1
|
Burdusel D, Doeppner TR, Surugiu R, Hermann DM, Olaru DG, Popa-Wagner A. The Intersection of Epigenetics and Senolytics in Mechanisms of Aging and Therapeutic Approaches. Biomolecules 2024; 15:18. [PMID: 39858413 PMCID: PMC11762397 DOI: 10.3390/biom15010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
The biological process of aging is influenced by a complex interplay of genetic, environmental, and epigenetic factors. Recent advancements in the fields of epigenetics and senolytics offer promising avenues for understanding and addressing age-related diseases. Epigenetics refers to heritable changes in gene expression without altering the DNA sequence, with mechanisms like DNA methylation, histone modification, and non-coding RNA regulation playing critical roles in aging. Senolytics, a class of drugs targeting and eliminating senescent cells, address the accumulation of dysfunctional cells that contribute to tissue degradation and chronic inflammation through the senescence-associated secretory phenotype. This scoping review examines the intersection of epigenetic mechanisms and senolytic therapies in aging, focusing on their combined potential for therapeutic interventions. Senescent cells display distinct epigenetic signatures, such as DNA hypermethylation and histone modifications, which can be targeted to enhance senolytic efficacy. Epigenetic reprogramming strategies, such as induced pluripotent stem cells, may further complement senolytics by rejuvenating aged cells. Integrating epigenetic modulation with senolytic therapy offers a dual approach to improving healthspan and mitigating age-related pathologies. This narrative review underscores the need for continued research into the molecular mechanisms underlying these interactions and suggests future directions for therapeutic development, including clinical trials, biomarker discovery, and combination therapies that synergistically target aging processes.
Collapse
Affiliation(s)
- Daiana Burdusel
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; (D.B.); (R.S.); (D.M.H.)
| | - Thorsten R. Doeppner
- Department of Neurology, University of Giessen Medical School, 35392 Giessen, Germany;
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Roxana Surugiu
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; (D.B.); (R.S.); (D.M.H.)
| | - Dirk M. Hermann
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; (D.B.); (R.S.); (D.M.H.)
- Chair of Vascular Neurology and Dementia, Department of Neurology, University Hospital Essen, 45147 Essen, Germany
| | - Denissa Greta Olaru
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; (D.B.); (R.S.); (D.M.H.)
| | - Aurel Popa-Wagner
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; (D.B.); (R.S.); (D.M.H.)
- Chair of Vascular Neurology and Dementia, Department of Neurology, University Hospital Essen, 45147 Essen, Germany
| |
Collapse
|
2
|
Fungaro Rissatti L, Wilson D, Palace-Berl F, de Mello Ponteciano B, Sardela de Miranda F, Alece Arantes Moreno I, dos Santos Vieira T, Pereira Sorroche B, Rebolho Batista Arantes LM, Madeira Alvares da Silva A, D'Almeida V, Demarzo M, Rodrigues de Oliveira D. BDNF methylation associated with stress in women: Novel insights in epigenetics and inflammation. Brain Behav Immun Health 2024; 42:100900. [PMID: 39552782 PMCID: PMC11565430 DOI: 10.1016/j.bbih.2024.100900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/16/2024] [Accepted: 10/27/2024] [Indexed: 11/19/2024] Open
Abstract
The brain-derived neurotrophic factor (BDNF) gene plays an important role in modulating the stress-response axis and inflammation, which can be regulated by epigenetic mechanisms. BNDF methylation has been associated with stress-related psychiatric disorders such as depression, anxiety and post-traumatic stress. Previous studies have reported that stressful events are involved with long-lasting alterations in DNA methylation (DNAm) of the BNDF exon IV promoter, suggesting that glucocorticoids and inflammatory cytokines can regulate this process. We previously found that perceived psychological stress is modulated by inflammatory cytokines, such as interleukin (IL)-6, IL-8 and IL-10, and IL-12p70, suggesting their role in mediating the stress response. However, the epigenetic mechanism mediating this response has yet to be fully understood. In this study, we propose that high perceived stress and high serum levels of inflammatory cytokines may correlate with specific methylation sites within the BNDF exon IV promoter. To address these questions, we conducted a cross-sectional study of 82 adult women teachers working in basic education in Brazil. The perceived stress scale was used to assess stress and blood samples were collected for the measurement of inflammatory markers and BNDF methylation through flow cytometry assay and DNA pyrosequencing, respectively. We detected differentially methylated CpG sites in the BNDF gene, where 5 CpG sites were directly correlated with high stress levels. However, 4 CpG sites showed inverse effects, indicating that changes in methylation levels in those sites could lead to a protective effect on perceived stress. About inflammatory markers, IL-6 and IL-8 were associated with high perceived stress. However, only IL-8 and IL-10 showed simultaneous modulation of perceived stress, while IL-10 and IL12p70 correlated with DNAm. We found that higher levels in IL-10 and IL-12p70 serum decrease methylation in CpG11. A direct relationship was also found to IL-12p70, where higher levels in serum increase methylation in CpG5 and 13, respectively. Taken as a whole, our findings reinforce the hypothesis regarding stress-sensitive regions within the BDNF gene, mainly for CpG5, 11, and 13. In addition to these results, CpG7 and 9 may be regarded as stress-protective regions. Our data suggest that BDNF DNAm in the blood may represent a novel biomarker for early detection of adverse effects of chronic exposure to stress in healthy individuals.
Collapse
Affiliation(s)
- Luciana Fungaro Rissatti
- Department of Pathology, Graduate Program in Pathology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - David Wilson
- Department of Preventive Medicine, Graduate Program in Collective Health, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Fanny Palace-Berl
- Department of Pathology, Graduate Program in Pathology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Bárbara de Mello Ponteciano
- Department of Pathology, Graduate Program in Pathology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Flávia Sardela de Miranda
- Laboratory of Imunomodulation, Department of Imunology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Ivana Alece Arantes Moreno
- Biotechnology/Renorbio Postgraduate Program, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Tamires dos Santos Vieira
- Biotechnology/Renorbio Postgraduate Program, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Bruna Pereira Sorroche
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | | | | | - Vânia D'Almeida
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Marcelo Demarzo
- Department of Preventive Medicine, Graduate Program in Collective Health, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Mente Aberta - Brazilian Center for Mindfulness and Health Promotion, Departamento de Medicina Preventiva, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Daniela Rodrigues de Oliveira
- Department of Pathology, Graduate Program in Pathology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Department of Preventive Medicine, Graduate Program in Collective Health, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Mente Aberta - Brazilian Center for Mindfulness and Health Promotion, Departamento de Medicina Preventiva, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
3
|
Dai Y, Wei T, Huang Y, Bei Y, Lin H, Shen Z, Yu L, Yang M, Xu H, He W, Lin Z, Dai H. Upregulation of HDAC9 in hippocampal neurons mediates depression-like behaviours by inhibiting ANXA2 degradation. Cell Mol Life Sci 2023; 80:289. [PMID: 37690046 PMCID: PMC10493204 DOI: 10.1007/s00018-023-04945-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023]
Abstract
Major depressive disorder (MDD) is a pervasive and devastating mental disease. Broad spectrum histone deacetylase (HDAC) inhibitors are considered to have potential for the treatment of depressive phenotype in mice. However, due to its non-specific inhibition, it has extensive side effects and can not be used in clinical treatment of MDD. Therefore, finding specific HDAC subtypes that play a major role in the etiology of MDD is the key to develop corresponding specific inhibitors as antidepressants in the future. Copy number variation in HDAC9 gene is thought to be associated with the etiology of some psychiatric disorders. Herein, we found that HDAC9 was highly expressed in the hippocampus of chronic restraint stress (CRS) mouse model of depression. Upregulation of HDAC9 expression in hippocampal neurons of mice induced depression-like phenotypes, including anhedonia, helplessness, decreased dendritic spine density, and neuronal hypoexcitability. Moreover, knockdown or knockout of HDAC9 in hippocampal neurons alleviated depression-like phenotypes caused by chronic restraint stress (CRS) in WT mice. Importantly, using immunoprecipitation-mass spectrometry (IP-MS), we further found that Annexin A2 (ANXA2) was coupled to and deacetylated by HDAC9. This coupling resulted in the inhibition of ubiquitinated ANXA2 degradation and then mediates depression-like behavior. Overall, we discovered a previously unrecognized role for HDAC9 in hippocampal neurons in the pathogenesis of depression, indicating that inhibition of HDAC9 might be a promising clinical strategy for the treatment of depressive disorders.
Collapse
Affiliation(s)
- Yunjian Dai
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Taofeng Wei
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Yuwen Huang
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Yun Bei
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Haoran Lin
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Zexu Shen
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Lingyan Yu
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Mingdong Yang
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Huimin Xu
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Wei He
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Zheng Lin
- Department of Psychiatry, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Haibin Dai
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China.
| |
Collapse
|
4
|
Dee G, Ryznar R, Dee C. Epigenetic Changes Associated with Different Types of Stressors and Suicide. Cells 2023; 12:cells12091258. [PMID: 37174656 PMCID: PMC10177343 DOI: 10.3390/cells12091258] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Stress is associated with various epigenetic changes. Some stress-induced epigenetic changes are highly dynamic, whereas others are associated with lasting marks on the epigenome. In our study, a comprehensive narrative review of the literature was performed by investigating the epigenetic changes that occur with acute stress, chronic stress, early childhood stress, and traumatic stress exposures, along with examining those observed in post-mortem brains or blood samples of suicide completers and attempters. In addition, the transgenerational effects of these changes are reported. For all types of stress studies examined, the genes Nr3c1, OXTR, SLC6A4, and BDNF reproducibly showed epigenetic changes, with some modifications observed to be passed down to subsequent generations following stress exposures. The aforementioned genes are known to be involved in neuronal development and hormonal regulation and are all associated with susceptibility to mental health disorders including depression, anxiety, personality disorders, and PTSD (post-traumatic stress disorder). Further research is warranted in order to determine the scope of epigenetic actionable targets in individuals suffering from the long-lasting effects of stressful experiences.
Collapse
Affiliation(s)
- Garrett Dee
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80112, USA
| | - Rebecca Ryznar
- Molecular Biology, Department of Biomedical Sciences, Rocky Vista University, Parker, CO 80112, USA
| | - Colton Dee
- College of Osteopathic Medicine, Des Moines University, Des Moines, IA 50312, USA
| |
Collapse
|
5
|
Das U, Gangisetty O, Chaudhary S, Tarale P, Rousseau B, Price J, Frazier I, Sarkar DK. Epigenetic insight into effects of prenatal alcohol exposure on stress axis development: Systematic review with meta-analytic approaches. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:18-35. [PMID: 36341762 DOI: 10.1111/acer.14972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
We conducted a systematic review with meta-analytic elements using publicly available Gene Expression Omnibus (GEO) datasets to determine the role of epigenetic mechanisms in prenatal alcohol exposure (PAE)-induced hypothalamic-pituitary-adrenal (HPA) axis dysfunctions in offspring. Several studies have demonstrated that PAE has long-term consequences on HPA axis functions in offspring. Some studies determined that alcohol-induced epigenetic alterations during fetal development persist in adulthood. However, additional research is needed to understand the major epigenetic events leading to alcohol-induced teratogenesis of the HPA axis. Our network analysis of GEO datasets identified key pathways relevant to alcohol-mediated histone modifications, DNA methylation, and miRNA involvement associated with PAE-induced alterations of the HPA axis. Our analysis indicated that PAE perturbated the epigenetic machinery to activate corticotrophin-releasing hormone, while it suppressed opioid, glucocorticoid receptor, and circadian clock genes. These results help to further our understanding of the epigenetic basis of alcohol's effects on HPA axis development.
Collapse
Affiliation(s)
- Ujjal Das
- Endocrinology Program, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
- Department of Animal Sciences, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Omkaram Gangisetty
- Endocrinology Program, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
- Department of Animal Sciences, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Shaista Chaudhary
- Endocrinology Program, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
- Department of Animal Sciences, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Prashant Tarale
- Endocrinology Program, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
- Department of Animal Sciences, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Bénédicte Rousseau
- Endocrinology Program, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
- Department of Animal Sciences, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Julianne Price
- Molecular Neuroscience of Alcohol and Drug Abuse Research Training, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Center of Alcohol & Substance Use Studies, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Department of Kinesiology & Health, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Ian Frazier
- Molecular Neuroscience of Alcohol and Drug Abuse Research Training, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Center of Alcohol & Substance Use Studies, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Department of Kinesiology & Health, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Dipak K Sarkar
- Endocrinology Program, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
- Department of Animal Sciences, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Molecular Neuroscience of Alcohol and Drug Abuse Research Training, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Center of Alcohol & Substance Use Studies, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Rutgers Endocrinology Program, Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
6
|
Domingos LB, Silva NR, Chaves Filho AJM, Sales AJ, Starnawska A, Joca S. Regulation of DNA Methylation by Cannabidiol and Its Implications for Psychiatry: New Insights from In Vivo and In Silico Models. Genes (Basel) 2022; 13:2165. [PMID: 36421839 PMCID: PMC9690868 DOI: 10.3390/genes13112165] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2023] Open
Abstract
Cannabidiol (CBD) is a non-psychotomimetic compound present in cannabis sativa. Many recent studies have indicated that CBD has a promising therapeutic profile for stress-related psychiatric disorders, such as anxiety, schizophrenia and depression. Such a diverse profile has been associated with its complex pharmacology, since CBD can target different neurotransmitter receptors, enzymes, transporters and ion channels. However, the precise contribution of each of those mechanisms for CBD effects is still not yet completely understood. Considering that epigenetic changes make the bridge between gene expression and environment interactions, we review and discuss herein how CBD affects one of the main epigenetic mechanisms associated with the development of stress-related psychiatric disorders: DNA methylation (DNAm). Evidence from in vivo and in silico studies indicate that CBD can regulate the activity of the enzymes responsible for DNAm, due to directly binding to the enzymes and/or by indirectly regulating their activities as a consequence of neurotransmitter-mediated signaling. The implications of this new potential pharmacological target for CBD are discussed in light of its therapeutic and neurodevelopmental effects.
Collapse
Affiliation(s)
- Luana B. Domingos
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Nicole R. Silva
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Adriano J. M. Chaves Filho
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Amanda J. Sales
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil
| | - Anna Starnawska
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, 8000 Aarhus, Denmark
- Center for Genomics and Personalized Medicine, CGPM, Center for Integrative Sequencing, iSEQ, 8000 Aarhus, Denmark
| | - Sâmia Joca
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
7
|
Masroor S, Aalam MT, Khan O, Tanuj GN, Gandham RK, Dhara SK, Gupta PK, Mishra BP, Dutt T, Singh G, Sajjanar BK. Effect of acute heat shock on stress gene expression and DNA methylation in zebu (Bos indicus) and crossbred (Bos indicus × Bos taurus) dairy cattle. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:1797-1809. [PMID: 35796826 DOI: 10.1007/s00484-022-02320-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/15/2022] [Accepted: 06/21/2022] [Indexed: 05/19/2023]
Abstract
Environmental temperature is one of the major factors to affect health and productivity of dairy cattle. Gene expression networks within the cells and tissues coordinate stress response, metabolism, and milk production in dairy cattle. Epigenetic DNA methylations were found to mediate the effect of environment by regulating gene expression patterns. In the present study, we compared three Indian native zebu cattle, Bos indicus (Sahiwal, Tharparkar, and Hariana) and one crossbred Bos indicus × Bos taurus (Vrindavani) for stress gene expression and differences in the DNA methylation patterns. The results indicated acute heat shock to cultured PBMC affected their proliferation, stress gene expression, and DNA methylation. Interestingly, expressions of HSP70, HSP90, and STIP1 were found more pronounced in zebu cattle than the crossbred cattle. However, no significant changes were observed in global DNA methylation due to acute heat shock, even though variations were observed in the expression patterns of DNA methyltransferases (DNMT1, DNMT3a) and demethylases (TET1, TET2, and TET3) genes. The treatment 5-AzaC (5-azacitidine) that inhibit DNA methylation in proliferating PBMC caused significant increase in heat shock-induced HSP70 and STIP1 expression indicating that hypomethylation facilitated stress gene expression. Further targeted analysis DNA methylation in the promoter regions revealed no significant differences for HSP70, HSP90, and STIP1. However, there was a significant hypomethylation for BDNF in both zebu and crossbred cattle. Similarly, NR3C1 promoter region showed hypomethylation alone in crossbred cattle. Overall, the results indicated that tropically adapted zebu cattle had comparatively higher expression of stress genes than the crossbred cattle. Furthermore, DNA methylation may play a role in regulating expression of certain genes involved in stress response pathways.
Collapse
Affiliation(s)
- Sana Masroor
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly-243122, Uttar Pradesh, India
| | - Mohd Tanzeel Aalam
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly-243122, Uttar Pradesh, India
| | - Owais Khan
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly-243122, Uttar Pradesh, India
| | - Gunturu Narasimha Tanuj
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly-243122, Uttar Pradesh, India
| | - Ravi Kumar Gandham
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly-243122, Uttar Pradesh, India
| | - Sujoy K Dhara
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly-243122, Uttar Pradesh, India
| | - Praveen K Gupta
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly-243122, Uttar Pradesh, India
| | - Bishnu Prasad Mishra
- ICAR-National Bureau of Animal Genetic Resources, Haryana, Karnal, 132001, India
| | - Triveni Dutt
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly-243122, Uttar Pradesh, India
| | - Gynendra Singh
- Physiology and Climatology Division, ICAR-Indian Veterinary Research Institute, Izatnagar Bareilly, 243122, Uttar Pradesh, India
| | - Basavaraj K Sajjanar
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly-243122, Uttar Pradesh, India.
| |
Collapse
|
8
|
Postnikova LA, Patkin EL. The possible effect of lactoferrin on the epigenetic characteristics of early mammalian embryos exposed to bisphenol A. Birth Defects Res 2022; 114:1199-1209. [PMID: 35451577 DOI: 10.1002/bdr2.2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/15/2022] [Accepted: 03/30/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND The main objective of this review was to state a hypothetical mechanism of the antitoxic effect of lactoferrin (Lf) on embryos exposed to bisphenol A (BPA). On this basis, it is possible to suggest Lf as a potential protective health component before conception upon toxic effects and viral infections. METHODS The narrative review was performed using systematic review methods to identify relevant literature. The resources required for this study were obtained by searching the electronic database PubMed (MEDLINE). Articles were searched using the keywords "BPA," "lactoferrin," "DNA-methylation," "epigenetic," "mammals," "human," and "mouse." The inclusion criteria were as follows: (a) primary or original research; (b) study of epigenetic modification; and (c) study focuses on early mammalian development. RESULTS Presented data demonstrate that Lf can modulate epigenetical characteristic, such as DNA methylation and reactive oxygen species (ROS), and, thereby, may serve as a potential readily available pharmaceutical product. CONCLUSION Suggested hypothesis is based on the important interrelated role of changes in epigenetic modifications and oxidative stress in early embryogenesis under the influence of BPA and virus infection as a cause of the development of pathologies in the adult organism.
Collapse
Affiliation(s)
- Liubov A Postnikova
- Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia
| | - Eugene L Patkin
- Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia
| |
Collapse
|
9
|
Spies LML, Verhoog NJD, Louw A. Acquired Glucocorticoid Resistance Due to Homologous Glucocorticoid Receptor Downregulation: A Modern Look at an Age-Old Problem. Cells 2021; 10:2529. [PMID: 34685511 PMCID: PMC8533966 DOI: 10.3390/cells10102529] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022] Open
Abstract
For over 70 years, the unique anti-inflammatory properties of glucocorticoids (GCs), which mediate their effects via the ligand-activated transcription factor, the glucocorticoid receptor alpha (GRα), have allowed for the use of these steroid hormones in the treatment of various autoimmune and inflammatory-linked diseases. However, aside from the onset of severe side-effects, chronic GC therapy often leads to the ligand-mediated downregulation of the GRα which, in turn, leads to a decrease in GC sensitivity, and effectively, the development of acquired GC resistance. Although the ligand-mediated downregulation of GRα is well documented, the precise factors which influence this process are not well understood and, thus, the development of an acquired GC resistance presents an ever-increasing challenge to the pharmaceutical industry. Recently, however, studies have correlated the dimerization status of the GRα with its ligand-mediated downregulation. Therefore, the current review will be discussing the major role-players in the homologous downregulation of the GRα pool, with a specific focus on previously reported GC-mediated reductions in GRα mRNA and protein levels, the molecular mechanisms through which the GRα functional pool is maintained and the possible impact of receptor conformation on GC-mediated GRα downregulation.
Collapse
Affiliation(s)
| | | | - Ann Louw
- Department of Biochemistry, Stellenbosch University, Van de Byl Street, Stellenbosch 7200, South Africa; (L.-M.L.S.); (N.J.D.V.)
| |
Collapse
|