1
|
Guidetti M, Bocci T, De Pedro Del Álamo M, Deuschl G, Fasano A, Martinez-Fernandez R, Gasca-Salas C, Hamani C, Krauss JK, Kühn AA, Limousin P, Little S, Lozano AM, Maiorana NV, Marceglia S, Okun MS, Oliveri S, Ostrem JL, Scelzo E, Schnitzler A, Starr PA, Temel Y, Timmermann L, Tinkhauser G, Visser-Vandewalle V, Volkmann J, Priori A. Will adaptive deep brain stimulation for Parkinson's disease become a real option soon? A Delphi consensus study. NPJ Parkinsons Dis 2025; 11:110. [PMID: 40325017 PMCID: PMC12052990 DOI: 10.1038/s41531-025-00974-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 04/19/2025] [Indexed: 05/07/2025] Open
Abstract
While conventional deep brain stimulation (cDBS) treatment delivers continuous electrical stimuli, new adaptive DBS (aDBS) technology provides dynamic symptom-related stimulation. Research data are promising, and devices are already available, but are we ready for it? We asked leading DBS experts worldwide (n = 21) to discuss a research agenda for aDBS research in the near future to allow full adoption. A 5-point Likert scale questionnaire, along with a Delphi method, was employed. In the next 10 years, aDBS will be clinical routine, but research is needed to define which patients would benefit more from the treatment; second, implantation and programming procedures should be simplified to allow actual generalized adoption; third, new adaptive algorithms, and the integration of aDBS paradigm with new technologies, will improve control of more complex symptoms. Since the next years will be crucial for aDBS implementation, the research should focus on improving precision and making programming procedures more accessible.
Collapse
Affiliation(s)
- Matteo Guidetti
- Department of Health Sciences, "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, University of Milan, Milan, Italy
| | - Tommaso Bocci
- Department of Health Sciences, "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, University of Milan, Milan, Italy
- Clinical Neurology Unit, Department of Health Sciences, "Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo", University of Milan, Milan, Italy
| | | | - Guenther Deuschl
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel and Christian Albrechts-University of Kiel Kiel Germany, Kiel, Germany
| | - Alfonso Fasano
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- CRANIA Center for Advancing Neurotechnological Innovation to Application, University of Toronto, Toronto, ON, Canada
- KITE, University Health Network, Toronto, ON, Canada
- Edmond J. Safra Program in Parkinson's Disease Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Division of Neurology, University of Toronto, Toronto, ON, Canada
| | - Raul Martinez-Fernandez
- HM CINAC, Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto Carlos III, CIBERNED, Madrid, Spain
| | - Carmen Gasca-Salas
- HM CINAC, Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto Carlos III, CIBERNED, Madrid, Spain
| | - Clement Hamani
- Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Harquail Centre for Neuromodulation, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Andrea A Kühn
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Humboldt-Universität, Berlin, Germany
- NeuroCure, Exzellenzcluster, Charité-Universitätsmedizin Berlin, Berlin, Germany
- DZNE, German Center for Neurodegenerative Diseases, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Patricia Limousin
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, UK
| | - Simon Little
- Movement Disorders and Neuromodulation Centre, University of California San Francisco, San Francisco, CA, USA
| | - Andres M Lozano
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- CRANIA Center for Advancing Neurotechnological Innovation to Application, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Natale V Maiorana
- Department of Health Sciences, "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, University of Milan, Milan, Italy
| | - Sara Marceglia
- Department of Health Sciences, "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, University of Milan, Milan, Italy.
| | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Serena Oliveri
- Department of Health Sciences, "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, University of Milan, Milan, Italy
- Clinical Neurology Unit, Department of Health Sciences, "Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo", University of Milan, Milan, Italy
| | - Jill L Ostrem
- Movement Disorders and Neuromodulation Centre, University of California San Francisco, San Francisco, CA, USA
| | - Emma Scelzo
- Clinical Neurology Unit, Department of Health Sciences, "Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo", University of Milan, Milan, Italy
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Philip A Starr
- UCSF Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- UCSF Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Lars Timmermann
- Department of Neurology, University Hospital of Marburg, Marburg, Germany
| | - Gerd Tinkhauser
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Alberto Priori
- Department of Health Sciences, "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, University of Milan, Milan, Italy
- Clinical Neurology Unit, Department of Health Sciences, "Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo", University of Milan, Milan, Italy
| |
Collapse
|
2
|
Guidetti M, Marceglia S, Bocci T, Duncan R, Fasano A, Foote KD, Hamani C, Krauss JK, Kühn AA, Lena F, Limousin P, Lozano AM, Maiorana NV, Modugno N, Moro E, Okun MS, Oliveri S, Santilli M, Schnitzler A, Temel Y, Timmermann L, Visser-Vandewalle V, Volkmann J, Priori A. Is physical therapy recommended for people with parkinson's disease treated with subthalamic deep brain stimulation? a delphi consensus study. J Neuroeng Rehabil 2025; 22:80. [PMID: 40211348 PMCID: PMC11987424 DOI: 10.1186/s12984-025-01616-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/26/2025] [Indexed: 04/13/2025] Open
Abstract
BACKGROUND Although deep brain stimulation of the subthalamic nucleus (STN-DBS) induces motor benefits in people with Parkinson's disease (PwPD), its effect on motor axial symptoms (e.g., postural instability, trunk posture alterations) and gait impairments (e.g., freezing of gait) is still ambiguous. Physical therapy (PT) effectively complements pharmacological treatment to improve postural stability, gait performance, and other dopamine-resistant symptoms (e.g. freezing of gait) in the general population with PD. Despite the positive potential of combined PT and STN-DBS surgery, scientific results are still lacking. We therefore involved worldwide leading experts on DBS and motor rehabilitation in PwPD in a consensus Delphi panel to define the current level of PT recommendation following STN-DBS surgery. METHODS After summarizing the few available findings through a systematic scoping review, we identified clinically and academically experienced DBS clinicians (n = 21) to discuss the challenges related to PT following STN-DBS. A 5-point Likert scale questionnaire was used and based on the results of the systematic review, thirty-nine questions were designed and submitted to the panel-half related to general considerations on PT following STN-DBS, and half related to PT treatments. RESULTS Despite the low-to-moderate quality of data, the few available rehabilitation studies suggested that PT could improve dynamic and static balance, gait performance and posture in the population with PD receiving STN-DBS. Similarly, the panellists strongly agreed that PT might help improve motor symptoms and quality of life, and it may be prescribed to maximize the effects of stimulation. The experts agreed that physical therapists could be part of the multidisciplinary team taking care of the patients. Also, they agreed that conventional PT, but not massage or manual therapy, should be prescribed because of the specificity of STN-DBS implantation. CONCLUSIONS Although RCT evidence is lacking, upon Delphi panel, PT for PwPD receiving STN-DBS can be potentially useful to maximize clinical improvement. However, more research is needed, with RCTs and well-designed studies. The rehabilitation and DBS community should expand this area of research to create guidelines for PT following STN-DBS.
Collapse
Affiliation(s)
- Matteo Guidetti
- Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142, Milan, MI, Italy
| | - Sara Marceglia
- Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142, Milan, MI, Italy.
| | - Tommaso Bocci
- Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142, Milan, MI, Italy
- Clinical Neurology Unit, "Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo", Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142, Milan, Italy
| | - Ryan Duncan
- School of Medicine, Program in Physical Therapy, Washington University in St. Louis, St. Louis, MO, USA
- School of Medicine, Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Alfonso Fasano
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- CRANIA Center for Advancing Neurotechnological Innovation to Application, University of Toronto, Toronto, ON, Canada
- KITE, University Health Network, Toronto, ON, Canada
- Edmond J. Safra Program in Parkinson's Disease Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Division of Neurology, University of Toronto, Toronto, ON, Canada
| | - Kelly D Foote
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, 3011 SW Williston Rd, Gainesville, FL, 32608, USA
- Department of Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Clement Hamani
- Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
- Harquail Centre for Neuromodulation, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
- Department of Surgery, University of Toronto, 149 College Street, Toronto, ON, M5T 1P5, Canada
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Andrea A Kühn
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Humboldt-Universität, Berlin, Germany
- NeuroCure, Exzellenzcluster, Charité-Universitätsmedizin Berlin, Berlin, Germany
- DZNE, German Center for Neurodegenerative Diseases, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Francesco Lena
- Department of Medicine and Health, University of Molise, 86100, Campobasso, Italy
- IRCCS INM Neuromed, 86077, Pozzilli, Italy
| | - Patricia Limousin
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, UK
| | - Andres M Lozano
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- CRANIA Center for Advancing Neurotechnological Innovation to Application, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Natale V Maiorana
- Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142, Milan, MI, Italy
| | | | - Elena Moro
- Division of Neurology, CHU of Grenoble, Grenoble Institute of Neurosciences, INSERM U1216, Grenoble Alpes University, Grenoble, France
| | - Michael S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, USA
- Department of Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, USA
| | - Serena Oliveri
- Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142, Milan, MI, Italy
- Clinical Neurology Unit, "Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo", Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142, Milan, Italy
| | | | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Lars Timmermann
- Department of Neurology, University Hospital of Marburg, Marburg, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Alberto Priori
- Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142, Milan, MI, Italy
- Clinical Neurology Unit, "Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo", Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142, Milan, Italy
| |
Collapse
|
3
|
Choi JW, Cui C, Wilkins KB, Bronte-Stewart HM. N2GNet tracks gait performance from subthalamic neural signals in Parkinson's disease. NPJ Digit Med 2025; 8:7. [PMID: 39755754 DOI: 10.1038/s41746-024-01364-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/01/2024] [Indexed: 01/06/2025] Open
Abstract
Adaptive deep brain stimulation (DBS) provides individualized therapy for people with Parkinson's disease (PWP) by adjusting the stimulation in real-time using neural signals that reflect their motor state. Current algorithms, however, utilize condensed and manually selected neural features which may result in a less robust and biased therapy. In this study, we propose Neural-to-Gait Neural network (N2GNet), a novel deep learning-based regression model capable of tracking real-time gait performance from subthalamic nucleus local field potentials (STN LFPs). The LFP data were acquired when eighteen PWP performed stepping in place, and the ground reaction forces were measured to track their weight shifts representing gait performance. By exhibiting a stronger correlation with weight shifts compared to the higher-correlation beta power from the two leads and outperforming other evaluated model designs, N2GNet effectively leverages a comprehensive frequency band, not limited to the beta range, to track gait performance solely from STN LFPs.
Collapse
Affiliation(s)
- Jin Woo Choi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Chuyi Cui
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Kevin B Wilkins
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Helen M Bronte-Stewart
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
4
|
Zhang L, Cui S, Bi H, Chen Q, Kan M, Wang C, Pu Y, Cheng H, Huang B. The research focus and frontiers in surgical treatment of essential tremor. Front Neurol 2024; 15:1499652. [PMID: 39722689 PMCID: PMC11668671 DOI: 10.3389/fneur.2024.1499652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
Background Essential tremor (ET) is one of the most prevalent neurodegenerative disorders, with surgery serving as the principal treatment option. This paper presents a bibliometric analysis of research in the field of ET surgery from 2004 to 2024, aiming to identify current research hotspots and inform future research directions. Methods This study employs CiteSpace to analyze publication trends, countries/institutions, authors, keywords, and co-cited references in ET surgery, using the Web of Science core database from 2004 to 2024 to delineate the research pathways. Results A total of 1,362 publications were included in this study. The number of publications has shown steady growth over the analyzed period from 2004 to 2024. Research in this field was carried out in 58 countries and by 371 institutions. The United States had the highest volume of publications, with the University of California System identified as the most prolific institution. Dr. Michael S. Okun from the University of Florida was the most prolific author, also based in the United States. This study identified 879 keywords, with significant citation bursts noted in areas such as the caudal zona incerta, ventral intermediate nucleus, location, and MR-guided focused ultrasound. Among the top ten highly cited articles, five pertained to MR-guided focused ultrasound thalamotomy, two addressed localization techniques, and one focused on surgical targets. Conclusion This study employs comprehensive bibliometric and visualization analyses to elucidate the evolution of research and identify emerging hotspots. The identified hotspots are as follows: First, deep brain stimulation (DBS), the most advanced technology in ET surgery, has room for improvement, especially in neuromodulation automation. Second, MR-guided focused ultrasound thalamotomy is a new surgical approach that requires further research on efficacy, safety, and side effect management. Third, novel surgical targets have demonstrated some efficacy, yet further research is essential to validate their effectiveness and safety. Lastly, localization techniques are fundamental to ET surgery, with ongoing efforts directed towards achieving more precise, individualized, and intelligent localization.
Collapse
Affiliation(s)
- Linlin Zhang
- Nantong Fourth People's Hospital, Nantong, China
| | - Shifang Cui
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hongyan Bi
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qiang Chen
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mengfan Kan
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cheng Wang
- Nantong Fourth People's Hospital, Nantong, China
| | - Yu Pu
- Nantong Fourth People's Hospital, Nantong, China
| | | | - Bin Huang
- Nantong Fourth People's Hospital, Nantong, China
| |
Collapse
|
5
|
Guidetti M, Marceglia S, Bocci T, Duncan R, Fasano A, Foote K, Hamani C, Krauss J, Kühn AA, Lena F, Limousin P, Lozano A, Maiorana N, Modugno N, Moro E, Okun M, Oliveri S, Santilli M, Schnitzler A, Temel Y, Timmermann L, Visser-Vandewalle V, Volkmann J, Priori A. Physical therapy in patients with Parkinson's disease treated with Deep Brain Stimulation: a Delphi panel study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.20.24314037. [PMID: 39399050 PMCID: PMC11469472 DOI: 10.1101/2024.09.20.24314037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Although deep brain stimulation of the subthalamic nucleus (STN-DBS) induces motor benefits in people with Parkinson's disease (PwPD), the size and duration of the effects of STN-DBS on motor axial (e.g., postural instability, trunk posture alterations) and gait impairments (e.g., freezing of gait - FOG) are still ambiguous. Physical therapy (PT) effectively complements pharmacological treatment to improve postural stability, gait performance, and other dopamine-resistant symptoms (e.g. festination, hesitation, axial motor dysfunctions, and FOG) in PwPD who are non-surgically treated. Despite the potential for positive adjuvant effects of PT following STN-DBS surgery, there is a paucity of science available on the topic. In such a scenario, gathering the opinion and expertise of leading investigators worldwide was pursued to study motor rehabilitation in PwPD following STN-DBS. After summarizing the few available findings through a systematic review, we identified clinical and academically experienced DBS clinicians (n=21) to discuss the challenges related to PT following STN-DBS. A 5-point Likert scale questionnaire was used and based on the results of the systematic review along with a Delphi method. Thirty-nine questions were submitted to the panel - half related to general considerations on PT following STN-DBS, half related to PT treatments. Despite the low-to-moderate quality, the few available rehabilitative studies suggested that PT could improve dynamic and static balance, gait performance and posture. Similarly, panellists strongly agreed that PT might help in improving motor symptoms and quality of life, and it may be possibly prescribed to maximize the effects of the stimulation. The experts agreed that physical therapists could be part of the multidisciplinary team taking care of the patients. Also, they agreed on prescribing of conventional PT, but not massage or manual therapy. Our results will inform the rehabilitation and the DBS community to engage, publish and deepen this area of research. Such efforts may spark guidelines for PT following STN-DBS.
Collapse
Affiliation(s)
- M. Guidetti
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | - S. Marceglia
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | - T. Bocci
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
- Clinical Neurology Unit, “Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo”, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | - R. Duncan
- Washington University in St. Louis, School of Medicine, Program in Physical Therapy, St. Louis, MO, USA
- Washington University in St. Louis, School of Medicine, Department of Neurology, St. Louis, MO, USA
| | - A. Fasano
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- CRANIA Center for Advancing Neurotechnological Innovation to Application, University of Toronto, ON, Canada
- KITE, University Health Network, Toronto, ON, Canada
- Edmond J. Safra Program in Parkinson’s Disease Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Division of Neurology, University of Toronto, Toronto, ON, Canada
| | - K.D. Foote
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, 3011 SW Williston Rd, Gainesville, FL 32608, USA
- Department of Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - C. Hamani
- Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, M4N 3M5, ON, Canada
- Harquail Centre for Neuromodulation, 2075 Bayview Avenue, Toronto, M4N 3M5, ON, Canada
- Department of Surgery, University of Toronto, 149 College Street, Toronto, M5T 1P5, ON, Canada
| | - J.K. Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - A. A. Kühn
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Humboldt-Universität, Berlin, Germany
- NeuroCure, Exzellenzcluster, Charité-Universitätsmedizin Berlin, Berlin, Germany
- DZNE, German Center for Neurodegenerative Diseases, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - F. Lena
- Department of Medicine and Health, University of Molise, 86100 Campobasso, Italy
- IRCCS INM Neuromed, 86077 Pozzilli, Italy
| | - P. Limousin
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - A.M. Lozano
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- CRANIA Center for Advancing Neurotechnological Innovation to Application, University of Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - N.V. Maiorana
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | - N. Modugno
- IRCCS INM Neuromed, 86077 Pozzilli, Italy
| | - E. Moro
- Division of Neurology, CHU of Grenoble, Grenoble Institute of Neurosciences, INSERM U1216, Grenoble Alpes University, Grenoble, France
| | - M.S. Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, United States
- Department of Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, United States
| | - S. Oliveri
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
- Clinical Neurology Unit, “Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo”, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | | | - A. Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Y. Temel
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - L. Timmermann
- Department of Neurology, University Hospital of Marburg, Marburg, Germany
| | - V. Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - J. Volkmann
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - A. Priori
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
- Clinical Neurology Unit, “Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo”, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| |
Collapse
|
6
|
Bocci T, Ferrara R, Albizzati T, Averna A, Guidetti M, Marceglia S, Priori A. Asymmetries of the subthalamic activity in Parkinson's disease: phase-amplitude coupling among local field potentials. Brain Commun 2024; 6:fcae201. [PMID: 38894949 PMCID: PMC11184348 DOI: 10.1093/braincomms/fcae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 01/22/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024] Open
Abstract
The role of brain asymmetries of dopaminergic neurons in motor symptoms of Parkinson's disease is still undefined. Local field recordings from the subthalamic nucleus revealed some neurophysiological biomarkers of the disease: increased beta activity, increased low-frequency activity and high-frequency oscillations. Phase-amplitude coupling coordinates the timing of neuronal activity and allows determining the mechanism for communication within distinct regions of the brain. In this study, we discuss the use of phase-amplitude coupling to assess the differences between the two hemispheres in a cohort of 24 patients with Parkinson's disease before and after levodopa administration. Subthalamic low- (12-20 Hz) and high-beta (20-30 Hz) oscillations were compared with low- (30-45 Hz), medium- (70-100 Hz) and high-frequency (260-360 Hz) bands. We found a significant beta-phase-amplitude coupling asymmetry between left and right and an opposite-side-dependent effect of the pharmacological treatment, which is associated with the reduction of motor symptoms. In particular, high coupling between high frequencies and high-beta oscillations was found during the OFF condition (P < 0.01) and a low coupling during the ON state (P < 0.0001) when the right subthalamus was assessed; exactly the opposite happened when the left subthalamus was considered in the analysis, showing a lower coupling between high frequencies and high-beta oscillations during the OFF condition (P < 0.01), followed by a higher one during the ON state (P < 0.01). Interestingly, these asymmetries are independent of the motor onset side, either left or right. These findings have important implications for neural signals that may be used to trigger adaptive deep brain stimulation in Parkinson's and could provide more exhaustive insights into subthalamic dynamics.
Collapse
Affiliation(s)
- Tommaso Bocci
- ‘Aldo Ravelli’ Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy
- III Neurology Clinic, ASST-Santi Paolo e Carlo University Hospital, 20142 Milan, Italy
| | - Rosanna Ferrara
- ‘Aldo Ravelli’ Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Tommaso Albizzati
- Department of Engineering and Architecture, University of Trieste, Trieste, 34127 Friuli-Venezia Giulia, Italy
| | - Alberto Averna
- Department of Neurology, Bern University Hospital and University of Bern, 3010 Bern, Switzerland
| | - Matteo Guidetti
- ‘Aldo Ravelli’ Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Sara Marceglia
- Department of Engineering and Architecture, University of Trieste, Trieste, 34127 Friuli-Venezia Giulia, Italy
- Newronika S.r.l., 20093 Cologno Monzese, Italy
| | - Alberto Priori
- ‘Aldo Ravelli’ Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy
- III Neurology Clinic, ASST-Santi Paolo e Carlo University Hospital, 20142 Milan, Italy
| |
Collapse
|
7
|
Okun MS, Cagle J, Gomez J, Bowers D, Wong J, Foote KD, Gunduz A. Responsive deep brain stimulation for the treatment of Tourette syndrome. Sci Rep 2024; 14:6467. [PMID: 38499664 PMCID: PMC10948908 DOI: 10.1038/s41598-024-57071-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/14/2024] [Indexed: 03/20/2024] Open
Abstract
To report the results of 'responsive' deep brain stimulation (DBS) for Tourette syndrome (TS) in a National Institutes of Health funded experimental cohort. The use of 'brain derived physiology' as a method to trigger DBS devices to deliver trains of electrical stimulation is a proposed approach to address the paroxysmal motor and vocal tic symptoms which appear as part of TS. Ten subjects underwent bilateral staged DBS surgery and each was implanted with bilateral centromedian thalamic (CM) region DBS leads and bilateral M1 region cortical strips. A series of identical experiments and data collections were conducted on three groups of consecutively recruited subjects. Group 1 (n = 2) underwent acute responsive DBS using deep and superficial leads. Group 2 (n = 4) underwent chronic responsive DBS using deep and superficial leads. Group 3 (n = 4) underwent responsive DBS using only the deep leads. The primary outcome measure for each of the 8 subjects with chronic responsive DBS was calculated as the pre-operative baseline Yale Global Tic Severity Scale (YGTSS) motor subscore compared to the 6 month embedded responsive DBS setting. A responder for the study was defined as any subject manifesting a ≥ 30 points improvement on the YGTSS motor subscale. The videotaped Modified Rush Tic Rating Scale (MRVTRS) was a secondary outcome. Outcomes were collected at 6 months across three different device states: no stimulation, conventional open-loop stimulation, and embedded responsive stimulation. The experience programming each of the groups and the methods applied for programming were captured. There were 10 medication refractory TS subjects enrolled in the study (5 male and 5 female) and 4/8 (50%) in the chronic responsive eligible cohort met the primary outcome manifesting a reduction of the YGTSS motor scale of ≥ 30% when on responsive DBS settings. Proof of concept for the use of responsive stimulation was observed in all three groups (acute responsive, cortically triggered and deep DBS leads only). The responsive approach was safe and well tolerated. TS power spectral changes associated with tics occurred consistently in the low frequency 2-10 Hz delta-theta-low alpha oscillation range. The study highlighted the variety of programming strategies which were employed to achieve responsive DBS and those used to overcome stimulation induced artifacts. Proof of concept was also established for a single DBS lead triggering bi-hemispheric delivery of therapeutic stimulation. Responsive DBS was applied to treat TS related motor and vocal tics through the application of three different experimental paradigms. The approach was safe and effective in a subset of individuals. The use of different devices in this study was not aimed at making between device comparisons, but rather, the study was adapted to the current state of the art in technology. Overall, four of the chronic responsive eligible subjects met the primary outcome variable for clinical effectiveness. Cortical physiology was used to trigger responsive DBS when therapy was limited by stimulation induced artifacts.
Collapse
Affiliation(s)
- Michael S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, 3011 SW Williston Rd, Gainesville, FL, 32608, USA.
- Department of Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.
| | - Jackson Cagle
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, 3011 SW Williston Rd, Gainesville, FL, 32608, USA
| | - Julieth Gomez
- Department of Biomedical Engineering, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Dawn Bowers
- Department of Clinical and Health Psychology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Joshua Wong
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, 3011 SW Williston Rd, Gainesville, FL, 32608, USA
| | - Kelly D Foote
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, 3011 SW Williston Rd, Gainesville, FL, 32608, USA
- Department of Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Aysegul Gunduz
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, 3011 SW Williston Rd, Gainesville, FL, 32608, USA
- Department of Clinical and Health Psychology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| |
Collapse
|
8
|
Hurley ME, Sonig A, Herrington J, Storch EA, Lázaro-Muñoz G, Blumenthal-Barby J, Kostick-Quenet K. Ethical considerations for integrating multimodal computer perception and neurotechnology. Front Hum Neurosci 2024; 18:1332451. [PMID: 38435745 PMCID: PMC10904467 DOI: 10.3389/fnhum.2024.1332451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
Background Artificial intelligence (AI)-based computer perception technologies (e.g., digital phenotyping and affective computing) promise to transform clinical approaches to personalized care in psychiatry and beyond by offering more objective measures of emotional states and behavior, enabling precision treatment, diagnosis, and symptom monitoring. At the same time, passive and continuous nature by which they often collect data from patients in non-clinical settings raises ethical issues related to privacy and self-determination. Little is known about how such concerns may be exacerbated by the integration of neural data, as parallel advances in computer perception, AI, and neurotechnology enable new insights into subjective states. Here, we present findings from a multi-site NCATS-funded study of ethical considerations for translating computer perception into clinical care and contextualize them within the neuroethics and neurorights literatures. Methods We conducted qualitative interviews with patients (n = 20), caregivers (n = 20), clinicians (n = 12), developers (n = 12), and clinician developers (n = 2) regarding their perspective toward using PC in clinical care. Transcripts were analyzed in MAXQDA using Thematic Content Analysis. Results Stakeholder groups voiced concerns related to (1) perceived invasiveness of passive and continuous data collection in private settings; (2) data protection and security and the potential for negative downstream/future impacts on patients of unintended disclosure; and (3) ethical issues related to patients' limited versus hyper awareness of passive and continuous data collection and monitoring. Clinicians and developers highlighted that these concerns may be exacerbated by the integration of neural data with other computer perception data. Discussion Our findings suggest that the integration of neurotechnologies with existing computer perception technologies raises novel concerns around dignity-related and other harms (e.g., stigma, discrimination) that stem from data security threats and the growing potential for reidentification of sensitive data. Further, our findings suggest that patients' awareness and preoccupation with feeling monitored via computer sensors ranges from hypo- to hyper-awareness, with either extreme accompanied by ethical concerns (consent vs. anxiety and preoccupation). These results highlight the need for systematic research into how best to implement these technologies into clinical care in ways that reduce disruption, maximize patient benefits, and mitigate long-term risks associated with the passive collection of sensitive emotional, behavioral and neural data.
Collapse
Affiliation(s)
- Meghan E. Hurley
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | - Anika Sonig
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | - John Herrington
- Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Eric A. Storch
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Gabriel Lázaro-Muñoz
- Center for Bioethics, Harvard Medical School, Boston, MA, United States
- Department of Psychiatry and Behavioral Sciences, Massachusetts General Hospital, Boston, MA, United States
| | | | - Kristin Kostick-Quenet
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
9
|
Guidetti M, Maria Bianchi A, Parazzini M, Maiorana N, Bonato M, Ferrara R, Libelli G, Montemagno K, Ferrucci R, Priori A, Bocci T. Monopolar tDCS might affect brainstem reflexes: A computational and neurophysiological study. Clin Neurophysiol 2023; 155:44-54. [PMID: 37690391 DOI: 10.1016/j.clinph.2023.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/04/2023] [Accepted: 08/12/2023] [Indexed: 09/12/2023]
Abstract
OBJECTIVE To assess whether monopolar multi-electrode transcranial direct current stimulation (tDCS) montages might selectively affect deep brain structures through computational predictions and neurophysiological assessment. METHODS Electric field distribution in deep brain structures (i.e., thalamus and midbrain) were estimated through computational models simulating tDCS with two monopolar and two monopolar multi-electrode montages. Monopolar multi-electrode tDCS was then applied to healthy subject, and effects on pontine and medullary circuitries was evaluated studying changes in blink reflex (BR) and masseter inhibitory reflex (MIR). RESULTS Computational results suggest that tDCS with monopolar multi-electrode montages might induce electric field intensities in deep brain structure comparable to those in grey matter, while neurophysiological results disclosed that BR and MIR were selectively modulated by tDCS only when cathode was placed over the right deltoid. CONCLUSIONS Multi-electrode tDCS (anodes over motor cortices, cathode over right deltoid) could induce significant electric fields in the thalamus and midbrain, and selectively affect brainstem neural circuits. SIGNIFICANCE Multi-electrode tDCS (anodes over motor cortices, cathode over right deltoid) might be further explored to affect brainstem activity, also in the context of non-invasive deep brain stimulation.
Collapse
Affiliation(s)
- Matteo Guidetti
- "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy; Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy
| | - Anna Maria Bianchi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy
| | - Marta Parazzini
- Institute of Electronics, Computer and Telecommunication Engineering (IEIIT), CNR, 20133 Milan, Italy
| | - Natale Maiorana
- "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | - Marta Bonato
- Institute of Electronics, Computer and Telecommunication Engineering (IEIIT), CNR, 20133 Milan, Italy
| | - Rosanna Ferrara
- "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | - Giorgia Libelli
- Neurology Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Kora Montemagno
- "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | - Roberta Ferrucci
- "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy; Clinical Neurology Unit, "Azienda Socio-Sanitaria Territoriale Santi Paolo E Carlo", Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | - Alberto Priori
- "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy; Clinical Neurology Unit, "Azienda Socio-Sanitaria Territoriale Santi Paolo E Carlo", Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | - Tommaso Bocci
- "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy; Clinical Neurology Unit, "Azienda Socio-Sanitaria Territoriale Santi Paolo E Carlo", Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy.
| |
Collapse
|
10
|
Radcliffe EM, Baumgartner AJ, Kern DS, Al Borno M, Ojemann S, Kramer DR, Thompson JA. Oscillatory beta dynamics inform biomarker-driven treatment optimization for Parkinson's disease. J Neurophysiol 2023; 129:1492-1504. [PMID: 37198135 DOI: 10.1152/jn.00055.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/23/2023] [Accepted: 05/17/2023] [Indexed: 05/19/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by loss of dopaminergic neurons and dysregulation of the basal ganglia. Cardinal motor symptoms include bradykinesia, rigidity, and tremor. Deep brain stimulation (DBS) of select subcortical nuclei is standard of care for medication-refractory PD. Conventional open-loop DBS delivers continuous stimulation with fixed parameters that do not account for a patient's dynamic activity state or medication cycle. In comparison, closed-loop DBS, or adaptive DBS (aDBS), adjusts stimulation based on biomarker feedback that correlates with clinical state. Recent work has identified several neurophysiological biomarkers in local field potential recordings from PD patients, the most promising of which are 1) elevated beta (∼13-30 Hz) power in the subthalamic nucleus (STN), 2) increased beta synchrony throughout basal ganglia-thalamocortical circuits, notably observed as coupling between the STN beta phase and cortical broadband gamma (∼50-200 Hz) amplitude, and 3) prolonged beta bursts in the STN and cortex. In this review, we highlight relevant frequency and time domain features of STN beta measured in PD patients and summarize how spectral beta power, oscillatory beta synchrony, phase-amplitude coupling, and temporal beta bursting inform PD pathology, neurosurgical targeting, and DBS therapy. We then review how STN beta dynamics inform predictive, biomarker-driven aDBS approaches for optimizing PD treatment. We therefore provide clinically useful and actionable insight that can be applied toward aDBS implementation for PD.
Collapse
Affiliation(s)
- Erin M Radcliffe
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Alexander J Baumgartner
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Drew S Kern
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Mazen Al Borno
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Computer Science and Engineering, University of Colorado Denver, Denver, Colorado, United States
| | - Steven Ojemann
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Daniel R Kramer
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - John A Thompson
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
11
|
Deep brain stimulation in animal models of dystonia. Neurobiol Dis 2022; 175:105912. [DOI: 10.1016/j.nbd.2022.105912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/19/2022] Open
|
12
|
Neuroprotection and Non-Invasive Brain Stimulation: Facts or Fiction? Int J Mol Sci 2022; 23:ijms232213775. [PMID: 36430251 PMCID: PMC9692544 DOI: 10.3390/ijms232213775] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
Non-Invasive Brain Stimulation (NIBS) techniques, such as transcranial Direct Current Stimulation (tDCS) and repetitive Magnetic Transcranial Stimulation (rTMS), are well-known non-pharmacological approaches to improve both motor and non-motor symptoms in patients with neurodegenerative disorders. Their use is of particular interest especially for the treatment of cognitive impairment in Alzheimer's Disease (AD), as well as axial disturbances in Parkinson's (PD), where conventional pharmacological therapies show very mild and short-lasting effects. However, their ability to interfere with disease progression over time is not well understood; recent evidence suggests that NIBS may have a neuroprotective effect, thus slowing disease progression and modulating the aggregation state of pathological proteins. In this narrative review, we gather current knowledge about neuroprotection and NIBS in neurodegenerative diseases (i.e., PD and AD), just mentioning the few results related to stroke. As further matter of debate, we discuss similarities and differences with Deep Brain Stimulation (DBS)-induced neuroprotective effects, and highlight possible future directions for ongoing clinical studies.
Collapse
|
13
|
Guidetti M, Arlotti M, Bocci T, Bianchi AM, Parazzini M, Ferrucci R, Priori A. Electric Fields Induced in the Brain by Transcranial Electric Stimulation: A Review of In Vivo Recordings. Biomedicines 2022; 10:biomedicines10102333. [PMID: 36289595 PMCID: PMC9598743 DOI: 10.3390/biomedicines10102333] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 01/12/2023] Open
Abstract
Transcranial electrical stimulation (tES) techniques, such as direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS), cause neurophysiological and behavioral modifications as responses to the electric field are induced in the brain. Estimations of such electric fields are based mainly on computational studies, and in vivo measurements have been used to expand the current knowledge. Here, we review the current tDCS- and tACS-induced electric fields estimations as they are recorded in humans and non-human primates using intracerebral electrodes. Direct currents and alternating currents were applied with heterogeneous protocols, and the recording procedures were characterized by a tentative methodology. However, for the clinical stimulation protocols, an injected current seems to reach the brain, even at deep structures. The stimulation parameters (e.g., intensity, frequency and phase), the electrodes’ positions and personal anatomy determine whether the intensities might be high enough to affect both neuronal and non-neuronal cell activity, also deep brain structures.
Collapse
Affiliation(s)
- Matteo Guidetti
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | | | - Tommaso Bocci
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
- III Neurology Clinic, ASST-Santi Paolo e Carlo University Hospital, 20142 Milan, Italy
| | - Anna Maria Bianchi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Marta Parazzini
- Istituto di Elettronica e di Ingegneria dell’Informazione e delle Telecomunicazioni (IEIIT), Consiglio Nazionale delle Ricerche (CNR), 20133 Milan, Italy
| | - Roberta Ferrucci
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
- III Neurology Clinic, ASST-Santi Paolo e Carlo University Hospital, 20142 Milan, Italy
| | - Alberto Priori
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
- III Neurology Clinic, ASST-Santi Paolo e Carlo University Hospital, 20142 Milan, Italy
- Correspondence:
| |
Collapse
|
14
|
Stefani A, Pierantozzi M, Cardarelli S, Stefani L, Cerroni R, Conti M, Garasto E, Mercuri NB, Marini C, Sucapane P. Neurotrophins as Therapeutic Agents for Parkinson’s Disease; New Chances From Focused Ultrasound? Front Neurosci 2022; 16:846681. [PMID: 35401084 PMCID: PMC8990810 DOI: 10.3389/fnins.2022.846681] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/31/2022] [Indexed: 01/02/2023] Open
Abstract
Magnetic Resonance–guided Focused Ultrasound (MRgFUS) represents an effective micro-lesioning approach to target pharmaco-resistant tremor, mostly in patients afflicted by essential tremor (ET) and/or Parkinson’s disease (PD). So far, experimental protocols are verifying the clinical extension to other facets of the movement disorder galaxy (i.e., internal pallidus for disabling dyskinesias). Aside from those neurosurgical options, one of the most intriguing opportunities of this technique relies on its capability to remedy the impermeability of blood–brain barrier (BBB). Temporary BBB opening through low-intensity focused ultrasound turned out to be safe and feasible in patients with PD, Alzheimer’s disease, and amyotrophic lateral sclerosis. As a mere consequence of the procedures, some groups described even reversible but significant mild cognitive amelioration, up to hippocampal neurogenesis partially associated to the increased of endogenous brain-derived neurotrophic factor (BDNF). A further development elevates MRgFUS to the status of therapeutic tool for drug delivery of putative neurorestorative therapies. Since 2012, FUS-assisted intravenous administration of BDNF or neurturin allowed hippocampal or striatal delivery. Experimental studies emphasized synergistic modalities. In a rodent model for Huntington’s disease, engineered liposomes can carry glial cell line–derived neurotrophic factor (GDNF) plasmid DNA (GDNFp) to form a GDNFp-liposome (GDNFp-LPs) complex through pulsed FUS exposures with microbubbles; in a subacute MPTP-PD model, the combination of intravenous administration of neurotrophic factors (either through protein or gene delivery) plus FUS did curb nigrostriatal degeneration. Here, we explore these arguments, focusing on the current, translational application of neurotrophins in neurodegenerative diseases.
Collapse
Affiliation(s)
- Alessandro Stefani
- Department of System Medicine, Parkinson Center, University Tor Vergata, Rome, Italy
- *Correspondence: Alessandro Stefani,
| | | | - Silvia Cardarelli
- Department of System Medicine, Parkinson Center, University Tor Vergata, Rome, Italy
| | - Lucrezia Stefani
- Department of System Medicine, Parkinson Center, University Tor Vergata, Rome, Italy
| | - Rocco Cerroni
- Department of System Medicine, Parkinson Center, University Tor Vergata, Rome, Italy
| | - Matteo Conti
- Department of System Medicine, UOC Neurology, University Tor Vergata, Rome, Italy
| | - Elena Garasto
- Department of System Medicine, UOC Neurology, University Tor Vergata, Rome, Italy
| | - Nicola B. Mercuri
- Department of System Medicine, UOC Neurology, University Tor Vergata, Rome, Italy
| | - Carmine Marini
- UOC Neurology and Stroke Unit, University of L’Aquila, L’Aquila, Italy
| | | |
Collapse
|
15
|
Denison T, Morrell MJ. Neuromodulation in 2035: The Neurology Future Forecasting Series. Neurology 2022; 98:65-72. [PMID: 35263267 PMCID: PMC8762584 DOI: 10.1212/wnl.0000000000013061] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 11/08/2021] [Indexed: 11/15/2022] Open
Abstract
Neuromodulation devices are approved in the United States for the treatment of movement disorders, epilepsy, pain, and depression, and are used off-label for other neurologic indications. By 2035, advances in our understanding of neuroanatomical networks and in the mechanism of action of stimulation, coupled with developments in material science, miniaturization, energy storage, and delivery, will expand the use of neuromodulation devices. Neuromodulation approaches are flexible and modifiable. Stimulation can be targeted to a dysfunctional brain focus, region, or network, and can be delivered as a single treatment, continuously, according to a duty cycle, or in response to physiologic changes. Programming can be titrated and modified based on the clinical response or a physiologic biomarker. In addition to keeping pace with clinical and technological developments, neurologists in 2035 will need to navigate complex ethical and economic considerations to ensure access to neuromodulation technology for a rapidly expanding population of patients. This article provides an overview of systems in use today and those that are anticipated and highlights the opportunities and challenges for the future, some of which are technical, but most of which will be addressed by learning about brain networks, and from rapidly growing experience with neuromodulation devices.
Collapse
Affiliation(s)
- Tim Denison
- From the Department of Engineering Science (T.D.), University of Oxford, UK; Department of Neurology and Neurological Sciences (M.J.M), Stanford University, CA; and NeuroPace (M.J.M), Mountain View, CA
| | - Martha J Morrell
- From the Department of Engineering Science (T.D.), University of Oxford, UK; Department of Neurology and Neurological Sciences (M.J.M), Stanford University, CA; and NeuroPace (M.J.M), Mountain View, CA.
| |
Collapse
|