1
|
Wei J, Liu C, Qin D, Ren F, Duan J, Chen T, Wu A. Targeting inflammation and gut microbiota with antibacterial therapy: Implications for central nervous system health. Ageing Res Rev 2024; 102:102544. [PMID: 39419400 DOI: 10.1016/j.arr.2024.102544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
The complex symbiotic relationship between inflammation, the gut microbiota, and the central nervous system (CNS) has become a pivotal focus of contemporary biomedical research. Inflammation, as a physiological defense mechanism, plays a dual role as both a protective and pathological factor, and is intricately associated with gut microbiota homeostasis, often termed the "second brain." The gutbrain axis (GBA) exemplifies this multifaceted interaction, where gut health exerts significantly regulatory effects on CNS functions. Antibacterial therapies represent both promising and challenging strategies for modulating inflammation and gut microbiota composition to confer CNS benefits. However, while such therapies may exert positive modulatory effects on the gut microbiota, they also carry the potential to disrupt microbial equilibrium, potentially exacerbating neurological dysfunction. Recent advances have provided critical insights into the therapeutic implications of antibacterial interventions; nevertheless, the application of these therapies in the context of CNS health warrants a judicious and evidence-based approach. As research progresses, deeper investigation into the microbial-neural interface is essential to fully realize the potential of therapies targeting inflammation and the gut microbiota for CNS health. Future efforts should focus on refining antibacterial interventions to modulate the gut microbiota while minimizing disruption to microbial balance, thereby reducing risks and enhancing efficacy in CNS-related conditions. In conclusion, despite challenges, a more comprehensive understanding of the GBA, along with precise modulation through targeted antibacterial therapies, offers significant promise for advancing CNS disorder treatment. Continued research in this area will lead to innovative interventions and improved patient outcomes.
Collapse
Affiliation(s)
- Jing Wei
- Eye School of Chengdu University of TCM, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Retinal Image Technology and Chronic Vascular Disease Prevention & Control and Collaborative Innovation Center, Chengdu, China; School of Pharmaceutical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua 418000, China.
| | - Chunmeng Liu
- Eye School of Chengdu University of TCM, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Retinal Image Technology and Chronic Vascular Disease Prevention & Control and Collaborative Innovation Center, Chengdu, China.
| | - Dalian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Department of Cardiology, the Affiliated Hospital of Southwest Medical University and Key Laboratory of Medical Electrophysiology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Fang Ren
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China.
| | - Junguo Duan
- Eye School of Chengdu University of TCM, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Retinal Image Technology and Chronic Vascular Disease Prevention & Control and Collaborative Innovation Center, Chengdu, China.
| | - Ting Chen
- School of Pharmaceutical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua 418000, China.
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Department of Cardiology, the Affiliated Hospital of Southwest Medical University and Key Laboratory of Medical Electrophysiology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
He Y, Wang K, Su N, Yuan C, Zhang N, Hu X, Fu Y, Zhao F. Microbiota-gut-brain axis in health and neurological disease: Interactions between gut microbiota and the nervous system. J Cell Mol Med 2024; 28:e70099. [PMID: 39300699 PMCID: PMC11412916 DOI: 10.1111/jcmm.70099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
Along with mounting evidence that gut microbiota and their metabolites migrate endogenously to distal organs, the 'gut-lung axis,' 'gut-brain axis,' 'gut-liver axis' and 'gut-renal axis' have been established. Multiple animal recent studies have demonstrated gut microbiota may also be a key susceptibility factor for neurological disorders such as Alzheimer's disease, Parkinson's disease and autism. The gastrointestinal tract is innervated by the extrinsic sympathetic and vagal nerves and the intrinsic enteric nervous system, and the gut microbiota interacts with the nervous system to maintain homeostatic balance in the host gut. A total of 1507 publications on the interactions between the gut microbiota, the gut-brain axis and neurological disorders are retrieved from the Web of Science to investigate the interactions between the gut microbiota and the nervous system and the underlying mechanisms involved in normal and disease states. We provide a comprehensive overview of the effects of the gut microbiota and its metabolites on nervous system function and neurotransmitter secretion, as well as alterations in the gut microbiota in neurological disorders, to provide a basis for the possibility of targeting the gut microbiota as a therapeutic agent for neurological disorders.
Collapse
Affiliation(s)
- Yuhong He
- Department of Operating RoomChina‐Japan Union Hospital of Jilin UniversityChangchunJilinChina
- Department of Clinical Veterinary MedicineCollege of Veterinary Medicine, Jilin UniversityChangchunJilinChina
| | - Ke Wang
- Department of Operating RoomChina‐Japan Union Hospital of Jilin UniversityChangchunJilinChina
| | - Niri Su
- Department of Clinical Veterinary MedicineCollege of Veterinary Medicine, Jilin UniversityChangchunJilinChina
| | - Chongshan Yuan
- Department of Clinical Veterinary MedicineCollege of Veterinary Medicine, Jilin UniversityChangchunJilinChina
| | - Naisheng Zhang
- Department of Clinical Veterinary MedicineCollege of Veterinary Medicine, Jilin UniversityChangchunJilinChina
| | - Xiaoyu Hu
- Department of Clinical Veterinary MedicineCollege of Veterinary Medicine, Jilin UniversityChangchunJilinChina
| | - Yunhe Fu
- Department of Clinical Veterinary MedicineCollege of Veterinary Medicine, Jilin UniversityChangchunJilinChina
| | - Feng Zhao
- Department of Operating RoomChina‐Japan Union Hospital of Jilin UniversityChangchunJilinChina
| |
Collapse
|
3
|
Li C, Chen X, Du Z, Geng X, Li M, Yang X, Bo C, Jia Q, Yu G, Shi L. Inhibiting ferroptosis in brain microvascular endothelial cells: A potential strategy to mitigate polystyrene nanoplastics‒induced blood‒brain barrier dysfunction. ENVIRONMENTAL RESEARCH 2024; 250:118506. [PMID: 38387496 DOI: 10.1016/j.envres.2024.118506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Polystyrene nanoplastics (PS-NPs), a group of ubiquitous pollutants, may injure the central nervous system through the blood‒brain barrier (BBB). However, whether exposure to PS-NPs contributes to BBB disruption and the underlying mechanisms are still unclear. In vivo, we found that PS-NPs (25 mg/kg BW) could significantly increase BBB permeability in mice and downregulate the distribution of the tight junction-associated protein zona occludens 1 (ZO-1) in brain microvascular endothelial cells (BMECs). Using an in vitro BBB model, exposure to PS-NPs significantly reduced the transendothelial electrical resistance and altered ZO-1 expression and distribution in a dose-dependent manner. RNA-seq analysis and functional investigations were used to investigate the molecular pathways involved in the response to PS-NPs. The results revealed that the ferroptosis and glutathione metabolism signaling pathways were related to the disruption of the BBB model caused by the PS-NPs. PS-NPs treatment promoted ferroptosis in bEnd.3 cells by inducing disordered glutathione metabolism in addition to Fe2+ and lipid peroxide accumulation, while suppressing ferroptosis with ferrostatin-1 (Fer-1) suppressed ferroptosis-related changes in bEnd.3 cells subjected to PS-NPs. Importantly, Fer-1 alleviated the decrease in ZO-1 expression in bEnd.3 cells and the exacerbation of BBB damage induced by PS-NPs. Collectively, our findings suggest that inhibiting ferroptosis in BMECs may serve as a potential therapeutic target against BBB disruption induced by PS-NPs exposure.
Collapse
Affiliation(s)
- Chao Li
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, 250062, China
| | - Xiaoshu Chen
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, 250062, China
| | - Zhongjun Du
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, 250062, China
| | - Xiao Geng
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, 250062, China
| | - Ming Li
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, 250062, China
| | - Xiaohan Yang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, 250062, China
| | - Cunxiang Bo
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, 250062, China
| | - Qiang Jia
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, 250062, China.
| | - Gongchang Yu
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, 250062, China; Shandong Mental Health Center, Ji'nan, Shandong, 250014, China.
| | - Liang Shi
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, 250062, China.
| |
Collapse
|
4
|
Gallardo-Fernandez M, Garcia AR, Hornedo-Ortega R, Troncoso AM, Garcia-Parrilla MC, Brito MA. In vitro study of the blood-brain barrier transport of bioactives from Mediterranean foods. Food Funct 2024; 15:3420-3432. [PMID: 38497922 DOI: 10.1039/d3fo04760a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The Mediterranean diet (MD), characterized by olive oil, olives, fruits, vegetables, and wine intake, is associated with a reduced risk of dementia. These foods are rich in bioactives with neuroprotective and antioxidant properties, including hydroxytyrosol (HT), tyrosol (TYRS), serotonin (SER) and protocatechuic acid (PCA), a phenolic acid metabolite of anthocyanins. It remains to be established if these molecules cross the blood-brain barrier (BBB), a complex interface that strictly controls the entrance of molecules into the brain. We aimed to assess the ability of tyrosine (TYR), HT, TYRS, PCA and SER to pass through the BBB without disrupting its properties. Using Human Brain Microvascular Endothelial Cells as an in vitro model of the BBB, we assessed its integrity by transendothelial electrical resistance, paracellular permeability and immunocytochemical assays of the adherens junction protein β-catenin. The transport across the BBB was evaluated by ultra-high-performance liquid chromatography high resolution mass spectrometry. Results show that tested bioactives did not impair BBB integrity regardless of the concentration evaluated. Additionally, all of them cross the BBB, with the following percentages: HT (∼70%), TYR (∼50%), TYRS (∼30%), SER (∼30%) and PCA (∼9%). These results provide a basis for the MD neuroprotective role.
Collapse
Affiliation(s)
- Marta Gallardo-Fernandez
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal. Facultad de Farmacia. Universidad de Sevilla. C/Profesor García González n° 2. Sevilla 41012, Spain.
| | - Ana Rita Garcia
- imed-Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Ruth Hornedo-Ortega
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal. Facultad de Farmacia. Universidad de Sevilla. C/Profesor García González n° 2. Sevilla 41012, Spain.
| | - Ana M Troncoso
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal. Facultad de Farmacia. Universidad de Sevilla. C/Profesor García González n° 2. Sevilla 41012, Spain.
| | - M Carmen Garcia-Parrilla
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal. Facultad de Farmacia. Universidad de Sevilla. C/Profesor García González n° 2. Sevilla 41012, Spain.
| | - M Alexandra Brito
- imed-Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
5
|
Her J, Gordon D, Riggs A, Venner L, Cooper E, Langston C. Successful treatment of a severe 5-hydroxytrytophan intoxication using carbon hemoperfusion, hemodiafiltration, and mechanical ventilation in a dog. J Vet Emerg Crit Care (San Antonio) 2024; 34:186-192. [PMID: 38407445 DOI: 10.1111/vec.13368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/22/2022] [Accepted: 12/10/2022] [Indexed: 02/27/2024]
Abstract
OBJECTIVE To describe the successful use of carbon hemoperfusion and hemodiafiltration in combination with mechanical ventilation (MV) to treat a severe intoxication of 5-hydroxytryptophan (5-HTP) in a dog. CASE SUMMARY A dog ingested a minimum of 550 mg/kg of extended-release 5-HTP, resulting in serotonin syndrome that progressed to a comatose state and severe hypoventilation requiring MV. Extracorporeal carbon hemoperfusion coupled with hemodiafiltration was performed to remove 5-HTP from this patient. A carbon hemoperfusion cartridge was placed in series upstream in the extracorporeal circuit from the hemodialyzer. A total of 46.5 L of blood (4.89 L/kg) was processed during a 4.85-hour treatment. Serial plasma samples were obtained at 0, 60, 90, and 150 minutes during the session and 14 hours after the session. These samples were later analyzed for 5-HTP and serotonin concentrations. The extraction ratio of 5-HTP was 93.6%-98.9% through the carbon filter. The dog was weaned from MV within 8 hours after extracorporeal therapy and, after a full recovery, was successfully discharged. NEW OR UNIQUE INFORMATION PROVIDED Despite an extensive review of the available literature, this appears to be the first reported case of using a carbon hemoperfusion, hemodiafiltration, and MV to treat severe serotonin syndrome secondary to 5-HTP intoxication in a dog. The combination of carbon hemoperfusion and hemodiafiltration can significantly reduce plasma 5-HTP concentrations after acute intoxication and may serve to decrease morbidity and mortality in patients with severe intoxication.
Collapse
Affiliation(s)
- Jiwoong Her
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Daniel Gordon
- Colorado Animal Specialty & Emergency, Boulder, Colorado, USA
| | - Alexandra Riggs
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Laura Venner
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Edward Cooper
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Catherine Langston
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
6
|
Qu Z, Wu S, Zheng Y, Bing Y, Liu X, Li S, Li W, Zou X. Fecal metabolomics combined with metagenomics sequencing to analyze the antidepressant mechanism of Yueju Wan. J Pharm Biomed Anal 2024; 238:115807. [PMID: 37924576 DOI: 10.1016/j.jpba.2023.115807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/07/2023] [Accepted: 10/18/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Yueju Wan (YJW), defined in Danxi's Mastery of Medicine, has Qi-regulating and Qi-promoting effects. YJW has frequently been applied in the clinic for the treatment of depression. Substantial evidence has shown that depression is related to metabolic abnormalities of the gut microbiota, and traditional Chinese medicine (TCM) can treat depression by adjusting gut microbiota metabolism. The antidepressant effect of YJW is well established, but thus far, whether its mechanism of action is achieved by regulating the intestinal flora has not been elucidated. METHODS In this study, chronic unpredictable mild stress (CUMS) along with isolated feeding created a rat depression model, and YJW was administered for intervention. Rats were put through behavioral tests to determine their level of depression, and ELISA was utilized for measuring the level of monoamine neurotransmitters (MNTs) in the hippocampus. Metagenomic gene sequencing analysis was used to study the effect of depression on the intestinal flora in rats and the regulatory mechanism of YJW on the intestinal flora. Furthermore, ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS) was utilized for fecal metabolomics studies to further reveal the antidepressant mechanism of YJW. The antidepressant mechanism of YJW was explored and further verified by Western blot analysis. RESULTS Different doses of YJW improved the depressive state of rats and raised the levels of MNTs in the hippocampus. The results of metagenomic sequencing indicated that the YJW recovered the structure and diversity of the intestinal flora in depressed rats. Metabolomics revealed sustained changes in 21 metabolites after the treatment of YJW, suggesting that YJW can play an antidepressant role by improving abnormal metabolic pathways. The results of correlation analysis suggested that YJW might mediate Eubacterium, Oscillibacter, Roseburia, Romboutsia and Bacterium to regulate purine metabolism, tryptophan metabolism, primary bile acid biosynthesis, and glutamate metabolism and exert antidepressant effects. Western blot analysis showed that YJW reduced the content of IL-1β in the hippocampus, inhibited the activation of the NLRP3 inflammasome in the hippocampus of rats, and increased the content of ZO-1 in the colon of rats. CONCLUSION YJW can alleviate depressive symptoms in depressed rats, and its mechanism is connected to improving intestinal flora and regulating body metabolism.
Collapse
Affiliation(s)
- Zhongyuan Qu
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Shuang Wu
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Yan Zheng
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Yifan Bing
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Xueqin Liu
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Sunan Li
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Wenlan Li
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Xiang Zou
- Engineering Research Center on Natural Antineoplastic Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China.
| |
Collapse
|
7
|
Du Q, Li Q, Liao G, Li J, Ye P, Zhang Q, Gong X, Yang J, Li K. Emerging trends and focus of research on the relationship between traumatic brain injury and gut microbiota: a visualized study. Front Microbiol 2023; 14:1278438. [PMID: 38029105 PMCID: PMC10654752 DOI: 10.3389/fmicb.2023.1278438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Background Traumatic brain injury (TBI) is one of the most serious types of trauma and imposes a heavy social and economic burden on healthcare systems worldwide. The development of emerging biotechnologies is uncovering the relationship between TBI and gut flora, and gut flora as a potential intervention target is of increasing interest to researchers. Nevertheless, there is a paucity of research employing bibliometric methodologies to scrutinize the interrelation between these two. Therefore, this study visualized the relationship between TBI and gut flora based on bibliometric methods to reveal research trends and hotspots in the field. The ultimate objective is to catalyze progress in the preclinical and clinical evolution of strategies for treating and managing TBI. Methods Terms related to TBI and gut microbiota were combined to search the Scopus database for relevant documents from inception to February 2023. Visual analysis was performed using CiteSpace and VOSviewer. Results From September 1972 to February 2023, 2,957 documents published from 98 countries or regions were analyzed. The number of published studies on the relationship between TBI and gut flora has risen exponentially, with the United States, China, and the United Kingdom being representative of countries publishing in related fields. Research has formed strong collaborations around highly productive authors, but there is a relative lack of international cooperation. Research in this area is mainly published in high-impact journals in the field of neurology. The "intestinal microbiota and its metabolites," "interventions," "mechanism of action" and "other diseases associated with traumatic brain injury" are the most promising and valuable research sites. Targeting the gut flora to elucidate the mechanisms for the development of the course of TBI and to develop precisely targeted interventions and clinical management of TBI comorbidities are of great significant research direction and of interest to researchers. Conclusion The findings suggest that close attention should be paid to the relationship between gut microbiota and TBI, especially the interaction, potential mechanisms, development of emerging interventions, and treatment of TBI comorbidities. Further investigation is needed to understand the causal relationship between gut flora and TBI and its specific mechanisms, especially the "brain-gut microbial axis."
Collapse
Affiliation(s)
- Qiujing Du
- West China Hospital, Sichuan University/ West China School of Nursing, Sichuan University, Chengdu, China
| | - Qijie Li
- West China Hospital, Sichuan University/ West China School of Nursing, Sichuan University, Chengdu, China
| | - Guangneng Liao
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiafei Li
- West China Hospital, Sichuan University/ West China School of Nursing, Sichuan University, Chengdu, China
| | - Peiling Ye
- West China Hospital, Sichuan University/ West China School of Nursing, Sichuan University, Chengdu, China
| | - Qi Zhang
- West China Hospital, Sichuan University/ West China School of Nursing, Sichuan University, Chengdu, China
| | - Xiaotong Gong
- West China Hospital, Sichuan University/ West China School of Nursing, Sichuan University, Chengdu, China
| | - Jiaju Yang
- West China Hospital, Sichuan University/ West China School of Nursing, Sichuan University, Chengdu, China
| | - Ka Li
- West China Hospital, Sichuan University/ West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Wang T, Pan C, Xie C, Chen L, Song Z, Liao H, Xin C. Microbiota Metabolites and Immune Regulation Affect Ischemic Stroke Occurrence, Development, and Prognosis. Mol Neurobiol 2023; 60:6176-6187. [PMID: 37432592 DOI: 10.1007/s12035-023-03473-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/30/2023] [Indexed: 07/12/2023]
Abstract
The gut microbiota are not only related to the development and occurrence of digestive system disease, but also have a bidirectional relationship with nervous system diseases via the microbiota-gut-brain axis. At present, correlations between the gut microbiota and neurological diseases, including stroke, are one of the focuses of investigation and attention in the medical community. Ischemic stroke (IS) is a cerebrovascular disease accompanied by focal neurological deficit or central nervous system injury or death. In this review, we summarize the contemporary latest research on correlations between the gut microbiota and IS. Additionally, we discuss the mechanisms of gut microbiota implicated in IS and related to metabolite production and immune regulation. Moreover, the factors of gut microbiota that affecting IS occurrence, and research implicating the gut microbiota as potential therapeutic targets for IS, are highlighted. Our review highlights the evidential relationships and connections between the gut microbiota and IS pathogenesis and prognosis.
Collapse
Affiliation(s)
- Tao Wang
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Chuanling Pan
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Cheng Xie
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Liying Chen
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Zhangyong Song
- Southwest Medical University, 646000, Luzhou, People's Republic of China
| | - Huiling Liao
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China.
| | - Caiyan Xin
- Southwest Medical University, 646000, Luzhou, People's Republic of China.
| |
Collapse
|
9
|
Watanabe C, Oyanagi E, Aoki T, Hamada H, Kawashima M, Yamagata T, Kremenik MJ, Yano H. Antidepressant properties of voluntary exercise mediated by gut microbiota. Biosci Biotechnol Biochem 2023; 87:1407-1419. [PMID: 37667506 DOI: 10.1093/bbb/zbad115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/05/2023] [Indexed: 09/06/2023]
Abstract
Although regular exercise has been reported to prevent depression, it has not been clarified whether the gut microbiota is involved in the factors that prevent depression through exercise. We investigated the effects of voluntary exercise on the gut microbiota and the prevention of depression-like behaviors using mice. C57BL/6 J male mice were subjected to 10 weeks of sedentary control or wheel running, then they were subjected to social defeat stress (SDS). Exercise attenuated that sucrose drinking was decreased by SDS treatment. Exercise increased the expression of Bdnf and decreased expression of Zo-1 and Claudin5 in the brain. Fecal Turicibacter, Allobaculum, and Clostridium sensu stricto, and propionate in the cecum were decreased by the exercise. Voluntary exercise-induced antidepressant properties might be partially caused by suppression of serotonin uptake into gut microbiota and increase the permeability of the blood-brain barrier via reduced propionate production.
Collapse
Affiliation(s)
- Chihiro Watanabe
- Graduate School of Health Science and Technology, Kawasaki University of Medical Welfare, Kurashiki, Okayama, Japan
| | - Eri Oyanagi
- Department of Health and Sports Science, Kawasaki University of Medical Welfare, Kurashiki, Okayama, Japan
| | - Takafumi Aoki
- Department of Clinical Nutrition, Kawasaki University of Medical Welfare, Kurashiki, Okayama, Japan
| | - Hiroki Hamada
- Department of Health and Sports Science, Kawasaki University of Medical Welfare, Kurashiki, Okayama, Japan
| | - Masato Kawashima
- Department of Health and Sports Science, Kawasaki University of Medical Welfare, Kurashiki, Okayama, Japan
| | - Takashi Yamagata
- Department of Health and Sports Science, Kawasaki University of Medical Welfare, Kurashiki, Okayama, Japan
| | - Michel J Kremenik
- Department of Health and Sports Science, Kawasaki University of Medical Welfare, Kurashiki, Okayama, Japan
| | - Hiromi Yano
- Graduate School of Health Science and Technology, Kawasaki University of Medical Welfare, Kurashiki, Okayama, Japan
- Department of Health and Sports Science, Kawasaki University of Medical Welfare, Kurashiki, Okayama, Japan
| |
Collapse
|
10
|
Wang ZG, Sharma A, Feng L, Muresanu DF, Tian ZR, Lafuente JV, Buzoianu AD, Nozari A, Huang H, Chen L, Manzhulo I, Wiklund L, Sharma HS. Co-administration of dl-3-n-butylphthalide and neprilysin is neuroprotective in Alzheimer disease associated with mild traumatic brain injury. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 172:145-185. [PMID: 37833011 DOI: 10.1016/bs.irn.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
dl-3-n-Butylphthalide is a potent synthetic Chinese celery extract that is highly efficient in inducing neuroprotection in concussive head injury (CHI), Parkinson's disease, Alzheimer's disease, stroke as well as depression, dementia, anxiety and other neurological diseases. Thus, there are reasons to believe that dl-3-n-butylphthalide could effectively prevent Alzheimer's disease brain pathology. Military personnel during combat operation or veterans are often the victims of brain injury that is a major risk factor for developing Alzheimer's disease in their later lives. In our laboratory we have shown that CHI exacerbates Alzheimer's disease brain pathology and reduces the amyloid beta peptide (AβP) inactivating enzyme neprilysin. We have used TiO2 nanowired-dl-3-n-butylphthalide in attenuating Parkinson's disease brain pathology exacerbated by CHI. Nanodelivery of dl-3-n-butylphthalide appears to be more potent as compared to the conventional delivery of the compound. Thus, it would be interesting to examine the effects of nanowired dl-3-n-butylphthalide together with nanowired delivery of neprilysin in Alzheimer's disease model on brain pathology. In this investigation we found that nanowired delivery of dl-3-n-butylphthalide together with nanowired neprilysin significantly attenuated brain pathology in Alzheimer's disease model with CHI, not reported earlier. The possible mechanism and clinical significance is discussed based on the current literature.
Collapse
Affiliation(s)
- Zhenguo G Wang
- CSPC NBP Pharmaceutical Medicine, Shijiazhuang, Hebei Province, P.R. China
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan Road (West), Shijiazhuang, Hebei Province, P.R. China
| | - Dafin F Muresanu
- Dept. Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro'' Institute for Neurological Research and Diagnostic, Mircea Eliade Street, Cluj-Napoca, Romania
| | - Z Ryan Tian
- Dept. Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - José Vicente Lafuente
- LaNCE, Dept. Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ala Nozari
- Department of Anesthesiology, Boston University, Albany str, Boston, MA, USA
| | - Hongyun Huang
- Beijing Hongtianji Neuroscience Academy, Beijing, P.R. China
| | - Lin Chen
- Department of Neurosurgery, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing, P.R. China
| | - Igor Manzhulo
- Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden; LaNCE, Dept. Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain.
| |
Collapse
|
11
|
Zeng Y, Song J, Zhang Y, Huang Y, Zhang F, Suo H. Promoting Effect and Potential Mechanism of Lactobacillus pentosus LPQ1-Produced Active Compounds on the Secretion of 5-Hydroxytryptophan. Foods 2022; 11:foods11233895. [PMID: 36496703 PMCID: PMC9740157 DOI: 10.3390/foods11233895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
5-hydroxytryptophan (5-HTP) is an important substance thought to improve depression. It has been shown that Lactobacillus can promote the secretion of 5-HTP in the body and thus ameliorate depression-like behavior in mice. However, the mechanism by which Lactobacillus promotes the secretion of 5-HTP is unclear. In this study, we investigated the promoting effect and mechanism of Lactobacillus, isolated from Chinese fermented foods, on the secretion of 5-HTP. The results showed that Lactobacillus (L.) pentosus LPQ1 exhibited the strongest 5-HTP secretion-promoting effect ((9.44 ± 0.69)-fold), which was dependent on the mixture of compounds secreted by L. pentosus LPQ1 (termed SLPQ1). In addition, the results of the RNA sequencing (RNA-seq) and quantitative real-time polymerase chain reaction (qRT-PCR) analyses indicated that SLPQ1 alters the TNF and oxidative phosphorylation signaling pathways. Moreover, the SLPQ1 ultrafiltration fraction (>10 kDa) showed a similar 5-HTP promoting effect as SLPQ1. Furthermore, reverse-phase liquid chromatography-tandem mass spectrometry (RPLC-MS/MS) identified 29 compounds of >10 kDa in SLPQ1, including DUF488 domain-containing protein, BspA family leucine-rich repeat surface protein, and 30S ribosomal protein S5, which together accounted for up to 62.51%. This study reports new findings on the mechanism by which L. pentosus LPQ1 promotes 5-HTP production in some cell lines in vitro.
Collapse
Affiliation(s)
- Yixiu Zeng
- College of Food Science, Southwest University, Chongqing 400715, China
- College of Bioengineering, Jingchu University of Technology, Jingmen 448000, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuhong Zhang
- Institute of Food Sciences and Technology, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China
| | - Yechuan Huang
- College of Bioengineering, Jingchu University of Technology, Jingmen 448000, China
| | - Feng Zhang
- Chongqing Tianyou Dairy Co., Ltd., Chongqing 401120, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China
- Correspondence:
| |
Collapse
|
12
|
Ye H, Liu Z, Zhou L, Cai Q. Dynamic Observation of the Effect of L-Theanine on Cerebral Ischemia-Reperfusion Injury Using Magnetic Resonance Imaging under Mathematical Model Analysis. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:5679665. [PMID: 34737849 PMCID: PMC8563127 DOI: 10.1155/2021/5679665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/01/2021] [Accepted: 09/29/2021] [Indexed: 01/10/2023]
Abstract
This study was to use the partial differential mathematical model to analyze the magnetic resonance imaging (MRI) images of cerebral ischemia-reperfusion injury (CIRI) and to dynamically observe the role of L-theanine in CIRI based on this. 30 patients with cerebral ischemia in a hospital in a certain area were selected and divided into a cerebral ischemia group and a L-theanine treatment group. The two groups of patients were examined by MRI within 48 hours, and the relative apparent diffusion coefficient (rADC) of the cerebral ischemic part of the patients was determined. The partial differential mathematical model was used for data processing to obtain the function of cerebral ischemia time and infarct area, and the data of patients in the cerebral ischemia group and L-theanine treatment group were compared and analyzed. The results showed that the partial differential mathematical model could effectively analyze the linear relationship between the rADC value and time in the treatment of CIRI using L-theanine. The rADC values of the four points of interest in the L-theanine treatment group all increased with time, and there was a positive correlation between the variables X and Y. In observing the efficacy indicators of L-theanine, the L-theanine treatment group showed a significant advantage in the neurospecific enolase (NSE) content compared with the cerebral ischemia group (P < 0.01), and the neurological function score of the L-theanine treatment group gradually decreased and showed a statistically obvious difference on the 7th day of treatment (P < 0.05). In summary, it was verified in this study that the role of L-theanine in the treatment of CIRI was of a great and positive significance for the subsequent treatment of patients with cerebral ischemia, providing reliable theoretical basis and data basis for clinical treatment of CIRI.
Collapse
Affiliation(s)
- Hui Ye
- Renmin Hospital of Wuhan University, Department of Neurosurgery, Wuhan, Hubei 430060, China
| | - Zaiming Liu
- Renmin Hospital of Wuhan University, Department of Neurosurgery, Wuhan, Hubei 430060, China
| | - Long Zhou
- Renmin Hospital of Wuhan University, Department of Neurosurgery, Wuhan, Hubei 430060, China
| | - Qiang Cai
- Renmin Hospital of Wuhan University, Department of Neurosurgery, Wuhan, Hubei 430060, China
| |
Collapse
|
13
|
Sharma HS, Muresanu DF, Ozkizilcik A, Sahib S, Tian ZR, Lafuente JV, Castellani RJ, Nozari A, Feng L, Buzoianu AD, Menon PK, Patnaik R, Wiklund L, Sharma A. Superior antioxidant and anti-ischemic neuroprotective effects of cerebrolysin in heat stroke following intoxication of engineered metal Ag and Cu nanoparticles: A comparative biochemical and physiological study with other stroke therapies. PROGRESS IN BRAIN RESEARCH 2021; 266:301-348. [PMID: 34689862 DOI: 10.1016/bs.pbr.2021.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Military personnel are often exposed to high environmental heat associated with industrial or ambient abundance of nanoparticles (NPs) affecting brain function. We have shown that engineered metal NPs Ag and Cu exacerbate hyperthermia induced brain pathology. Thus, exploration of novel drug therapy is needed for effective neuroprotection in heat stroke intoxicated with NPs. In this investigation neuroprotective effects of cerebrolysin, a balanced composition of several neurotrophic factors and active peptides fragments exhibiting powerful antioxidant and anti-ischemic effects was examined in heat stroke after NPs intoxication. In addition, its efficacy is compared to currently used drugs in post-stroke therapies in clinics. Thus, levertiracetam, pregabalin, topiramat and valproate were compared in standard doses with cerebrolysin in heat stroke intoxicated with Cu or Ag NPs (50-60nm, 50mg/kg, i.p./day for 7 days). Rats were subjected to 4h heat stress (HS) in a biological oxygen demand incubator at 38°C (Relative Humidity 45-47%; Wind velocity 22.4-25.6cm/s) that resulted in profound increase in oxidants Luminol, Lucigenin, Malondialdehyde and Myeloperoxidase, and a marked decrease in antioxidant Glutathione. At this time severe reductions in the cerebral blood flow (CBF) was seen together with increased blood-brain barrier (BBB) breakdown and brain edema formation. These pathophysiological responses were exacerbated in NPs treated heat-stressed animals. Pretreatment with cerebrolysin (2.5mL/kg, i.v.) once daily for 3 days significantly attenuated the oxidative stress, BBB breakdown and brain edema and improved CBF in the heat stressed group. The other drugs were least effective on brain pathology following heat stroke. However, in NPs treated heat stressed animals 5mL/kg conventional cerebrolysin and 2.5mL/kg nanowired cerebrolysin is needed to attenuate oxidative stress, BBB breakdown, brain edema and to improve CBF. Interestingly, the other drugs even in higher doses used are unable to alter brain pathologies in NPs and heat stress. These observations are the first to demonstrate that cerebrolysin is the most superior antioxidant and anti-ischemic drug in NPs exposed heat stroke, not reported earlier.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Asya Ozkizilcik
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, United States
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
14
|
Sharma A, Feng L, Muresanu DF, Sahib S, Tian ZR, Lafuente JV, Buzoianu AD, Castellani RJ, Nozari A, Wiklund L, Sharma HS. Manganese nanoparticles induce blood-brain barrier disruption, cerebral blood flow reduction, edema formation and brain pathology associated with cognitive and motor dysfunctions. PROGRESS IN BRAIN RESEARCH 2021; 265:385-406. [PMID: 34560926 DOI: 10.1016/bs.pbr.2021.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nanoparticles affect blood-brain barrier (BBB) and brain edema formation resulting in sensory-motor dysfunction. Exposure of Mn nanoparticles from industrial sources in humans could target basal ganglia resulting in Parkinson's disease. In present investigation, Mn exposure on brain pathology in a rat model was examined. Rats received Mn nanoparticles (30-40nm size) in a dose of 10 or 20mg/kg, i.p. once daily for 7 days and behavioral dysfunctions on Rota Rod performance, inclined plane angle and grid-walking tests as well as gait performances were examined. In addition, BBB breakdown to Evans blue and radioiodine, brain edema formation and neural injuries were also evaluated. Mn nanoparticles treated rats exhibited cognitive and motor dysfunction on the 8th day. At this time, BBB disruption, reduction in cerebral blood flow (CBF), brain edema formation and brain pathology were most marked in the sensory-motor cortex, hippocampus, caudate putamen, cerebellum and thalamus followed by hypothalamus, pons, medulla and spinal cord. In these brain areas, neuronal injuries using Nissl staining was clearly seen. These effects of Mn nanoparticle are dose dependent. These results are the first to demonstrate that Mn nanoparticles induce selective brain pathology resulting in cognitive and motor dysfunction, not reported earlier.
Collapse
Affiliation(s)
- Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, China
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
15
|
Wiklund L, Sharma A, Patnaik R, Muresanu DF, Sahib S, Tian ZR, Castellani RJ, Nozari A, Lafuente JV, Sharma HS. Upregulation of hemeoxygenase enzymes HO-1 and HO-2 following ischemia-reperfusion injury in connection with experimental cardiac arrest and cardiopulmonary resuscitation: Neuroprotective effects of methylene blue. PROGRESS IN BRAIN RESEARCH 2021; 265:317-375. [PMID: 34560924 DOI: 10.1016/bs.pbr.2021.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Oxidative stress plays an important role in neuronal injuries after cardiac arrest. Increased production of carbon monoxide (CO) by the enzyme hemeoxygenase (HO) in the brain is induced by the oxidative stress. HO is present in the CNS in two isoforms, namely the inducible HO-1 and the constitutive HO-2. Elevated levels of serum HO-1 occurs in cardiac arrest patients and upregulation of HO-1 in cardiac arrest is seen in the neurons. However, the role of HO-2 in cardiac arrest is not well known. In this review involvement of HO-1 and HO-2 enzymes in the porcine brain following cardiac arrest and resuscitation is discussed based on our own observations. In addition, neuroprotective role of methylene blue- an antioxidant dye on alterations in HO under in cardiac arrest is also presented. The biochemical findings of HO-1 and HO-2 enzymes using ELISA were further confirmed by immunocytochemical approach to localize selective regional alterations in cardiac arrest. Our observations are the first to show that cardiac arrest followed by successful cardiopulmonary resuscitation results in significant alteration in cerebral concentrations of HO-1 and HO-2 levels indicating a prominent role of CO in brain pathology and methylene blue during CPR followed by induced hypothermia leading to superior neuroprotection after return of spontaneous circulation (ROSC), not reported earlier.
Collapse
Affiliation(s)
- Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
16
|
Niu F, Sharma A, Wang Z, Feng L, Muresanu DF, Sahib S, Tian ZR, Lafuente JV, Buzoianu AD, Castellani RJ, Nozari A, Menon PK, Patnaik R, Wiklund L, Sharma HS. Nanodelivery of oxiracetam enhances memory, functional recovery and induces neuroprotection following concussive head injury. PROGRESS IN BRAIN RESEARCH 2021; 265:139-230. [PMID: 34560921 DOI: 10.1016/bs.pbr.2021.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Military personnel are the most susceptible to concussive head injury (CHI) caused by explosion, blast or missile or blunt head trauma. Mild to moderate CHI could induce lifetime functional and cognitive disturbances causing significant decrease in quality of life. Severe CHI leads to instant death and lifetime paralysis. Thus, further exploration of novel therapeutic agents or new features of known pharmacological agents are needed to enhance quality of life of CHI victims. Previous reports from our laboratory showed that mild CHI induced by weight drop technique causing an impact of 0.224N results in profound progressive functional deficit, memory impairment and brain pathology from 5h after trauma that continued over several weeks of injury. In this investigation we report that TiO2 nanowired delivery of oxiracetam (50mg/kg, i.p.) daily for 5 days after CHI resulted in significant improvement of functional deficit on the 8th day. This was observed using Rota Rod treadmill, memory improvement assessed by the time spent in finding hidden platform under water. The motor function improvement is seen in oxiracetam treated CHI group by placing forepaw on an inclined mesh walking and foot print analysis for stride length and distance between hind feet. TiO2-nanowired oxiracetam also induced marked improvements in the cerebral blood flow, reduction in the BBB breakdown and edema formation as well as neuroprotection of neuronal, glial and myelin damages caused by CHI at light and electron microscopy on the 7th day after 5 days TiO2 oxiracetam treatment. Adverse biochemical events such as upregulation of CSF nitrite and nitrate, IL-6, TNF-a and p-Tau are also reduced significantly in oxiracetam treated CHI group. On the other hand post treatment of 100mg/kg dose of normal oxiracetam in identical conditions after CHI is needed to show slight but significant neuroprotection together with mild recovery of memory function and functional deficits on the 8th day. These observations are the first to point out that nanowired delivery of oxiracetam has superior neuroprotective ability in CHI. These results indicate a promising clinical future of TiO2 oxiracetam in treating CHI patients for better quality of life and neurorehabilitation, not reported earlier.
Collapse
Affiliation(s)
- Feng Niu
- CSPC NBP Pharmaceutical Medicine, Shijiazhuang, China
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Zhenguo Wang
- CSPC NBP Pharmaceutical Medicine, Shijiazhuang, China
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, China
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
17
|
Sahib S, Sharma A, Muresanu DF, Zhang Z, Li C, Tian ZR, Buzoianu AD, Lafuente JV, Castellani RJ, Nozari A, Patnaik R, Menon PK, Wiklund L, Sharma HS. Nanodelivery of traditional Chinese Gingko Biloba extract EGb-761 and bilobalide BN-52021 induces superior neuroprotective effects on pathophysiology of heat stroke. PROGRESS IN BRAIN RESEARCH 2021; 265:249-315. [PMID: 34560923 DOI: 10.1016/bs.pbr.2021.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Military personnel often exposed to high summer heat are vulnerable to heat stroke (HS) resulting in abnormal brain function and mental anomalies. There are reasons to believe that leakage of the blood-brain barrier (BBB) due to hyperthermia and development of brain edema could result in brain pathology. Thus, exploration of suitable therapeutic strategies is needed to induce neuroprotection in HS. Extracts of Gingko Biloba (EGb-761) is traditionally used in a variety of mental disorders in Chinese traditional medicine since ages. In this chapter, effects of TiO2 nanowired EGb-761 and BN-52021 delivery to treat brain pathologies in HS is discussed based on our own investigations. We observed that TiO2 nanowired delivery of EGb-761 or TiO2 BN-52021 is able to attenuate more that 80% reduction in the brain pathology in HS as compared to conventional drug delivery. The functional outcome after HS is also significantly improved by nanowired delivery of EGb-761 and BN-52021. These observations are the first to suggest that nanowired delivery of EGb-761 and BN-52021 has superior therapeutic effects in HS not reported earlier. The clinical significance in relation to the military medicine is discussed.
Collapse
Affiliation(s)
- Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Zhiqiang Zhang
- Department of Neurosurgery, Chinese Medicine Hospital of Guangdong Province, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Yuexiu, Guangzhou, China
| | - Cong Li
- Department of Neurosurgery, Chinese Medicine Hospital of Guangdong Province, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Yuexiu, Guangzhou, China
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
18
|
Gumusoglu S, Scroggins S, Vignato J, Santillan D, Santillan M. The Serotonin-Immune Axis in Preeclampsia. Curr Hypertens Rep 2021; 23:37. [PMID: 34351543 DOI: 10.1007/s11906-021-01155-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 02/01/2023]
Abstract
PURPOSE OF REVIEW To review the literature and detail the potential immune mechanisms by which hyperserotonemia may drive pro-inflammation in preeclampsia and to provide insights into potential avenues for therapeutic discovery. RECENT FINDINGS Preeclampsia is a severe hypertensive complication of pregnancy associated with significant maternal and fetal risk. Though it lacks any effective treatment aside from delivery of the fetus and placenta, recent work suggests that targeting serotonin systems may be one effective therapeutic avenue. Serotonin dysregulation underlies multiple domains of physiologic dysfunction in preeclampsia, including vascular hyporeactivity and excess platelet aggregation. Broadly, serotonin is increased across maternal and placental domains, driven by decreased catabolism and increased availability of tryptophan precursor. Pro-inflammation, another hallmark of the disease, may drive hyperserotonemia in preeclampsia. Interactions between immunologic dysfunction and hyperserotonemia in preeclampsia depend on multiple mechanisms, which we discuss in the present review. These include altered immune cell, kynurenine pathway metabolism, and aberrant cytokine production mechanisms, which we detail. Future work may leverage animal and in vitro models to reveal serotonin targets in the context of preeclampsia's immune biology, and ultimately to mitigate vascular and platelet dysfunction in the disease. Hyperserotonemia in preeclampsia drives pro-inflammation via metabolic, immune cell, and cytokine-based mechanisms. These immune mechanisms may be targeted to treat vascular and platelet endophenotypes in preeclampsia.
Collapse
Affiliation(s)
- Serena Gumusoglu
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.
| | - Sabrina Scroggins
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Julie Vignato
- University of Iowa College of Nursing, Iowa City, Iowa, USA
| | - Donna Santillan
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Mark Santillan
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
19
|
Cui J, Jia J. Natural COX-2 Inhibitors as Promising Anti-inflammatory Agents: An Update. Curr Med Chem 2021; 28:3622-3646. [PMID: 32942970 DOI: 10.2174/0929867327999200917150939] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/09/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022]
Abstract
COX-2, a key enzyme that catalyzed the rate-limiting steps in the conversion of arachidonic acid to prostaglandins, played a pivotal role in the inflammatory process. Different from other family members, COX-2 was barely detectable in normal physiological conditions and highly inducible during the acute inflammatory response of human bodies to injuries or infections. Therefore, the therapeutic utilization of selective COX-2 inhibitors has already been considered as an effective approach for the treatment of inflammation with diminished side effects. Currently, both traditional and newer NSAIDs are the commonly prescribed medications that treat inflammatory diseases by targeting COX-2. However, due to the cardiovascular side-effects of the NSAIDs, finding reasonable alternatives for these frequently prescribed medicines are a hot spot in medicinal chemistry research. Naturallyoccurring compounds have been reported to inhibit COX-2, thereby possessing beneficial effects against inflammation and certain cell injury. The review mainly concentrated on recently identified natural products and derivatives as COX-2 inhibitors, the characteristics of their structural core scaffolds, their anti-inflammatory effects, molecular mechanisms for enzymatic inhibition, and related structure-activity relationships. According to the structural features, the natural COX-2 inhibitors were mainly divided into the following categories: natural phenols, flavonoids, stilbenes, terpenoids, quinones, and alkaloids. Apart from the anti-inflammatory activities, a few dietary COX-2 inhibitors from nature origin also exhibited chemopreventive effects by targeting COX-2-mediated carcinogenesis. The utilization of these natural remedies in future cancer prevention was also discussed. In all, the survey on the characterized COX-2 inhibitors from natural sources paves the way for the further development of more potent and selective COX-2 inhibitors in the future.
Collapse
Affiliation(s)
- Jiahua Cui
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jinping Jia
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
20
|
Tryptophan metabolism is dysregulated in individuals with Fanconi anemia. Blood Adv 2021; 5:250-261. [PMID: 33570643 DOI: 10.1182/bloodadvances.2020002794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/25/2020] [Indexed: 12/15/2022] Open
Abstract
Fanconi anemia (FA) is a complex genetic disorder associated with progressive marrow failure and a strong predisposition to malignancy. FA is associated with metabolic disturbances such as short stature, insulin resistance, thyroid dysfunction, abnormal body mass index (BMI), and dyslipidemia. We studied tryptophan metabolism in FA by examining tryptophan and its metabolites before and during the stress of hematopoietic stem cell transplant (HSCT). Tryptophan is an essential amino acid that can be converted to serotonin and kynurenine. We report here that serotonin levels are markedly elevated 14 days after HSCT in individuals with FA, in contrast to individuals without FA. Kynurenine levels are significantly reduced in individuals with FA compared with individuals without FA, before and after HSCT. Most peripheral serotonin is made in the bowel. However, serotonin levels in stool decreased in individuals with FA after transplant, similar to individuals without FA. Instead, we detected serotonin production in the skin in individuals with FA, whereas none was seen in individuals without FA. As expected, serotonin and transforming growth factor β (TGF-β) levels were closely correlated with platelet count before and after HSCT in persons without FA. In FA, neither baseline serotonin nor TGF-B correlated with baseline platelet count (host-derived platelets), only TGF-B correlated 14 days after transplant (blood bank-derived platelets). BMI was negatively correlated with serotonin in individuals with FA, suggesting that hyperserotonemia may contribute to growth failure in FA. Serotonin is a potential therapeutic target, and currently available drugs might be beneficial in restoring metabolic balance in individuals with FA.
Collapse
|
21
|
Quan W, Jiao Y, Li Y, Xue C, Liu G, Wang Z, Qin F, He Z, Zeng M, Chen J. Metabolic changes from exposure to harmful Maillard reaction products and high-fat diet on Sprague-Dawley rats. Food Res Int 2021; 141:110129. [DOI: 10.1016/j.foodres.2021.110129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 12/17/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022]
|
22
|
Pang Q, Jin H, Wang Y, Dai M, Liu S, Tan Y, Liu H, Lu Z. Depletion of serotonin relieves concanavalin A-induced liver fibrosis in mice by inhibiting inflammation, oxidative stress, and TGF-β1/Smads signaling pathway. Toxicol Lett 2021; 340:123-132. [PMID: 33429011 DOI: 10.1016/j.toxlet.2021.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/12/2022]
Abstract
Serotonin exerts important functions in several liver pathophysiological processes. In this study, we investigated the role of serotonin in concanavalin A (Con A)-induced liver fibrosis (LF) in mice and the underlying mechanisms. To establish the mouse model of LF, mice of wild-type (WT) and tryptophan hydroxylase 1 (Tph1) knockout (serotonin depletion) received Con A for 8 successive weeks. Degree of fibrosis was assessed by Sirius red staining, as well as the measurements of alpha smooth muscle actin (α- SMA), hydroxyproline (Hyp) and type I collagen in liver tissues. To elucidate the potential mechanisms, we assessed the effect of serotonin depletion on inflammatory, oxidative stress as well as TGF-β1/Smads signaling pathway. We found that serotonin depletion significantly inhibited collagen deposition as evaluated by less collagenous fiber in Sirus Red staining and reduced contents of Hyp and type I collagen. In addition, the absence of serotonin significantly inhibited the release of several inflammatory cytokines, including interleukin-6 (IL-6), interferon-gamma (IFN-γ), tumor necrosis-alpha (TNF-α), and transforming growth factor β1 (TGF-β1). Oxidative stress was also largely mitigated in LF mice with serotonin deficiency as manifested by the decreases of oxidative stress markers (malonaldehyde (MDA) and myeloperoxidase (MPO)), as well as the increases of antioxidant stress indicators (glutathione (GSH), and GSH-px, catalase (CAT), superoxide dismutase (SOD)) in liver tissues. Moreover, the lack of serotonin may provide an antifibrotic role by inhibiting the intrahepatic expressions of TGF-β1, phosphorylated-smad2 (p-smad2), and phosphorylated-smad3 (p-smad3). These results indicated that, serotonin depletion attenuates Con A-induced LF through the regulation of inflammatory response, oxidative stress injury, and TGF-β1/Smads signaling pathway.
Collapse
Affiliation(s)
- Qing Pang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000 Anhui Province, China; Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061 Shaanxi Province, China
| | - Hao Jin
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000 Anhui Province, China
| | - Yong Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000 Anhui Province, China
| | - Mengnan Dai
- Clinical Medical College of Bengbu Medical College, Bengbu, 233000 Anhui Province, China
| | - Shuangchi Liu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000 Anhui Province, China
| | - Yi Tan
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000 Anhui Province, China.
| | - Huichun Liu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000 Anhui Province, China.
| | - Zheng Lu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000 Anhui Province, China.
| |
Collapse
|
23
|
Rodriguez EA, Yamamoto BK. Toxic Effects of Methamphetamine on Perivascular Health: Co-morbid Effects of Stress and Alcohol Use Disorders. Curr Neuropharmacol 2021; 19:2092-2107. [PMID: 34344290 PMCID: PMC9185763 DOI: 10.2174/1570159x19666210803150023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 12/04/2022] Open
Abstract
Methamphetamine (Meth) abuse presents a global problem and commonly occurs with stress and/or alcohol use disorders. Regardless, the biological causes and consequences of these comorbidities are unclear. Whereas the mechanisms of Meth, stress, and alcohol abuse have been examined individually and well-characterized, these processes overlap significantly and can impact the neural and peripheral consequences of Meth. This review focuses on the deleterious cardio- and cerebrovascular effects of Meth, stress, alcohol abuse, and their comorbid effects on the brain and periphery. Points of emphasis are on the composition of the blood-brain barrier and their effects on the heart and vasculature. The autonomic nervous system, inflammation, and oxidative stress are specifically highlighted as common mediators of the toxic consequences to vascular and perivascular health. A significant portion of the Meth abusing population also presents with stress and alcohol use disorders, prompting a need to understand the mechanisms underlying their comorbidities. Little is known about their possible convergent effects. Therefore, the purpose of this critical review is to identify shared mechanisms of Meth, chronic stress, and alcohol abuse that contributes to the dysfunction of vascular health and underscores the need for studies that directly address their interactions.
Collapse
Affiliation(s)
- Eric A. Rodriguez
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Bryan K. Yamamoto
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
24
|
TELLI G, KAZKAYASI I, UMA S. The effects of 5-hydroxytryptophan on carrageenan-induced mouse paw oedemas. REV NUTR 2021; 34. [DOI: 10.1590/1678-9865202134e200119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
ABSTRACT Objective 5-Hydroxytryptophan is the precursor compound of serotonin biosynthesis. The oral absorption of 5-Hydroxytryptophan is close to 100% and, unlike serotonin, it crosses the blood-brain barrier freely. 5-Hydroxytryptophan has been used as a food supplement for many years to treat anxiety and depression. Recent studies have shown that 5-Hydroxytryptophan suppresses the pro-inflammatory mediators and is effective in some inflammatory diseases, such as arthritis and allergic asthma. However, the role of 5-Hydroxytryptophan supplements on acute peripheral inflammation has not been investigated yet. In this study, the in vivo anti-inflammatory activity of 5-Hydroxytryptophan was evaluated with a carrageenan-induced paw oedema test in mice. Methods For the investigation of the acute antiinflammatory activity, single oral doses of 5-Hydroxytryptophan (1.5, 5 and 20mg/kg) were given to mice 1.5 hours prior to the carrageenan test. For chronic activity, the same oral doses were administered daily for two weeks prior to the carrageenan test on the 14th day. To induce inflammation, 0.01mL of 2% carrageenan was injected into the paws of mice. Results Supplementation with 5-Hydroxytryptophan significantly reduced inflammation in a dose-independent manner which was irrespective of the duration of exposure (per cent inhibition in acute experiments was 35.4%, 20.9%, 24.0%, and per cent inhibition in chronic experiments was 29.5%, 35.3%, 40.8% for the doses of 1.5, 5, and 20mg/kg, respectively). Conclusion Our findings demonstrate for the first time that 5-HTP supplements have the potential of suppressing the measures of acute peripheral inflammation. It is suggested that, apart from several diseases where serotonin is believed to play an important role, including depression, patients with inflammatory conditions may also benefit from 5-HTP.
Collapse
|
25
|
Maffei ME. 5-Hydroxytryptophan (5-HTP): Natural Occurrence, Analysis, Biosynthesis, Biotechnology, Physiology and Toxicology. Int J Mol Sci 2020; 22:E181. [PMID: 33375373 PMCID: PMC7796270 DOI: 10.3390/ijms22010181] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 01/20/2023] Open
Abstract
L-5-hydroxytryptophan (5-HTP) is both a drug and a natural component of some dietary supplements. 5-HTP is produced from tryptophan by tryptophan hydroxylase (TPH), which is present in two isoforms (TPH1 and TPH2). Decarboxylation of 5-HTP yields serotonin (5-hydroxytryptamine, 5-HT) that is further transformed to melatonin (N-acetyl-5-methoxytryptamine). 5-HTP plays a major role both in neurologic and metabolic diseases and its synthesis from tryptophan represents the limiting step in serotonin and melatonin biosynthesis. In this review, after an look at the main natural sources of 5-HTP, the chemical analysis and synthesis, biosynthesis and microbial production of 5-HTP by molecular engineering will be described. The physiological effects of 5-HTP are discussed in both animal studies and human clinical trials. The physiological role of 5-HTP in the treatment of depression, anxiety, panic, sleep disorders, obesity, myoclonus and serotonin syndrome are also discussed. 5-HTP toxicity and the occurrence of toxic impurities present in tryptophan and 5-HTP preparations are also discussed.
Collapse
Affiliation(s)
- Massimo E Maffei
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| |
Collapse
|
26
|
Zhang Y, Wang Z, Peng J, Gerner ST, Yin S, Jiang Y. Gut microbiota-brain interaction: An emerging immunotherapy for traumatic brain injury. Exp Neurol 2020; 337:113585. [PMID: 33370556 DOI: 10.1016/j.expneurol.2020.113585] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/14/2020] [Accepted: 12/20/2020] [Indexed: 02/06/2023]
Abstract
Individuals suffering from traumatic brain injury (TBI) often experience the activation of the immune system, resulting in declines in cognitive and neurological function after brain injury. Despite decades of efforts, approaches for clinically effective treatment are sparse. Evidence on the association between current therapeutic strategies and clinical outcomes after TBI is limited to poorly understood mechanisms. For decades, an increasing number of studies suggest that the gut-brain axis (GBA), a bidirectional communication system between the central nervous system (CNS) and the gastrointestinal tract, plays a critical role in systemic immune response following neurological diseases. In this review, we detail current knowledge of the immune pathologies of GBA after TBI. These processes may provide a new therapeutic target and rehabilitation strategy developed and used in clinical treatment of TBI patients.
Collapse
Affiliation(s)
- Yuxuan Zhang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Zhaoyang Wang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Stefan T Gerner
- Department of Neurology, University Hospital Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Shigang Yin
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
27
|
Sharma A, Muresanu DF, Castellani RJ, Nozari A, Lafuente JV, Sahib S, Tian ZR, Buzoianu AD, Patnaik R, Wiklund L, Sharma HS. Mild traumatic brain injury exacerbates Parkinson's disease induced hemeoxygenase-2 expression and brain pathology: Neuroprotective effects of co-administration of TiO 2 nanowired mesenchymal stem cells and cerebrolysin. PROGRESS IN BRAIN RESEARCH 2020; 258:157-231. [PMID: 33223035 DOI: 10.1016/bs.pbr.2020.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mild traumatic brain injury (mTBI) is one of the leading predisposing factors in the development of Parkinson's disease (PD). Mild or moderate TBI induces rapid production of tau protein and alpha synuclein (ASNC) in the cerebrospinal fluid (CSF) and in several brain areas. Enhanced tau-phosphorylation and ASNC alters the molecular machinery of the brain leading to PD pathology. Recent evidences show upregulation of constitutive isoform of hemeoxygenase (HO-2) in PD patients that correlates well with the brain pathology. mTBI alone induces profound upregulation of HO-2 immunoreactivity. Thus, it would be interesting to explore whether mTBI exacerbates PD pathology in relation to tau, ASNC and HO-2 expression. In addition, whether neurotrophic factors and stem cells known to reduce brain pathology in TBI could induce neuroprotection in PD following mTBI. In this review role of mesenchymal stem cells (MSCs) and cerebrolysin (CBL), a well-balanced composition of several neurotrophic factors and active peptide fragments using nanowired delivery in PD following mTBI is discussed based on our own investigation. Our results show that mTBI induces concussion exacerbates PD pathology and nanowired delivery of MSCs and CBL induces superior neuroprotection. This could be due to reduction in tau, ASNC and HO-2 expression in PD following mTBI, not reported earlier. The functional significance of our findings in relation to clinical strategies is discussed.
Collapse
Affiliation(s)
- Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
28
|
Sharma A, Muresanu DF, Sahib S, Tian ZR, Castellani RJ, Nozari A, Lafuente JV, Buzoianu AD, Bryukhovetskiy I, Manzhulo I, Patnaik R, Wiklund L, Sharma HS. Concussive head injury exacerbates neuropathology of sleep deprivation: Superior neuroprotection by co-administration of TiO 2-nanowired cerebrolysin, alpha-melanocyte-stimulating hormone, and mesenchymal stem cells. PROGRESS IN BRAIN RESEARCH 2020; 258:1-77. [PMID: 33223033 DOI: 10.1016/bs.pbr.2020.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sleep deprivation (SD) is common in military personnel engaged in combat operations leading to brain dysfunction. Military personnel during acute or chronic SD often prone to traumatic brain injury (TBI) indicating the possibility of further exacerbating brain pathology. Several lines of evidence suggest that in both TBI and SD alpha-melanocyte-stimulating hormone (α-MSH) and brain-derived neurotrophic factor (BDNF) levels decreases in plasma and brain. Thus, a possibility exists that exogenous supplement of α-MSH and/or BDNF induces neuroprotection in SD compounded with TBI. In addition, mesenchymal stem cells (MSCs) are very portent in inducing neuroprotection in TBI. We examined the effects of concussive head injury (CHI) in SD on brain pathology. Furthermore, possible neuroprotective effects of α-MSH, MSCs and neurotrophic factors treatment were explored in a rat model of SD and CHI. Rats subjected to 48h SD with CHI exhibited higher leakage of BBB to Evans blue and radioiodine compared to identical SD or CHI alone. Brain pathology was also exacerbated in SD with CHI group as compared to SD or CHI alone together with a significant reduction in α-MSH and BDNF levels in plasma and brain and enhanced level of tumor necrosis factor-alpha (TNF-α). Exogenous administration of α-MSH (250μg/kg) together with MSCs (1×106) and cerebrolysin (a balanced composition of several neurotrophic factors and active peptide fragments) (5mL/kg) significantly induced neuroprotection in SD with CHI. Interestingly, TiO2 nanowired delivery of α-MSH (100μg), MSCs, and cerebrolysin (2.5mL/kg) induced enhanced neuroprotection with higher levels of α-MSH and BDNF and decreased the TNF-α in SD with CHI. These observations are the first to show that TiO2 nanowired administration of α-MSH, MSCs and cerebrolysin induces superior neuroprotection following SD in CHI, not reported earlier. The clinical significance of our findings in light of the current literature is discussed.
Collapse
Affiliation(s)
- Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Manzhulo
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
29
|
Sharma HS, Sahib S, Tian ZR, Muresanu DF, Nozari A, Castellani RJ, Lafuente JV, Wiklund L, Sharma A. Protein kinase inhibitors in traumatic brain injury and repair: New roles of nanomedicine. PROGRESS IN BRAIN RESEARCH 2020; 258:233-283. [PMID: 33223036 DOI: 10.1016/bs.pbr.2020.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Traumatic brain injury (TBI) causes physical injury to the cell membranes of neurons, glial and axons causing the release of several neurochemicals including glutamate and cytokines altering cell-signaling pathways. Upregulation of mitogen associated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) occurs that is largely responsible for cell death. The pharmacological blockade of these pathways results in cell survival. In this review role of several protein kinase inhibitors on TBI induced oxidative stress, blood-brain barrier breakdown, brain edema formation, and resulting brain pathology is discussed in the light of current literature.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bilbao, Spain
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| |
Collapse
|
30
|
Wang H, Liu S, Li J, Wang L, Wang X, Zhao J, Jiao H, Lin H. 5-Hydroxytryptophan Suppresses the Abdominal Fat Deposit and Is Beneficial to the Intestinal Immune Function in Broilers. Front Physiol 2020; 11:655. [PMID: 32595527 PMCID: PMC7304481 DOI: 10.3389/fphys.2020.00655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 05/22/2020] [Indexed: 11/24/2022] Open
Abstract
Background Serotonin (5-HT), a monoaminergic neurotransmitter, involves in the regulation of many physiological functions. In the present study, the effects of 5-hydroxytryptophan (5-HTP), the precursor of 5-HT, on lipid metabolism and intestinal immune function in broiler chickens were investigated in chickens. Methods Two hundred broilers were divided randomly into two groups and fed separately with a corn-soybean basal diet (CD) or the basal diet supplemented with 0.2% 5-HTP. Results The results showed that 5-HTP reduced (P < 0.05) feed intake and the abdominal fat pad weight. 5-HTP treatment tended to upregulate the mRNA level of adiponectin receptor 1 (ADP1R) and ADP2R in abdominal fat but had no significant influence on their protein levels (P > 0.05). In 5-HTP-chickens, lipopolysaccharide exposure decreased secretory immunoglobulin A (sIgA) concentrations in serum and the duodenal contents. Expression of mRNA encoding interleukin (IL), tumor necrosis factor-α (TNF-α), and transforming growth factor-β (TGF-β) decreased after 5-HTP treatment; however, LPS increased expression significantly in 5-HTP-treated chickens compared with CD chickens. In 5-HTP-chickens, the phosphorylation of mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) were reduced, but the phosphorylation of ribosomal p70S6 kinase (p70S6K) was increased in the duodenum. Conclusion In summary, the result suggests that dietary 5-HTP supplementation reduces accumulation of abdominal fat and is beneficial to intestinal immune function.
Collapse
Affiliation(s)
- Hui Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Shaoqiong Liu
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China
| | - Jun Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Liyuan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Xiaojuan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Jingpeng Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Hongchao Jiao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Hai Lin
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
31
|
The Role of Serotonin in Concanavalin A-Induced Liver Injury in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020. [PMID: 31998441 DOI: 10.1155/2020/7504521.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Serotonin is involved in the pathological processes of several liver diseases via the regulation of inflammatory response and oxidative stress. We aimed to investigate the role of serotonin in Concanavalin A- (Con A-) induced acute liver injury (ALI). ALI was induced in C57B/6 wild-type (WT) mice and tryptophan hydroxylase 1 (TPH1) knockout mice through tail vein injection of Con A (15 mg/kg body weight). Another group of TPH1 knockout ALI mice was supplied with 5-hydroxytryptophan (5-HTP) in advance to recover serotonin. The blood and liver tissues of mice were collected in all groups. Markedly increased serum levels of serotonin were identified after the injection of Con A. Increased serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and stronger hepatic tissue pathology were detected, suggesting that serotonin could mediate Con A-induced liver damage. Serotonin significantly facilitated the release of serum and intrahepatic inflammatory cytokines, including interleukin-2 (IL-2), interleukin-6 (IL-6), interleukin-17A (IL-17A), interferon-gamma (IFN-γ), and tumor necrosis-alpha (TNF-α), after the administration of Con A. In addition, serotonin significantly increased the intrahepatic levels of oxidative stress markers malonaldehyde (MDA), myeloperoxidase (MPO), and nitric oxide (NO) and decreased antioxidant stress indicator glutathione (GSH) in Con A-treated mice. Additionally, serotonin promoted hepatocyte apoptosis and autophagy based on B-cell lymphoma-2 (Bcl-2), Bcl-2-asociated X protein (Bax), and Beclin-1 levels and TUNEL staining. More importantly, serotonin activated nuclear factor kappa B (NF-κB) and upregulated the hepatic expressions of high mobility group protein B1 (HMGB1), toll-like receptor-4 (TLR4), and downstream molecules in Con A-mediated liver injury. Serotonin 2A receptor was upregulated in liver tissue after Con A injection, and serotonin 2A receptor antagonist Ketanserin protected against Con A-induced hepatitis. These results indicated that serotonin has the potential to aggravate Con A-induced ALI via the promotion of inflammatory response, oxidative stress injury, and hepatocyte apoptosis and the activation of hepatic HMGB1-TLR signaling pathway and serotonin 2A receptor.
Collapse
|
32
|
The Role of Serotonin in Concanavalin A-Induced Liver Injury in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7504521. [PMID: 31998441 PMCID: PMC6969644 DOI: 10.1155/2020/7504521] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/10/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022]
Abstract
Serotonin is involved in the pathological processes of several liver diseases via the regulation of inflammatory response and oxidative stress. We aimed to investigate the role of serotonin in Concanavalin A- (Con A-) induced acute liver injury (ALI). ALI was induced in C57B/6 wild-type (WT) mice and tryptophan hydroxylase 1 (TPH1) knockout mice through tail vein injection of Con A (15 mg/kg body weight). Another group of TPH1 knockout ALI mice was supplied with 5-hydroxytryptophan (5-HTP) in advance to recover serotonin. The blood and liver tissues of mice were collected in all groups. Markedly increased serum levels of serotonin were identified after the injection of Con A. Increased serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and stronger hepatic tissue pathology were detected, suggesting that serotonin could mediate Con A-induced liver damage. Serotonin significantly facilitated the release of serum and intrahepatic inflammatory cytokines, including interleukin-2 (IL-2), interleukin-6 (IL-6), interleukin-17A (IL-17A), interferon-gamma (IFN-γ), and tumor necrosis-alpha (TNF-α), after the administration of Con A. In addition, serotonin significantly increased the intrahepatic levels of oxidative stress markers malonaldehyde (MDA), myeloperoxidase (MPO), and nitric oxide (NO) and decreased antioxidant stress indicator glutathione (GSH) in Con A-treated mice. Additionally, serotonin promoted hepatocyte apoptosis and autophagy based on B-cell lymphoma-2 (Bcl-2), Bcl-2-asociated X protein (Bax), and Beclin-1 levels and TUNEL staining. More importantly, serotonin activated nuclear factor kappa B (NF-κB) and upregulated the hepatic expressions of high mobility group protein B1 (HMGB1), toll-like receptor-4 (TLR4), and downstream molecules in Con A-mediated liver injury. Serotonin 2A receptor was upregulated in liver tissue after Con A injection, and serotonin 2A receptor antagonist Ketanserin protected against Con A-induced hepatitis. These results indicated that serotonin has the potential to aggravate Con A-induced ALI via the promotion of inflammatory response, oxidative stress injury, and hepatocyte apoptosis and the activation of hepatic HMGB1-TLR signaling pathway and serotonin 2A receptor.
Collapse
|