2023; 33:112-128. [PMID: 36653121 PMCID: PMC9977148 DOI: 10.1101/gr.277070.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/18/2022] [Indexed: 01/19/2023]
Abstract
Nematodes encompass more than 24,000 described species, which were discovered in almost every ecological habitat, and make up >80% of metazoan taxonomic diversity in soils. The last common ancestor of nematodes is believed to date back to ∼650-750 million years, generating a large and phylogenetically diverse group to be explored. However, for most species high-quality gene annotations are incomprehensive or missing. Combining short-read RNA sequencing with mass spectrometry-based proteomics and machine-learning quality control in an approach called proteotranscriptomics, we improve gene annotations for nine genome-sequenced nematode species and provide new gene annotations for three additional species without genome assemblies. Emphasizing the sensitivity of our methodology, we provide evidence for two hitherto undescribed genes in the model organism Caenorhabditis elegans Extensive phylogenetic systems analysis using this comprehensive proteome annotation provides new insights into evolutionary processes of this metazoan group.
Collapse
Affiliation(s)
| | | | - Michal Levin
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Falk Butter
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| |
Collapse
|
4
|
Ozugergin I, Piekny A. Diversity is the spice of life: An overview of how cytokinesis regulation varies with cell type. Front Cell Dev Biol 2022; 10:1007614. [PMID: 36420142 PMCID: PMC9676254 DOI: 10.3389/fcell.2022.1007614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/24/2022] [Indexed: 09/01/2023] Open
Abstract
Cytokinesis is required to physically cleave a cell into two daughters at the end of mitosis. Decades of research have led to a comprehensive understanding of the core cytokinesis machinery and how it is regulated in animal cells, however this knowledge was generated using single cells cultured in vitro, or in early embryos before tissues develop. This raises the question of how cytokinesis is regulated in diverse animal cell types and developmental contexts. Recent studies of distinct cell types in the same organism or in similar cell types from different organisms have revealed striking differences in how cytokinesis is regulated, which includes different threshold requirements for the structural components and the mechanisms that regulate them. In this review, we highlight these differences with an emphasis on pathways that are independent of the mitotic spindle, and operate through signals associated with the cortex, kinetochores, or chromatin.
Collapse
Affiliation(s)
- Imge Ozugergin
- Department of Biology, McGill University, Montreal, QC, Canada
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Alisa Piekny
- Department of Biology, Concordia University, Montreal, QC, Canada
| |
Collapse
|
5
|
Khatri D, Brugière T, Athale CA, Delattre M. Evolutionary divergence of anaphase spindle mechanics in nematode embryos constrained by antagonistic pulling and viscous forces. Mol Biol Cell 2022; 33:ar61. [PMID: 35235368 PMCID: PMC9265157 DOI: 10.1091/mbc.e21-10-0532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cellular functions like cell division are remarkably conserved across phyla. However the evolutionary principles of cellular organization that drive it are less well explored. Thus, an essential question remains: to what extent cellular parameters evolve without altering the basic function they sustain? Here we have observed 6 different nematode species for which the mitotic spindle is positioned asymmetrically during the first embryonic division. Whereas the C. elegans spindle undergoes oscillations during its displacement, the spindle elongates without oscillations in other species. We asked which evolutionary changes in biophysical parameters could explain differences in spindle motion while maintaining a constant output. Using laser microsurgery of the spindle we revealed that all species are subjected to cortical pulling forces, of varying magnitudes. Using a viscoelastic model to fit the recoil trajectories and with an independent measurement of cytoplasmic viscosity, we extracted the values of cytoplasmic drag, cortical pulling forces and spindle elasticity for all species. We found large variations in cytoplasmic viscosity whereas cortical pulling forces and elasticity were often more constrained. In agreement with previous simulations, we found that increased viscosity correlates with decreased oscillation speeds across species. However, the absence of oscillations despite low viscosity in some species, can only be explained by smaller pulling forces. Consequently, we find that spindle mobility across the species analyzed here is characterized by a tradeoff between cytoplasmic viscosity and pulling forces normalized by the size of the embryo. Our work provides a framework for understanding mechanical constraints on evolutionary diversification of spindle mobility.
Collapse
Affiliation(s)
- Dhruv Khatri
- Div. of Biology, IISER Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Thibault Brugière
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure de Lyon, CNRS, Inserm, UCBL, 69007 Lyon, France
| | - Chaitanya A Athale
- Div. of Biology, IISER Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Marie Delattre
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure de Lyon, CNRS, Inserm, UCBL, 69007 Lyon, France
| |
Collapse
|
6
|
Eweis DS, Delattre M, Plastino J. Asymmetry is defined during meiosis in the oocyte of the parthenogenetic nematode Diploscapter pachys. Dev Biol 2021; 483:13-21. [PMID: 34971598 DOI: 10.1016/j.ydbio.2021.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 11/03/2022]
Abstract
Asymmetric cell division is an essential feature of normal development and certain pathologies. The process and its regulation have been studied extensively in the Caenorhabditis elegans embryo, particularly how symmetry of the actomyosin cortical cytoskeleton is broken by a sperm-derived signal at fertilization, upstream of polarity establishment. Diploscapter pachys is the closest parthenogenetic relative to C. elegans, and D. pachys one-cell embryos also divide asymmetrically. However how polarity is triggered in the absence of sperm remains unknown. In post-meiotic embryos, we find that the nucleus inhabits principally one embryo hemisphere, the future posterior pole. When forced to one pole by centrifugation, the nucleus returns to its preferred pole, although poles appear identical as concerns cortical ruffling and actin cytoskeleton. The location of the meiotic spindle also correlates with the future posterior pole and slight actin enrichment is observed at that pole in some early embryos along with microtubule structures emanating from the meiotic spindle. Polarized location of the nucleus is not observed in pre-meiotic D. pachys oocytes. All together our results are consistent with the idea that polarity of the D. pachys embryo is attained during meiosis, seemingly based on the location of the meiotic spindle, by a mechanism that may be present but suppressed in C. elegans.
Collapse
Affiliation(s)
- Dureen Samandar Eweis
- Physico Chimie Curie, Institut Curie, Université PSL, CNRS, Sorbonne Université, 75005, Paris, France
| | - Marie Delattre
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure de Lyon, CNRS, Inserm, UCBL, 69007, Lyon, France
| | - Julie Plastino
- Physico Chimie Curie, Institut Curie, Université PSL, CNRS, Sorbonne Université, 75005, Paris, France.
| |
Collapse
|