1
|
Da'Dara AA, Skelly PJ. The enigmatic heptalaminate surface membrane of intravascular schistosomes. Trends Parasitol 2025; 41:177-187. [PMID: 39915200 DOI: 10.1016/j.pt.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/14/2025] [Accepted: 01/14/2025] [Indexed: 03/08/2025]
Abstract
Intravascular schistosomes have an unusual outer, heptalaminate (seven-layered) covering consisting of not one but two lipid bilayers. Here, we present an updated model of the molecular composition of these bilayers in Schistosoma mansoni that places most identified proteins in the outer, and not the inner, membrane. Here, enzymes would have access to their recently described (non-membrane-permeable) substrates. By contrast, nutrient transporter proteins must be in both membranes to facilitate uptake into the worm's inner tissues. Ectoenzyme activities displayed by living worms suggest the presence on their outer surface of several noncanonically extracellular proteins. The advantages of having a double-bilayered covering may relate to impeding host immunological attack and/or to the worm's ability to acquire selected host molecules onto their exterior.
Collapse
Affiliation(s)
- Akram A Da'Dara
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| | - Patrick J Skelly
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA.
| |
Collapse
|
2
|
Prislusky MI, Lam JGT, Contreras VR, Ng M, Chamberlain M, Pathak-Sharma S, Fields M, Zhang X, Amer AO, Seveau S. The septin cytoskeleton is required for plasma membrane repair. EMBO Rep 2024; 25:3870-3895. [PMID: 38969946 PMCID: PMC11387490 DOI: 10.1038/s44319-024-00195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 07/07/2024] Open
Abstract
Plasma membrane repair is a fundamental homeostatic process of eukaryotic cells. Here, we report a new function for the conserved cytoskeletal proteins known as septins in the repair of cells perforated by pore-forming toxins or mechanical disruption. Using a silencing RNA screen, we identified known repair factors (e.g. annexin A2, ANXA2) and novel factors such as septin 7 (SEPT7) that is essential for septin assembly. Upon plasma membrane injury, the septin cytoskeleton is extensively redistributed to form submembranous domains arranged as knob and loop structures containing F-actin, myosin IIA, S100A11, and ANXA2. Formation of these domains is Ca2+-dependent and correlates with plasma membrane repair efficiency. Super-resolution microscopy revealed that septins and F-actin form intertwined filaments associated with ANXA2. Depletion of SEPT7 prevented ANXA2 recruitment and formation of submembranous actomyosin domains. However, ANXA2 depletion had no effect on domain formation. Collectively, our data support a novel septin-based mechanism for resealing damaged cells, in which the septin cytoskeleton plays a key structural role in remodeling the plasma membrane by promoting the formation of SEPT/F-actin/myosin IIA/ANXA2/S100A11 repair domains.
Collapse
Affiliation(s)
- M Isabella Prislusky
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Jonathan G T Lam
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Viviana Ruiz Contreras
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
- Grupo Investigaciones Biomédicas, Universidad de Sucre, Sincelejo, Sucre, Colombia
| | - Marilynn Ng
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Madeline Chamberlain
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Sarika Pathak-Sharma
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Madalyn Fields
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Xiaoli Zhang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Amal O Amer
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Stephanie Seveau
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
3
|
Robinson JL, Suh E, Xu Y, Hurtig HI, Elman L, McMillan CT, Irwin DJ, Porta S, Van Deerlin VM, Lee EB. Annexin A11 aggregation in FTLD-TDP type C and related neurodegenerative disease proteinopathies. Acta Neuropathol 2024; 147:104. [PMID: 38896345 PMCID: PMC11186923 DOI: 10.1007/s00401-024-02753-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
TAR DNA-binding protein 43 (TDP-43) is an RNA binding protein found within ribonucleoprotein granules tethered to lysosomes via annexin A11. TDP-43 protein forms inclusions in many neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) and limbic predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC). Annexin A11 is also known to form aggregates in ALS cases with pathogenic variants in ANXA11. Annexin A11 aggregation has not been described in sporadic ALS, FTLD-TDP or LATE-NC cases. To explore the relationship between TDP-43 and annexin A11, genetic analysis of 822 autopsy cases was performed to identify rare ANXA11 variants. In addition, an immunohistochemical study of 368 autopsy cases was performed to identify annexin A11 aggregates. Insoluble annexin A11 aggregates which colocalize with TDP-43 inclusions were present in all FTLD-TDP Type C cases. Annexin A11 inclusions were also seen in a small proportion (3-6%) of sporadic and genetic forms of FTLD-TDP types A and B, ALS, and LATE-NC. In addition, we confirm the comingling of annexin A11 and TDP-43 aggregates in an ALS case with the pathogenic ANXA11 p.G38R variant. Finally, we found abundant annexin A11 inclusions as the primary pathologic finding in a case of progressive supranuclear palsy-like frontotemporal dementia with prominent striatal vacuolization due to a novel variant, ANXA11 p.P75S. By immunoblot, FTLD-TDP with annexinopathy and ANXA11 variant cases show accumulation of insoluble ANXA11 including a truncated fragment. These results indicate that annexin A11 forms a diverse and heterogeneous range of aggregates in both sporadic and genetic forms of TDP-43 proteinopathies. In addition, the finding of a primary vacuolar annexinopathy due to ANXA11 p.P75S suggests that annexin A11 aggregation is sufficient to cause neurodegeneration.
Collapse
Affiliation(s)
- John L Robinson
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Institute On Aging, Perelman School of Medicine, University of Pennsylvania, 613A Stellar Chance Laboratories, 422 Curie Blvd, Philadelphia, PA, 19104, USA
| | - EunRan Suh
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Institute On Aging, Perelman School of Medicine, University of Pennsylvania, 613A Stellar Chance Laboratories, 422 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Yan Xu
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Institute On Aging, Perelman School of Medicine, University of Pennsylvania, 613A Stellar Chance Laboratories, 422 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Howard I Hurtig
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lauren Elman
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Corey T McMillan
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David J Irwin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sílvia Porta
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Institute On Aging, Perelman School of Medicine, University of Pennsylvania, 613A Stellar Chance Laboratories, 422 Curie Blvd, Philadelphia, PA, 19104, USA.
| | - Vivianna M Van Deerlin
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Institute On Aging, Perelman School of Medicine, University of Pennsylvania, 613A Stellar Chance Laboratories, 422 Curie Blvd, Philadelphia, PA, 19104, USA.
| | - Edward B Lee
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Institute On Aging, Perelman School of Medicine, University of Pennsylvania, 613A Stellar Chance Laboratories, 422 Curie Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
4
|
Quinn CJ, Cartwright EJ, Trafford AW, Dibb KM. On the role of dysferlin in striated muscle: membrane repair, t-tubules and Ca 2+ handling. J Physiol 2024; 602:1893-1910. [PMID: 38615232 DOI: 10.1113/jp285103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 03/05/2024] [Indexed: 04/15/2024] Open
Abstract
Dysferlin is a 237 kDa membrane-associated protein characterised by multiple C2 domains with a diverse role in skeletal and cardiac muscle physiology. Mutations in DYSF are known to cause various types of human muscular dystrophies, known collectively as dysferlinopathies, with some patients developing cardiomyopathy. A myriad of in vitro membrane repair studies suggest that dysferlin plays an integral role in the membrane repair complex in skeletal muscle. In comparison, less is known about dysferlin in the heart, but mounting evidence suggests that dysferlin's role is similar in both muscle types. Recent findings have shown that dysferlin regulates Ca2+ handling in striated muscle via multiple mechanisms and that this becomes more important in conditions of stress. Maintenance of the transverse (t)-tubule network and the tight coordination of excitation-contraction coupling are essential for muscle contractility. Dysferlin regulates the maintenance and repair of t-tubules, and it is suspected that dysferlin regulates t-tubules and sarcolemmal repair through a similar mechanism. This review focuses on the emerging complexity of dysferlin's activity in striated muscle. Such insights will progress our understanding of the proteins and pathways that regulate basic heart and skeletal muscle function and help guide research into striated muscle pathology, especially that which arises due to dysferlin dysfunction.
Collapse
Affiliation(s)
- C J Quinn
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, 3.14 Core Technology Facility, Manchester, UK
| | - E J Cartwright
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, 3.14 Core Technology Facility, Manchester, UK
| | - A W Trafford
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, 3.14 Core Technology Facility, Manchester, UK
| | - K M Dibb
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, 3.14 Core Technology Facility, Manchester, UK
| |
Collapse
|
5
|
Kamakura S, Bilcke G, Sato S. Transcriptional responses to salinity-induced changes in cell wall morphology of the euryhaline diatom Pleurosira laevis. JOURNAL OF PHYCOLOGY 2024; 60:308-326. [PMID: 38446079 DOI: 10.1111/jpy.13437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 03/07/2024]
Abstract
Diatoms are unicellular algae with morphologically diverse silica cell walls, which are called frustules. The mechanism of frustule morphogenesis has attracted attention in biology and nanomaterials engineering. However, the genetic regulation of the morphology remains unclear. We therefore used transcriptome sequencing to search for genes involved in frustule morphology in the centric diatom Pleurosira laevis, which exhibits morphological plasticity between flat and domed valve faces in salinity 2 and 7, respectively. We observed differential expression of transposable elements (TEs) and transporters, likely due to osmotic response. Up-regulation of mechanosensitive ion channels and down-regulation of Ca2+-ATPases in cells with flat valves suggested that cytosolic Ca2+ levels were changed between the morphologies. Calcium signaling could be a mechanism for detecting osmotic pressure changes and triggering morphological shifts. We also observed an up-regulation of ARPC1 and annexin, involved in the regulation of actin filament dynamics known to affect frustule morphology, as well as the up-regulation of genes encoding frustule-related proteins such as BacSETs and frustulin. Taken together, we propose a model in which salinity-induced morphogenetic changes are driven by upstream responses, such as the regulation of cytosolic Ca2+ levels, and downstream responses, such as Ca2+-dependent regulation of actin dynamics and frustule-related proteins. This study highlights the sensitivity of euryhaline diatoms to environmental salinity and the role of active cellular processes in controlling gross valve morphology under different osmotic pressures.
Collapse
Affiliation(s)
- Shiho Kamakura
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, Obama, Fukui, Japan
| | - Gust Bilcke
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Protistology and Aquatic Ecology, Department of Biology, Ghent University, Ghent, Belgium
| | - Shinya Sato
- Faculty of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui, Japan
| |
Collapse
|
6
|
Yumura S. Wound Repair of the Cell Membrane: Lessons from Dictyostelium Cells. Cells 2024; 13:341. [PMID: 38391954 PMCID: PMC10886852 DOI: 10.3390/cells13040341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
The cell membrane is frequently subjected to damage, either through physical or chemical means. The swift restoration of the cell membrane's integrity is crucial to prevent the leakage of intracellular materials and the uncontrolled influx of extracellular ions. Consequently, wound repair plays a vital role in cell survival, akin to the importance of DNA repair. The mechanisms involved in wound repair encompass a series of events, including ion influx, membrane patch formation, endocytosis, exocytosis, recruitment of the actin cytoskeleton, and the elimination of damaged membrane sections. Despite the absence of a universally accepted general model, diverse molecular models have been proposed for wound repair in different organisms. Traditional wound methods not only damage the cell membrane but also impact intracellular structures, including the underlying cortical actin networks, microtubules, and organelles. In contrast, the more recent improved laserporation selectively targets the cell membrane. Studies on Dictyostelium cells utilizing this method have introduced a novel perspective on the wound repair mechanism. This review commences by detailing methods for inducing wounds and subsequently reviews recent developments in the field.
Collapse
Affiliation(s)
- Shigehiko Yumura
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan
| |
Collapse
|
7
|
Prislusky MI, Lam JG, Contreras VR, Ng M, Chamberlain M, Pathak-Sharma S, Fields M, Zhang X, Amer AO, Seveau S. The Septin Cytoskeleton is Required for Plasma Membrane Repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.12.548547. [PMID: 37503091 PMCID: PMC10369955 DOI: 10.1101/2023.07.12.548547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Mammalian cells are frequently exposed to mechanical and biochemical stressors resulting in plasma membrane injuries. Repair mechanisms reseal the plasma membrane to restore homeostasis and prevent cell death. In the present work, a silencing RNA screen was performed to uncover plasma membrane repair mechanisms of cells exposed to a pore-forming toxin (listeriolysin O). This screen identified molecules previously known to repair the injured plasma membrane such as annexin A2 (ANXA2) as well as novel plasma membrane repair candidate proteins. Of the novel candidates, we focused on septin 7 (SEPT7) because the septins are an important family of conserved eukaryotic cytoskeletal proteins. Using diverse experimental approaches, we established for the first time that SEPT7 plays a general role in plasma membrane repair of cells perforated by pore-forming toxins and mechanical wounding. Remarkably, upon cell injury, the septin cytoskeleton is extensively redistributed in a Ca 2+ -dependent fashion, a hallmark of plasma membrane repair machineries. The septins reorganize into subplasmalemmal domains arranged as knob and loop (or ring) structures containing F-actin, myosin II, and annexin A2 (ANXA2) and protrude from the cell surface. Importantly, the formation of these domains correlates with the plasma membrane repair efficiency. Super-resolution microscopy shows that septins and actin are arranged in intertwined filaments associated with ANXA2. Silencing SEPT7 expression prevented the formation of the F-actin/myosin II/ANXA2 domains, however, silencing expression of ANXA2 had no observable effect on their formation. These results highlight the key structural role of the septins in remodeling the plasma membrane and in the recruitment of the repair molecule ANXA2. Collectively, our data support a novel model in which the septin cytoskeleton acts as a scaffold to promote the formation of plasma membrane repair domains containing contractile F-actin and annexin A2.
Collapse
|
8
|
Zha D, Wang S, Monaghan-Nichols P, Qian Y, Sampath V, Fu M. Mechanisms of Endothelial Cell Membrane Repair: Progress and Perspectives. Cells 2023; 12:2648. [PMID: 37998383 PMCID: PMC10670313 DOI: 10.3390/cells12222648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023] Open
Abstract
Endothelial cells are the crucial inner lining of blood vessels, which are pivotal in vascular homeostasis and integrity. However, these cells are perpetually subjected to a myriad of mechanical, chemical, and biological stresses that can compromise their plasma membranes. A sophisticated repair system involving key molecules, such as calcium, annexins, dysferlin, and MG53, is essential for maintaining endothelial viability. These components orchestrate complex mechanisms, including exocytosis and endocytosis, to repair membrane disruptions. Dysfunctions in this repair machinery, often exacerbated by aging, are linked to endothelial cell death, subsequently contributing to the onset of atherosclerosis and the progression of cardiovascular diseases (CVD) and stroke, major causes of mortality in the United States. Thus, identifying the core machinery for endothelial cell membrane repair is critically important for understanding the pathogenesis of CVD and stroke and developing novel therapeutic strategies for combating CVD and stroke. This review summarizes the recent advances in understanding the mechanisms of endothelial cell membrane repair. The future directions of this research area are also highlighted.
Collapse
Affiliation(s)
- Duoduo Zha
- Department of Biomedical Science, School of Medicine, University of Missouri Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA; (D.Z.); (P.M.-N.)
- The National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Rd, Honggu District, Nanchang 330031, China;
| | - Shizhen Wang
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri Kansas City, 5009 Rockhill Road, Kansas City, MO 64110, USA;
| | - Paula Monaghan-Nichols
- Department of Biomedical Science, School of Medicine, University of Missouri Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA; (D.Z.); (P.M.-N.)
| | - Yisong Qian
- The National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Rd, Honggu District, Nanchang 330031, China;
| | - Venkatesh Sampath
- Department of Pediatric, Children’s Mercy Hospital, Children’s Mercy Research Institute, Kansas City, MO 64108, USA;
| | - Mingui Fu
- Department of Biomedical Science, School of Medicine, University of Missouri Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA; (D.Z.); (P.M.-N.)
| |
Collapse
|
9
|
Kayejo VG, Fellner H, Thapa R, Keyel PA. Translational implications of targeting annexin A2: From membrane repair to muscular dystrophy, cardiovascular disease and cancer. CLINICAL AND TRANSLATIONAL DISCOVERY 2023; 3:e240. [PMID: 38465198 PMCID: PMC10923526 DOI: 10.1002/ctd2.240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/26/2023] [Indexed: 03/12/2024]
Abstract
Annexin A2 (A2) contributes to several key cellular functions and processes, including membrane repair. Effective repair prevents cell death and degeneration, especially in skeletal or cardiac muscle, epithelia, and endothelial cells. To maintain cell integrity after damage, mammalian cells activate multiple membrane repair mechanisms. One protein family that facilitates membrane repair processes are the Ca2+-regulated phospholipid-binding annexins. Annexin A2 facilitates repair in association with S100A10 and related S100 proteins by forming a plug and linking repair to other physiologic functions. Deficiency of annexin A2 enhances cellular degeneration, exacerbating muscular dystrophy and degeneration. Downstream of repair, annexin A2 links membrane with the cytoskeleton, calcium-dependent endocytosis, exocytosis, cell proliferation, transcription, and apoptosis to extracellular roles, including vascular fibrinolysis, and angiogenesis. These roles regulate cardiovascular disease progression. Finally, annexin A2 protects cancer cells from membrane damage due to immune cells or chemotherapy. Since these functions are regulated by post-translational modifications, they represent a therapeutic target for reducing the negative consequences of annexin A2 expression. Thus, connecting the roles of annexin A2 in repair to its other physiologic functions represents a new translational approach to treating muscular dystrophy and cardiovascular diseases without enhancing its pro-tumorigenic activities.
Collapse
Affiliation(s)
- Victor G. Kayejo
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409
| | - Hannah Fellner
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409
| | - Roshan Thapa
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409
| | - Peter A. Keyel
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409
| |
Collapse
|
10
|
Fettucciari K, Dini F, Marconi P, Bassotti G. Role of the Alteration in Calcium Homeostasis in Cell Death Induced by Clostridioides difficile Toxin A and Toxin B. BIOLOGY 2023; 12:1117. [PMID: 37627001 PMCID: PMC10452684 DOI: 10.3390/biology12081117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023]
Abstract
Clostridioides difficile (C. difficile), responsible for 15-25% of gastrointestinal infections, causes health problems mainly due to the toxic activity of toxins A and B (Tcds). These are responsible for its clinical manifestations, including diarrhea, pseudomembranous colitis, toxic megacolon and death, with a mortality of 5-30% in primary infection, that increase following relapses. Studies on Tcd-induced cell death have highlighted a key role of caspases, calpains, and cathepsins, with involvement of mitochondria and reactive oxygen species (ROS) in a complex signaling pathway network. The complex response in the execution of various types of cell death (apoptosis, necrosis, pyroptosis and pyknosis) depends on the amount of Tcd, cell types, and Tcd receptors involved, and could have as initial/precocious event the alterations in calcium homeostasis. The entities, peculiarities and cell types involved in these alterations will decide the signaling pathways activated and cell death type. Calcium homeostasis alterations can be caused by calcium influx through calcium channel activation, transient intracellular calcium oscillations, and leakage of calcium from intracellular stores. These increases in cytoplasmic calcium have important effects on all calcium-regulated molecules, which may play a direct role in several cell death types and/or activate other cell death effectors, such as caspases, calpains, ROS and proapoptotic Bcl-2 family members. Furthermore, some support for the possible role of the calcium homeostasis alteration in Tcd-induced cell death originates from the similarity with cytotoxic effects that cause pore-forming toxins, based mainly on calcium influx through plasma membrane pores.
Collapse
Affiliation(s)
- Katia Fettucciari
- Biosciences & Medical Embryology Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy;
| | - Fabrizio Dini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy;
| | - Pierfrancesco Marconi
- Biosciences & Medical Embryology Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy;
| | - Gabrio Bassotti
- Gastroenterology, Hepatology & Digestive Endoscopy Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy;
- Gastroenterology & Hepatology Unit, Santa Maria Della Misericordia Hospital, 06129 Perugia, Italy
| |
Collapse
|
11
|
Su Q, Baker L, Emery S, Balan B, Ansell B, Tichkule S, Mueller I, Svärd SG, Jex A. Transcriptomic analysis of albendazole resistance in human diarrheal parasite Giardia duodenalis. INTERNATIONAL JOURNAL FOR PARASITOLOGY: DRUGS AND DRUG RESISTANCE 2023; 22:9-19. [PMID: 37004489 PMCID: PMC10111952 DOI: 10.1016/j.ijpddr.2023.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023]
Abstract
Benzimidazole-2-carbamates (BZ, e.g., albendazole; ALB), which bind β-tubulin to disrupt microtubule polymerization, are one of two primary compound classes used to treat giardiasis. In most parasitic nematodes and fungi, BZ-resistance is caused by β-tubulin mutations and its molecular mode of action (MOA) is well studied. In contrast, in Giardia duodenalis BZ MOA or resistance is less well understood, may involve target-specific and broader impacts including cellular damage and oxidative stress, and its underlying cause is not clearly determined. Previously, we identified acquisition of a single nucleotide polymorphism, E198K, in β-tubulin in ALB-resistant (ALB-R) G. duodenalis WB-1B relative to ALB-sensitive (ALB-S) parental controls. E198K is linked to BZ-resistance in fungi and its allelic frequency correlated with the magnitude of BZ-resistance in G. duodenalis WB-1B. Here, we undertook detailed transcriptomic comparisons of these ALB-S and ALB-R G. duodenalis WB-1B cultures. The primary transcriptional changes with ALB-R in G. duodenalis WB-1B indicated increased protein degradation and turnover, and up-regulation of tubulin, and related genes, associated with the adhesive disc and basal bodies. These findings are consistent with previous observations noting focused disintegration of the disc and associated structures in Giardia duodenalis upon ALB exposure. We also saw transcriptional changes with ALB-R in G. duodenalis WB-1B consistent with prior observations of a shift from glycolysis to arginine metabolism for ATP production and possible changes to aspects of the vesicular trafficking system that require further investigation. Finally, we saw mixed transcriptional changes associated with DNA repair and oxidative stress responses in the G. duodenalis WB-1B line. These changes may be indicative of a role for H2O2 degradation in ALB-R, as has been observed in other G. duodenalis cell cultures. However, they were below the transcriptional fold-change threshold (log2FC > 1) typically employed in transcriptomic analyses and appear to be contradicted in ALB-R G. duodenalis WB-1B by down-regulation of the NAD scavenging and conversion pathways required to support these stress pathways and up-regulation of many highly oxidation sensitive iron-sulphur (FeS) cluster based metabolic enzymes.
Collapse
|
12
|
Patil SS, Panchal V, Røstbø T, Romanyuk S, Hollås H, Brenk R, Grindheim AK, Vedeler A. RNA-binding is an ancient trait of the Annexin family. Front Cell Dev Biol 2023; 11:1161588. [PMID: 37397259 PMCID: PMC10311354 DOI: 10.3389/fcell.2023.1161588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/25/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction: The regulation of intracellular functions in mammalian cells involves close coordination of cellular processes. During recent years it has become evident that the sorting, trafficking and distribution of transport vesicles and mRNA granules/complexes are closely coordinated to ensure effective simultaneous handling of all components required for a specific function, thereby minimizing the use of cellular energy. Identification of proteins acting at the crossroads of such coordinated transport events will ultimately provide mechanistic details of the processes. Annexins are multifunctional proteins involved in a variety of cellular processes associated with Ca2+-regulation and lipid binding, linked to the operation of both the endocytic and exocytic pathways. Furthermore, certain Annexins have been implicated in the regulation of mRNA transport and translation. Since Annexin A2 binds specific mRNAs via its core structure and is also present in mRNP complexes, we speculated whether direct association with RNA could be a common property of the mammalian Annexin family sharing a highly similar core structure. Methods and results: Therefore, we performed spot blot and UV-crosslinking experiments to assess the mRNA binding abilities of the different Annexins, using annexin A2 and c-myc 3'UTRs as well as c-myc 5'UTR as baits. We supplemented the data with immunoblot detection of selected Annexins in mRNP complexes derived from the neuroendocrine rat PC12 cells. Furthermore, biolayer interferometry was used to determine the KD of selected Annexin-RNA interactions, which indicated distinct affinities. Amongst these Annexins, Annexin A13 and the core structures of Annexin A7, Annexin A11 bind c-myc 3'UTR with KDs in the nanomolar range. Of the selected Annexins, only Annexin A2 binds the c-myc 5'UTR indicating some selectivity. Discussion: The oldest members of the mammalian Annexin family share the ability to associate with RNA, suggesting that RNA-binding is an ancient trait of this protein family. Thus, the combined RNA- and lipid-binding properties of the Annexins make them attractive candidates to participate in coordinated long-distance transport of membrane vesicles and mRNAs regulated by Ca2+. The present screening results can thus pave the way for studies of the multifunctional Annexins in a novel cellular context.
Collapse
Affiliation(s)
- Sudarshan S. Patil
- Neurotargeting Group, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Vipul Panchal
- Biorecognition Unit, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Trude Røstbø
- Neurotargeting Group, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Sofya Romanyuk
- Neurotargeting Group, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Hanne Hollås
- Neurotargeting Group, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Ruth Brenk
- Biorecognition Unit, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Ann Kari Grindheim
- Neurotargeting Group, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Anni Vedeler
- Neurotargeting Group, Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
13
|
Mencel ML, Bittner GD. Repair of traumatic lesions to the plasmalemma of neurons and other cells: Commonalities, conflicts, and controversies. Front Physiol 2023; 14:1114779. [PMID: 37008019 PMCID: PMC10050709 DOI: 10.3389/fphys.2023.1114779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/14/2023] [Indexed: 03/17/2023] Open
Abstract
Neuroscientists and Cell Biologists have known for many decades that eukaryotic cells, including neurons, are surrounded by a plasmalemma/axolemma consisting of a phospholipid bilayer that regulates trans-membrane diffusion of ions (including calcium) and other substances. Cells often incur plasmalemmal damage via traumatic injury and various diseases. If the damaged plasmalemma is not rapidly repaired within minutes, activation of apoptotic pathways by calcium influx often results in cell death. We review publications reporting what is less-well known (and not yet covered in neuroscience or cell biology textbooks): that calcium influx at the lesion sites ranging from small nm-sized holes to complete axonal transection activates parallel biochemical pathways that induce vesicles/membrane-bound structures to migrate and interact to restore original barrier properties and eventual reestablishment of the plasmalemma. We assess the reliability of, and problems with, various measures (e.g., membrane voltage, input resistance, current flow, tracer dyes, confocal microscopy, transmission and scanning electron microscopy) used individually and in combination to assess plasmalemmal sealing in various cell types (e.g., invertebrate giant axons, oocytes, hippocampal and other mammalian neurons). We identify controversies such as plug versus patch hypotheses that attempt to account for currently available data on the subcellular mechanisms of plasmalemmal repair/sealing. We describe current research gaps and potential future developments, such as much more extensive correlations of biochemical/biophysical measures with sub-cellular micromorphology. We compare and contrast naturally occurring sealing with recently-discovered artificially-induced plasmalemmal sealing by polyethylene glycol (PEG) that bypasses all natural pathways for membrane repair. We assess other recent developments such as adaptive membrane responses in neighboring cells following injury to an adjacent cell. Finally, we speculate how a better understanding of the mechanisms involved in natural and artificial plasmalemmal sealing is needed to develop better clinical treatments for muscular dystrophies, stroke and other ischemic conditions, and various cancers.
Collapse
Affiliation(s)
- Marshal L. Mencel
- Institute of Cell and Molecular Biology, University of Texas at Austin, Austin, TX, United States
| | - George D. Bittner
- Department of Neuroscience, University of Texas at Austin, Austin, TX, United States
- *Correspondence: George D. Bittner,
| |
Collapse
|
14
|
Role of calcium-sensor proteins in cell membrane repair. Biosci Rep 2023; 43:232522. [PMID: 36728029 PMCID: PMC9970828 DOI: 10.1042/bsr20220765] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/03/2023] Open
Abstract
Cell membrane repair is a critical process used to maintain cell integrity and survival from potentially lethal chemical, and mechanical membrane injury. Rapid increases in local calcium levels due to a membrane rupture have been widely accepted as a trigger for multiple membrane-resealing models that utilize exocytosis, endocytosis, patching, and shedding mechanisms. Calcium-sensor proteins, such as synaptotagmins (Syt), dysferlin, S100 proteins, and annexins, have all been identified to regulate, or participate in, multiple modes of membrane repair. Dysfunction of membrane repair from inefficiencies or genetic alterations in these proteins contributes to diseases such as muscular dystrophy (MD) and heart disease. The present review covers the role of some of the key calcium-sensor proteins and their involvement in membrane repair.
Collapse
|
15
|
Barisch C, Holthuis JCM, Cosentino K. Membrane damage and repair: a thin line between life and death. Biol Chem 2023; 404:467-490. [PMID: 36810295 DOI: 10.1515/hsz-2022-0321] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/03/2023] [Indexed: 02/24/2023]
Abstract
Bilayered membranes separate cells from their surroundings and form boundaries between intracellular organelles and the cytosol. Gated transport of solutes across membranes enables cells to establish vital ion gradients and a sophisticated metabolic network. However, an advanced compartmentalization of biochemical reactions makes cells also particularly vulnerable to membrane damage inflicted by pathogens, chemicals, inflammatory responses or mechanical stress. To avoid potentially lethal consequences of membrane injuries, cells continuously monitor the structural integrity of their membranes and readily activate appropriate pathways to plug, patch, engulf or shed the damaged membrane area. Here, we review recent insights into the cellular mechanisms that underly an effective maintenance of membrane integrity. We discuss how cells respond to membrane lesions caused by bacterial toxins and endogenous pore-forming proteins, with a primary focus on the intimate crosstalk between membrane proteins and lipids during wound formation, detection and elimination. We also discuss how a delicate balance between membrane damage and repair determines cell fate upon bacterial infection or activation of pro-inflammatory cell death pathways.
Collapse
Affiliation(s)
- Caroline Barisch
- Molecular Infection Biology Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, D-49076 Osnabrück, Germany
| | - Joost C M Holthuis
- Molecular Cell Biology Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, D-49076 Osnabrück, Germany
| | - Katia Cosentino
- Molecular Cell Biophysics Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, D-49076 Osnabrück, Germany
| |
Collapse
|
16
|
Borsi G, Motheramgari K, Dhiman H, Baumann M, Sinkala E, Sauerland M, Riba J, Borth N. Single-cell RNA sequencing reveals homogeneous transcriptome patterns and low variance in a suspension CHO-K1 and an adherent HEK293FT cell line in culture conditions. J Biotechnol 2023; 364:13-22. [PMID: 36708997 DOI: 10.1016/j.jbiotec.2023.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 01/15/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
Recombinant mammalian host cell lines, in particular CHO and HEK293 cells, are used for the industrial production of therapeutic proteins. Despite their well-known genomic instability, the control mechanisms that enable cells to respond to changes in the environmental conditions are not yet fully understood, nor do we have a good understanding of the factors that lead to phenotypic shifts in long-term cultures. A contributing factor could be inherent diversity in transcriptomes within a population. In this study, we used a full-length coverage single-cell RNA sequencing (scRNA-seq) approach to investigate and compare cell-to-cell variability and the impact of standardized and homogenous culture conditions on the diversity of individual cell transcriptomes, comparing suspension CHO-K1 and adherent HEK293FT cells. Our data showed a critical batch effect from the sequencing of four 96-well plates of CHO-K1 single cells stored for different periods of time, which was and may be therefore identified as a technical variable to consider in experimental planning. Besides, in an artificial and controlled culture environment such as used in routine cell culture technology, the gene expression pattern of a given population does not reveal any marker gene capable to disclose relevant cell population substructures, both for CHO-K1 cells and for HEK293FT cells. The variation observed is primarily driven by the cell cycle.
Collapse
Affiliation(s)
- Giulia Borsi
- BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190, Vienna, Austria
| | - Krishna Motheramgari
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190, Vienna, Austria
| | - Heena Dhiman
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190, Vienna, Austria
| | - Martina Baumann
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190, Vienna, Austria
| | | | | | | | - Nicole Borth
- BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190, Vienna, Austria.
| |
Collapse
|
17
|
Alves S, Pereira JM, Mayer RL, Gonçalves ADA, Impens F, Cabanes D, Sousa S. Cells Responding to Closely Related Cholesterol-Dependent Cytolysins Release Extracellular Vesicles with a Common Proteomic Content Including Membrane Repair Proteins. Toxins (Basel) 2022; 15:4. [PMID: 36668824 PMCID: PMC9865450 DOI: 10.3390/toxins15010004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The plasma membrane (PM) protects cells from extracellular threats and supports cellular homeostasis. Some pathogens produce pore-forming toxins (PFTs) that disrupt PM integrity by forming transmembrane pores. High PFT concentrations cause massive damage leading to cell death and facilitating infection. Sub-lytic PFT doses activate repair mechanisms to restore PM integrity, support cell survival and limit disease. Shedding of extracellular vesicles (EVs) has been proposed as a key mechanism to eliminate PFT pores and restore PM integrity. We show here that cholesterol-dependent cytolysins (CDCs), a specific family of PFTs, are at least partially eliminated through EVs release, and we hypothesize that proteins important for PM repair might be included in EVs shed by cells during repair. To identify new PM repair proteins, we collected EVs released by cells challenged with sub-lytic doses of two different bacterial CDCs, listeriolysin O and pneumolysin, and determined the EV proteomic repertoire by LC-MS/MS. Intoxicated cells release similar EVs irrespectively of the CDC used. Also, they release more and larger EVs than non-intoxicated cells. A cluster of 70 proteins including calcium-binding proteins, molecular chaperones, cytoskeletal, scaffold and membrane trafficking proteins, was detected enriched in EVs collected from intoxicated cells. While some of these proteins have well-characterized roles in repair, the involvement of others requires further study. As proof of concept, we show here that Copine-1 and Copine-3, proteins abundantly detected in EVs released by intoxicated cells, are required for efficient repair of CDC-induced PM damage. Additionally, we reveal here new proteins potentially involved in PM repair and give new insights into common mechanisms and machinery engaged by cells in response to PM damage.
Collapse
Affiliation(s)
- Sara Alves
- Cell Biology of Bacterial Infections, IBMC, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Joana M. Pereira
- Cell Biology of Bacterial Infections, IBMC, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Molecular and Cellular (MC) Biology PhD Program, ICBAS—Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Rupert L. Mayer
- VIB-UGent Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9052 Ghent, Belgium
- VIB Proteomics Core, VIB, 9052 Ghent, Belgium
| | - Alexandre D. A. Gonçalves
- Cell Biology of Bacterial Infections, IBMC, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9052 Ghent, Belgium
- VIB Proteomics Core, VIB, 9052 Ghent, Belgium
| | - Didier Cabanes
- Molecular Microbiology, IBMC, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Sandra Sousa
- Cell Biology of Bacterial Infections, IBMC, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
18
|
Ashraf APK, Gerke V. The resealing factor S100A11 interacts with annexins and extended synaptotagmin-1 in the course of plasma membrane wound repair. Front Cell Dev Biol 2022; 10:968164. [PMID: 36200035 PMCID: PMC9527316 DOI: 10.3389/fcell.2022.968164] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
After damage, cells repair their plasma membrane in an active process that is driven by Ca2+ entering through the wound. This triggers a range of Ca2+-regulated events such as the translocation of different Ca2+-binding proteins to the wound site which likely function in the repair process. The translocated proteins include Ca2+/phospholipid binding proteins of the annexin (ANX) family and S100A11, an EF hand-type Ca2+-binding protein which can interact with ANX. The molecular mechanism by which S100A11 mediates PM wound repair remains poorly understood although it likely involves interactions with ANX. Here, using S100A11 knockout endothelial cells and expression of S100A11 mutants, we show that endothelial S100A11 is essential for efficient plasma membrane wound repair and engages in Ca2+-dependent interactions with ANXA1 and ANXA2 through its C-terminal extension (residues 93–105). ANXA2 but not ANXA1 translocation to the wound is substantially inhibited in the absence of S100A11; however, the repair defect in S100A11 knockout cells is rescued by ectopic expression of an ANX interaction-defective S100A11 mutant, suggesting an ANX-independent role of S100A11 in membrane wound repair. In search for other interaction partners that could mediate this action of S100A11 we identify extended synaptotagmin 1 (E-Syt1), a protein tether that regulates endoplasmic reticulum-plasma membrane contact sites. E-Syt1 binds to S100A11 in the presence of Ca2+ and depletion of E-Syt1 interferes with wound site recruitment of S100A11 and proper membrane resealing. Thus, the role of S100A11 in membrane wound repair does not exclusively dependent on ANX interactions and a Ca2+-regulated S100A11-E-Syt1 complex acts as a yet unrecognized component of the membrane resealing machinery.
Collapse
|
19
|
Hui J, Stjepić V, Nakamura M, Parkhurst SM. Wrangling Actin Assemblies: Actin Ring Dynamics during Cell Wound Repair. Cells 2022; 11:2777. [PMID: 36139352 PMCID: PMC9497110 DOI: 10.3390/cells11182777] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 12/18/2022] Open
Abstract
To cope with continuous physiological and environmental stresses, cells of all sizes require an effective wound repair process to seal breaches to their cortex. Once a wound is recognized, the cell must rapidly plug the injury site, reorganize the cytoskeleton and the membrane to pull the wound closed, and finally remodel the cortex to return to homeostasis. Complementary studies using various model organisms have demonstrated the importance and complexity behind the formation and translocation of an actin ring at the wound periphery during the repair process. Proteins such as actin nucleators, actin bundling factors, actin-plasma membrane anchors, and disassembly factors are needed to regulate actin ring dynamics spatially and temporally. Notably, Rho family GTPases have been implicated throughout the repair process, whereas other proteins are required during specific phases. Interestingly, although different models share a similar set of recruited proteins, the way in which they use them to pull the wound closed can differ. Here, we describe what is currently known about the formation, translocation, and remodeling of the actin ring during the cell wound repair process in model organisms, as well as the overall impact of cell wound repair on daily events and its importance to our understanding of certain diseases and the development of therapeutic delivery modalities.
Collapse
Affiliation(s)
| | | | | | - Susan M. Parkhurst
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
20
|
Demonbreun AR, Bogdanovic E, Vaught LA, Reiser NL, Fallon KS, Long AM, Oosterbaan CC, Hadhazy M, Page PG, Joseph PRB, Cowen G, Telenson AM, Khatri A, Sadleir KR, Vassar R, McNally EM. A conserved annexin A6-mediated membrane repair mechanism in muscle, heart, and nerve. JCI Insight 2022; 7:158107. [PMID: 35866481 PMCID: PMC9431694 DOI: 10.1172/jci.insight.158107] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/08/2022] [Indexed: 11/21/2022] Open
Abstract
Membrane instability and disruption underlie myriad acute and chronic disorders. Anxa6 encodes the membrane-associated protein annexin A6 and was identified as a genetic modifier of muscle repair and muscular dystrophy. To evaluate annexin A6’s role in membrane repair in vivo, we inserted sequences encoding green fluorescent protein (GFP) into the last coding exon of Anxa6. Heterozygous Anxa6gfp mice expressed a normal pattern of annexin A6 with reduced annexin A6GFP mRNA and protein. High-resolution imaging of wounded muscle fibers showed annexin A6GFP rapidly formed a repair cap at the site of injury. Injured cardiomyocytes and neurons also displayed repair caps after wounding, highlighting annexin A6–mediated repair caps as a feature in multiple cell types. Using surface plasmon resonance, we showed recombinant annexin A6 bound phosphatidylserine-containing lipids in a Ca2+- and dose-dependent fashion with appreciable binding at approximately 50 μM Ca2+. Exogenously added recombinant annexin A6 localized to repair caps and improved muscle membrane repair capacity in a dose-dependent fashion without disrupting endogenous annexin A6 localization, indicating annexin A6 promotes repair from both intracellular and extracellular compartments. Thus, annexin A6 orchestrates repair in multiple cell types, and recombinant annexin A6 may be useful in additional chronic disorders beyond skeletal muscle myopathies.
Collapse
Affiliation(s)
| | - Elena Bogdanovic
- Center for Genetic Medicine.,Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Lauren A Vaught
- Center for Genetic Medicine.,Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Nina L Reiser
- Center for Genetic Medicine.,Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Katherine S Fallon
- Center for Genetic Medicine.,Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ashlee M Long
- Center for Genetic Medicine.,Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Claire C Oosterbaan
- Center for Genetic Medicine.,Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Michele Hadhazy
- Center for Genetic Medicine.,Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | | | - Gabrielle Cowen
- Center for Genetic Medicine.,Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - Ammaarah Khatri
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Katherine R Sadleir
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Robert Vassar
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Elizabeth M McNally
- Center for Genetic Medicine.,Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
21
|
Vasconcelos-Cardoso M, Batista-Almeida D, Rios-Barros LV, Castro-Gomes T, Girao H. Cellular and molecular mechanisms underlying plasma membrane functionality and integrity. J Cell Sci 2022; 135:275922. [PMID: 35801807 DOI: 10.1242/jcs.259806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The plasma membrane not only protects the cell from the extracellular environment, acting as a selective barrier, but also regulates cellular events that originate at the cell surface, playing a key role in various biological processes that are essential for the preservation of cell homeostasis. Therefore, elucidation of the mechanisms involved in the maintenance of plasma membrane integrity and functionality is of utmost importance. Cells have developed mechanisms to ensure the quality of proteins that inhabit the cell surface, as well as strategies to cope with injuries inflicted to the plasma membrane. Defects in these mechanisms can lead to the development or onset of several diseases. Despite the importance of these processes, a comprehensive and holistic perspective of plasma membrane quality control is still lacking. To tackle this gap, in this Review, we provide a thorough overview of the mechanisms underlying the identification and targeting of membrane proteins that are to be removed from the cell surface, as well as the membrane repair mechanisms triggered in both physiological and pathological conditions. A better understanding of the mechanisms underlying protein quality control at the plasma membrane can reveal promising and unanticipated targets for the development of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Maria Vasconcelos-Cardoso
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal.,Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Daniela Batista-Almeida
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal.,Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Laura Valeria Rios-Barros
- Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, CEP 31270-901, Brazil
| | - Thiago Castro-Gomes
- Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, CEP 31270-901, Brazil
| | - Henrique Girao
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal.,Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| |
Collapse
|
22
|
Thomas FB, Omnus DJ, Bader JM, Chung GH, Kono N, Stefan CJ. Tricalbin proteins regulate plasma membrane phospholipid homeostasis. Life Sci Alliance 2022; 5:5/8/e202201430. [PMID: 35440494 PMCID: PMC9018018 DOI: 10.26508/lsa.202201430] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 12/26/2022] Open
Abstract
The evolutionarily conserved extended synaptotagmin (E-Syt) proteins are calcium-activated lipid transfer proteins that function at contacts between the ER and plasma membrane (ER-PM contacts). However, roles of the E-Syt family members in PM lipid organisation remain incomplete. Among the E-Syt family, the yeast tricalbin (Tcb) proteins are essential for PM integrity upon heat stress, but it is not known how they contribute to PM maintenance. Using quantitative lipidomics and microscopy, we find that the Tcb proteins regulate phosphatidylserine homeostasis at the PM. Moreover, upon heat-induced membrane stress, Tcb3 co-localises with the PM protein Sfk1 that is implicated in PM phospholipid asymmetry and integrity. The Tcb proteins also control the PM targeting of the known phosphatidylserine effector Pkc1 upon heat-induced stress. Phosphatidylserine has evolutionarily conserved roles in PM organisation, integrity, and repair. We propose that phospholipid regulation is an ancient essential function of E-Syt family members required for PM integrity.
Collapse
Affiliation(s)
- Ffion B Thomas
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Deike J Omnus
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Jakob M Bader
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Gary Hc Chung
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Nozomu Kono
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Christopher J Stefan
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| |
Collapse
|
23
|
Welter AA, Wu WJ, Maurer R, O’Quinn TG, Chao MD, Boyle DL, Geisbrecht ER, Hartson SD, Bowker BC, Zhuang H. An Investigation of the Altered Textural Property in Woody Breast Myopathy Using an Integrative Omics Approach. Front Physiol 2022; 13:860868. [PMID: 35370787 PMCID: PMC8970568 DOI: 10.3389/fphys.2022.860868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/04/2022] [Indexed: 12/02/2022] Open
Abstract
Woody breast (WB) is a myopathy observed in broiler Pectoralis major (PM) characterized by its tough and rubbery texture with greater level of calcium content. The objective of this study was to investigate the functionality/integrity of WB sarcoplasmic reticulum (SR), which may contribute to the elevated calcium content observed in WB and other factors that may influence WB texture. Fourteen Ross line broiler PM [7 severe WB and 7 normal (N)] were selected, packaged, and frozen at -20°C at 8 h postmortem from a commercial processing plant. Samples were used to measure pH, sarcomere length, proteolysis, calpain activity, collagenase activity, collagen content, collagen crosslinks density, and connective tissue peak transitional temperature. Exudate was also collected from each sample to evaluate free calcium concentration. The SR fraction of the samples was separated and utilized for proteomic and lipidomic analysis. The WB PM had a higher pH, shorter sarcomeres, lower % of intact troponin-T, more autolyzed μ/m calpain, more activated collagenase, greater collagen content, greater mature collagen crosslinks density, and higher connective tissue peak transitional temperature than the N PM (p ≤ 0.05). Exudate from WB PM had higher levels of free calcium than those from N PM (p < 0.05). Proteomics data revealed an upregulation of calcium transport proteins and a downregulation of proteins responsible for calcium release (p < 0.05) in WB SR. Interestingly, there was an upregulation of phospholipase A2 (PLA2), and cholinesterase exhibited a 7.6-fold increase in WB SR (p < 0.01). Lipidomics data revealed WB SR had less relative % of phosphatidylcholine (PC) and more lysophosphatidylcholine (LPC; p < 0.05). The results indicated that upregulation of calcium transport proteins and downregulation of calcium-release proteins in WB SR may be the muscle's attempt to regulate this proposed excessive signaling of calcium release due to multiple factors, such as upregulation of PLA2 resulting in PC hydrolysis and presence of cholinesterase inhibitors in the system prolonging action potential. In addition, the textural abnormality of WB may be the combined effects of shorter sarcomere length and more collagen with greater crosslink density being deposited in the broiler PM.
Collapse
Affiliation(s)
- Amelia A. Welter
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, United States
| | - Wan Jun Wu
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, United States
| | - Ryan Maurer
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, United States
| | - Travis G. O’Quinn
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, United States
| | - Michael D. Chao
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, United States
| | - Daniel L. Boyle
- Division of Biology, Kansas State University Microscopy Facility, Manhattan, KS, United States
| | - Erika R. Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, United States
| | - Steve D. Hartson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, United States
| | - Brian C. Bowker
- United States National Poultry Research Center USDA, Agricultural Research Service, Athens, GA, United States
| | - Hong Zhuang
- United States National Poultry Research Center USDA, Agricultural Research Service, Athens, GA, United States
| |
Collapse
|
24
|
Yim WWY, Yamamoto H, Mizushima N. Annexins A1 and A2 are recruited to larger lysosomal injuries independently of ESCRTs to promote repair. FEBS Lett 2022; 596:991-1003. [PMID: 35274304 DOI: 10.1002/1873-3468.14329] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 11/11/2022]
Abstract
Damaged lysosomes can be repaired by calcium release-dependent recruitment of the ESCRT machinery. However, the involvement of annexins, another group of calcium-responding membrane repair proteins, has not been fully addressed. Here, we show that although all ubiquitously expressed annexins (ANXA1, A2, A4, A5, A6, A7, and A11) localize to damaged lysosomes, only ANXA1 and ANXA2 are important for repair. Their recruitment is calcium-dependent, ESCRT-independent, and selective towards lysosomes with large injuries. Lysosomal leakage was more severe when ANXA1 or ANXA2 was depleted compared to that of ESCRT components. These findings suggest that ANXA1 and ANXA2 constitute an additional repair mechanism that serves to minimize leakage from damaged lysosomes.
Collapse
Affiliation(s)
- Willa Wen-You Yim
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Hayashi Yamamoto
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| |
Collapse
|
25
|
Annexins and Membrane Repair Dysfunctions in Muscular Dystrophies. Int J Mol Sci 2021; 22:ijms22105276. [PMID: 34067866 PMCID: PMC8155887 DOI: 10.3390/ijms22105276] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022] Open
Abstract
Muscular dystrophies constitute a group of genetic disorders that cause weakness and progressive loss of skeletal muscle mass. Among them, Miyoshi muscular dystrophy 1 (MMD1), limb girdle muscular dystrophy type R2 (LGMDR2/2B), and LGMDR12 (2L) are characterized by mutation in gene encoding key membrane-repair protein, which leads to severe dysfunctions in sarcolemma repair. Cell membrane disruption is a physiological event induced by mechanical stress, such as muscle contraction and stretching. Like many eukaryotic cells, muscle fibers possess a protein machinery ensuring fast resealing of damaged plasma membrane. Members of the annexins A (ANXA) family belong to this protein machinery. ANXA are small soluble proteins, twelve in number in humans, which share the property of binding to membranes exposing negatively-charged phospholipids in the presence of calcium (Ca2+). Many ANXA have been reported to participate in membrane repair of varied cell types and species, including human skeletal muscle cells in which they may play a collective role in protection and repair of the sarcolemma. Here, we discuss the participation of ANXA in membrane repair of healthy skeletal muscle cells and how dysregulation of ANXA expression may impact the clinical severity of muscular dystrophies.
Collapse
|
26
|
Zhen Y, Radulovic M, Vietri M, Stenmark H. Sealing holes in cellular membranes. EMBO J 2021; 40:e106922. [PMID: 33644904 PMCID: PMC8013788 DOI: 10.15252/embj.2020106922] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022] Open
Abstract
The compartmentalization of eukaryotic cells, which is essential for their viability and functions, is ensured by single or double bilayer membranes that separate the cell from the exterior and form boundaries between the cell’s organelles and the cytosol. Nascent nuclear envelopes and autophagosomes, which both are enveloped by double membranes, need to be sealed during the late stage of their biogenesis. On the other hand, the integrity of cellular membranes such as the plasma membrane, lysosomes and the nuclear envelope can be compromised by pathogens, chemicals, radiation, inflammatory responses and mechanical stress. There are cellular programmes that restore membrane integrity after injury. Here, we review cellular mechanisms that have evolved to maintain membrane integrity during organelle biogenesis and after injury, including membrane scission mediated by the endosomal sorting complex required for transport (ESCRT), vesicle patching and endocytosis.
Collapse
Affiliation(s)
- Yan Zhen
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Maja Radulovic
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Marina Vietri
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Harald Stenmark
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Faculty of Medicine and Health Sciences, Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
27
|
Foltz SJ, Cui YY, Choo HJ, Hartzell HC. ANO5 ensures trafficking of annexins in wounded myofibers. J Cell Biol 2021; 220:e202007059. [PMID: 33496727 PMCID: PMC7844426 DOI: 10.1083/jcb.202007059] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/20/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022] Open
Abstract
Mutations in ANO5 (TMEM16E) cause limb-girdle muscular dystrophy R12. Defective plasma membrane repair is a likely mechanism. Using myofibers from Ano5 knockout mice, we show that trafficking of several annexin proteins, which together form a cap at the site of injury, is altered upon loss of ANO5. Annexin A2 accumulates at the wound to nearly twice the level observed in WT fibers, while annexin A6 accumulation is substantially inhibited in the absence of ANO5. Appearance of annexins A1 and A5 at the cap is likewise diminished in the Ano5 knockout. These changes are correlated with an alteration in annexin repair cap fine structure and shedding of annexin-positive vesicles. We conclude that loss of annexin coordination during repair is disrupted in Ano5 knockout mice and underlies the defective repair phenotype. Although ANO5 is a phospholipid scramblase, abnormal repair is rescued by overexpression of a scramblase-defective ANO5 mutant, suggesting a novel, scramblase-independent role of ANO5 in repair.
Collapse
Affiliation(s)
| | | | - Hyojung J. Choo
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
| | - H. Criss Hartzell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
28
|
Guo C, Li N, Dong C, Wang L, Li Z, Liu Q, Ma Q, Greenaway FT, Tian Y, Hao L, Liu S, Sun MZ. 33-kDa ANXA3 isoform contributes to hepatocarcinogenesis via modulating ERK, PI3K/Akt-HIF and intrinsic apoptosis pathways. J Adv Res 2020; 30:85-102. [PMID: 34026289 PMCID: PMC8132212 DOI: 10.1016/j.jare.2020.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 01/02/2023] Open
Abstract
Introduction As a member of annexin family proteins, annexin A3 (ANXA3) has 36-kDa and 33-kDa isoforms. ANXA3 plays crucial roles in the tumorigenesis, aggressiveness and drug-resistance of cancers. However, previous studies mainly focused on the role of total ANXA3 in cancers without distinguishing the distinction between the two isoforms, the role of 33-kDa ANXA3 in cancer remains unclear. Objectives Current work aimed to investigate the function and regulation mechanism of 33-kDa ANXA3 in hepatocarcinoma. Methods The expressions of ANXA3, CRKL, Rac1, c-Myc and pAkt were analyzed in hepatocarcinoma specimens by Western blotting. The biological function of 33-kDa ANXA3 in the growth, metastasis, apoptosis, angiogenesis, chemoresistance of hepatocarcinoma cells with the underlying molecular mechanism were investigated using gain-of-function strategy in vitro or in vivo. Results 33-kDa ANXA3 was remarkably upregulated in tumor tissues compared with corresponding normal liver tissues of hepatocarcinoma patients. Its stable knockdown decreased the in vivo tumor growing velocity and malignancy of hepatocarcinoma HepG2 cells transplanted in nude mice. The in vitro experimental results indicated 33-kDa ANXA3 knockdown suppressed the proliferation, colony forming, migration and invasion abilities of HepG2 cells through downregulating CRKL, Rap1b, Rac1, pMEK, pERK2 and c-Myc in ERK pathway; inhibited angiogenesisability of HepG2 cells through inactivating PI3K/Akt-HIF pathway; induced apoptosis and enhanced chemoresistance of HepG2 cells through increasing Bax/decreasing Bcl-2 expressions and inactivating caspase 9/caspase 3 in intrinsic apoptosis pathway. Accordingly, CRKL, Rac1, c-Myc and pAkt were also upregulated in hepatocarcinoma patients ’ tumor tissues compared with corresponding normal liver tissues. Conclusions The overexpression of 33-kDa ANXA3 is involved in the clinical progression of hepatocarcinoma and in the malignancy, angiogenesis and apoptosis of hepatocarcinoma cells. It is of potential use in hepatocarcinoma diagnosis and treatment.
Collapse
Affiliation(s)
- Chunmei Guo
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Nannan Li
- Department of Biochemistry, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Chengyong Dong
- Department of General Surgery, the 2 Affiliated Hospital, Dalian Medical University, Dalian 116027, China
| | - Liming Wang
- Department of General Surgery, the 2 Affiliated Hospital, Dalian Medical University, Dalian 116027, China
| | - Zhaopeng Li
- Department of Biochemistry, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Qinlong Liu
- Department of General Surgery, the 2 Affiliated Hospital, Dalian Medical University, Dalian 116027, China
| | - Qinglai Ma
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Frederick T Greenaway
- Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA 01610, USA
| | - Yuxiang Tian
- Department of Biochemistry, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Lihong Hao
- Department of Anatomy, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Shuqing Liu
- Department of Biochemistry, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Ming-Zhong Sun
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.,Institute of Hematology, the Second Hospital of Dalian Medical University, Dalian 116027, China
| |
Collapse
|
29
|
Novák J, Vopálenský V, Pospíšek M, Vedeler A. Co-localization of Interleukin-1α and Annexin A2 at the plasma membrane in response to oxidative stress. Cytokine 2020; 133:155141. [PMID: 32615410 DOI: 10.1016/j.cyto.2020.155141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/11/2020] [Accepted: 05/15/2020] [Indexed: 12/19/2022]
Abstract
Interleukin-1α (IL-1α) and Annexin A2 (AnxA2) are pleiotropic molecules with both intracellular and extracellular roles. They share several characteristics including unconventional secretion aided by S100 proteins, anchoring of the externalized proteins at the outer surface of the plasma membrane and response to oxidative stress. Although IL-1α and AnxA2 have been implicated in a variety of biological processes, including cancer, little is known about the mechanisms of their cellular release. In the present study, employing the non-cancerous breast epithelial MCF10A cells, we demonstrate that IL-1α and AnxA2 establish a close association in response to oxidative stress. Stress conditions lead to translocation of both proteins towards lamellipodia rich in vimentin and association of full-length IL-1α and Tyr23 phosphorylated AnxA2 with the plasma membrane at peripheral sites depleted of F-actin. Notably, membrane-associated IL-1α and AnxA2 preferentially localize to the outer edges of the MCF10A cell islands, suggesting that the two proteins participate in the communication of these epithelial cells with their neighboring cells. Similarly, in U2OS osteosarcoma cell line both endogenous IL-1α and transiently produced IL-1α/EGFP associate with the plasma membrane. While benign MFC10A cells present membrane-associated IL-1α and AnxA2 at the edges of their cell islands, the aggressive cancerous U2OS cells communicate in such manner also with distant cells.
Collapse
Affiliation(s)
- Josef Novák
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic; Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway.
| | - Václav Vopálenský
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Pospíšek
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Anni Vedeler
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|