1
|
Emmi A, Macchi V, Stocco E, Tushevski A, Antonini A, De Caro R, Porzionato A. α-Synuclein Pathology in the Carotid Body: Experimental Evidence for a possible Contributor to Respiratory Impairment in Parkinson's Disease. Mov Disord 2025; 40:176-178. [PMID: 39446028 PMCID: PMC11752970 DOI: 10.1002/mds.30036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Affiliation(s)
- Aron Emmi
- Department of Neuroscience, Institute of Human AnatomyUniversity of PadovaPadovaItaly
- Center for Neurodegenerative Disease Research (CESNE), University of PadovaPadovaItaly
- Department of SurgeryOncology and Gastroenterology, Padova University HospitalPadovaItaly
- Parkinson and Movement Disorders Unit, Centre for Rare Neurological Diseases (ERN‐RND)
- Padua Neuroscience Center (PNC), University of PadovaPadovaItaly
| | - Veronica Macchi
- Department of Neuroscience, Institute of Human AnatomyUniversity of PadovaPadovaItaly
- Center for Neurodegenerative Disease Research (CESNE), University of PadovaPadovaItaly
| | - Elena Stocco
- Department of Neuroscience, Institute of Human AnatomyUniversity of PadovaPadovaItaly
- Department of SurgeryOncology and Gastroenterology, Padova University HospitalPadovaItaly
- Department of Women's and Children's HealthUniversity of PadovaPadovaItaly
| | - Aleksandar Tushevski
- Department of Neuroscience, Institute of Human AnatomyUniversity of PadovaPadovaItaly
| | - Angelo Antonini
- Center for Neurodegenerative Disease Research (CESNE), University of PadovaPadovaItaly
- Parkinson and Movement Disorders Unit, Centre for Rare Neurological Diseases (ERN‐RND)
- Padua Neuroscience Center (PNC), University of PadovaPadovaItaly
| | - Raffaele De Caro
- Department of Neuroscience, Institute of Human AnatomyUniversity of PadovaPadovaItaly
| | - Andrea Porzionato
- Department of Neuroscience, Institute of Human AnatomyUniversity of PadovaPadovaItaly
- Center for Neurodegenerative Disease Research (CESNE), University of PadovaPadovaItaly
| |
Collapse
|
2
|
Wu ML, Xie C, Li X, Sun J, Zhao J, Wang JH. Mast cell activation triggered by SARS-CoV-2 causes inflammation in brain microvascular endothelial cells and microglia. Front Cell Infect Microbiol 2024; 14:1358873. [PMID: 38638822 PMCID: PMC11024283 DOI: 10.3389/fcimb.2024.1358873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/15/2024] [Indexed: 04/20/2024] Open
Abstract
SARS-CoV-2-induced excessive inflammation in brain leads to damage of blood-brain barrier, hypoxic-ischemic injury, and neuron degeneration. The production of inflammatory cytokines by brain microvascular endothelial cells and microglia is reported to be critically associated with the brain pathology of COVID-19 patients. However, the cellular mechanisms for SARS-CoV-2-inducing activation of brain cells and the subsequent neuroinflammation remain to be fully delineated. Our research, along with others', has recently demonstrated that SARS-CoV-2-induced accumulation and activation of mast cells (MCs) in mouse lung could further induce inflammatory cytokines and consequent lung damages. Intracerebral MCs activation and their cross talk with other brain cells could induce neuroinflammation that play important roles in neurodegenerative diseases including virus-induced neuro-pathophysiology. In this study, we investigated the role of MC activation in SARS-CoV-2-induced neuroinflammation. We found that (1) SARS-CoV-2 infection triggered MC accumulation in the cerebrovascular region of mice; (2) spike/RBD (receptor-binding domain) protein-triggered MC activation induced inflammatory factors in human brain microvascular endothelial cells and microglia; (3) MC activation and degranulation destroyed the tight junction proteins in brain microvascular endothelial cells and induced the activation and proliferation of microglia. These findings reveal a cellular mechanism of SARS-CoV-2-induced neuroinflammation.
Collapse
Affiliation(s)
- Meng-Li Wu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Chengzuo Xie
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xin Li
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jian-Hua Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Boura I, Qamar MA, Daddoveri F, Leta V, Poplawska-Domaszewicz K, Falup-Pecurariu C, Ray Chaudhuri K. SARS-CoV-2 and Parkinson's Disease: A Review of Where We Are Now. Biomedicines 2023; 11:2524. [PMID: 37760965 PMCID: PMC10526287 DOI: 10.3390/biomedicines11092524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/16/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), has been discussed in the context of Parkinson's disease (PD) over the last three years. Now that we are entering the long-term phase of this pandemic, we are intrigued to look back and see how and why the community of patients with PD was impacted and what knowledge we have collected so far. The relationship between COVID-19 and PD is likely multifactorial in nature. Similar to other systemic infections, a probable worsening of PD symptoms secondary to COVID-19, either transient or persistent (long COVID), has been demonstrated, while the COVID-19-related mortality of PD patients may be increased compared to the general population. These observations could be attributed to direct or indirect damage from SARS-CoV-2 in the central nervous system (CNS) or could result from general infection-related parameters (e.g., hospitalization or drugs) and the sequelae of the COVID-19 pandemic (e.g., quarantine). A growing number of cases of new-onset parkinsonism or PD following SARS-CoV-2 infection have been reported, either closely (post-infectious) or remotely (para-infectious) after a COVID-19 diagnosis, although such a link remains hypothetical. The pathophysiological substrate of these phenomena remains elusive; however, research studies, particularly pathology studies, have suggested various COVID-19-induced degenerative changes with potential associations with PD/parkinsonism. We review the literature to date for answers considering the relationship between SARS-CoV-2 infection and PD/parkinsonism, examining pathophysiology, clinical manifestations, vaccination, and future directions.
Collapse
Affiliation(s)
- Iro Boura
- Parkinson’s Foundation Centre of Excellence, King’s College Hospital, Denmark Hill, London SE5 9RS, UK; (I.B.)
- Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 5 Cutcombe Road, London SE5 9RX, UK
- Medical School, University of Crete, Heraklion, 71003 Iraklion, Greece
| | - Mubasher A. Qamar
- Parkinson’s Foundation Centre of Excellence, King’s College Hospital, Denmark Hill, London SE5 9RS, UK; (I.B.)
- Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 5 Cutcombe Road, London SE5 9RX, UK
| | - Francesco Daddoveri
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Savi 10, 56126 Pisa, Italy
| | - Valentina Leta
- Parkinson’s Foundation Centre of Excellence, King’s College Hospital, Denmark Hill, London SE5 9RS, UK; (I.B.)
- Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 5 Cutcombe Road, London SE5 9RX, UK
- Parkinson and Movement Disorders Unit, Department of Clinical Neuroscience, Fondazione, IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | | | - Cristian Falup-Pecurariu
- Department of Neurology, County Clinic Hospital, Faculty of Medicine, Transilvania University Brasov, 500019 Brasov, Romania
| | - K. Ray Chaudhuri
- Parkinson’s Foundation Centre of Excellence, King’s College Hospital, Denmark Hill, London SE5 9RS, UK; (I.B.)
- Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 5 Cutcombe Road, London SE5 9RX, UK
| |
Collapse
|
4
|
Sansone F, Pellegrino GM, Caronni A, Bonazza F, Vegni E, Lué A, Bocci T, Pipolo C, Giusti G, Di Filippo P, Di Pillo S, Chiarelli F, Sferrazza Papa GF, Attanasi M. Long COVID in Children: A Multidisciplinary Review. Diagnostics (Basel) 2023; 13:1990. [PMID: 37370884 DOI: 10.3390/diagnostics13121990] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Long COVID syndrome has emerged as a long-lasting consequence of acute SARS-CoV-2 infection in adults. In addition, children may be affected by Long COVID, with potential clinical issues in different fields, including problems in school performance and daily activities. Yet, the pathophysiologic bases of Long COVID in children are largely unknown, and it is difficult to predict who will develop the syndrome. In this multidisciplinary clinical review, we summarise the latest scientific data regarding Long COVID and its impact on children. Special attention is given to diagnostic tests, in order to help the physicians to find potential disease markers and quantify impairment. Specifically, we assess the respiratory, upper airways, cardiac, neurologic and motor and psychological aspects. Finally, we also propose a multidisciplinary clinical approach.
Collapse
Affiliation(s)
| | | | - Antonio Caronni
- Department of Neurorehabilitation Sciences, IRCCS Istituto Auxologico Italiano, Ospedale San Luca, 20122 Milan, Italy
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy
| | - Federica Bonazza
- Department of Health Sciences, Clinical Psychology, University of Milan, Via di Rudinì 8, 20142 Milan, Italy
| | - Elena Vegni
- Department of Health Sciences, Clinical Psychology, University of Milan, Via di Rudinì 8, 20142 Milan, Italy
- Unit of Clinical Psychology, San Paolo Hospital, ASST Santi Paolo e Carlo, Via di Rudinì 8, 20142 Milan, Italy
| | - Alberto Lué
- Service of Digestive Diseases, University Clinic Hospital Lozano Blesa, IIS Aragón, 50009 Zaragoza, Spain
| | - Tommaso Bocci
- Department of Health Sciences, University of Milan, 20146 Milan, Italy
- Clinical Neurology Unit, Department of Health Sciences, "Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo", University of Milan, 20146 Milan, Italy
| | - Carlotta Pipolo
- Department of Health Sciences, Otorhinolaryngology Department, ASST Santi Paolo e Carlo, University of Milan, 20142 Milan, Italy
| | - Giuliano Giusti
- Paediatric Cardiology Unit, Niguarda Hospital, 20162 Milan, Italy
| | - Paola Di Filippo
- Paediatric Allergy and Pulmonology Unit, Department of Paediatrics, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Sabrina Di Pillo
- Paediatric Allergy and Pulmonology Unit, Department of Paediatrics, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Francesco Chiarelli
- Paediatric Allergy and Pulmonology Unit, Department of Paediatrics, University of Chieti-Pescara, 66100 Chieti, Italy
| | | | - Marina Attanasi
- Paediatric Allergy and Pulmonology Unit, Department of Paediatrics, University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
5
|
Emmi A, Rizzo S, Barzon L, Sandre M, Carturan E, Sinigaglia A, Riccetti S, Della Barbera M, Boscolo-Berto R, Cocco P, Macchi V, Antonini A, De Gaspari M, Basso C, De Caro R, Porzionato A. Detection of SARS-CoV-2 viral proteins and genomic sequences in human brainstem nuclei. NPJ Parkinsons Dis 2023; 9:25. [PMID: 36781876 PMCID: PMC9924897 DOI: 10.1038/s41531-023-00467-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Neurological manifestations are common in COVID-19, the disease caused by SARS-CoV-2. Despite reports of SARS-CoV-2 detection in the brain and cerebrospinal fluid of COVID-19 patients, it is still unclear whether the virus can infect the central nervous system, and which neuropathological alterations can be ascribed to viral tropism, rather than immune-mediated mechanisms. Here, we assess neuropathological alterations in 24 COVID-19 patients and 18 matched controls who died due to pneumonia/respiratory failure. Aside from a wide spectrum of neuropathological alterations, SARS-CoV-2-immunoreactive neurons were detected in the dorsal medulla and in the substantia nigra of five COVID-19 subjects. Viral RNA was also detected by real-time RT-PCR. Quantification of reactive microglia revealed an anatomically segregated pattern of inflammation within affected brainstem regions, and was higher when compared to controls. While the results of this study support the neuroinvasive potential of SARS-CoV-2 and characterize the role of brainstem inflammation in COVID-19, its potential implications for neurodegeneration, especially in Parkinson's disease, require further investigations.
Collapse
Affiliation(s)
- Aron Emmi
- grid.5608.b0000 0004 1757 3470Institute of Human Anatomy, Department of Neuroscience, University of Padova, Padova, Italy ,grid.5608.b0000 0004 1757 3470Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padova, Italy
| | - Stefania Rizzo
- grid.5608.b0000 0004 1757 3470Department of Cardio-Thoracic-Vascular Sciences & Public Health, University of Padova, Padova, Italy
| | - Luisa Barzon
- grid.5608.b0000 0004 1757 3470Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Michele Sandre
- grid.5608.b0000 0004 1757 3470Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padova, Italy ,grid.5608.b0000 0004 1757 3470Department of Neuroscience, University of Padova, Padova, Italy
| | - Elisa Carturan
- grid.5608.b0000 0004 1757 3470Department of Cardio-Thoracic-Vascular Sciences & Public Health, University of Padova, Padova, Italy
| | - Alessandro Sinigaglia
- grid.5608.b0000 0004 1757 3470Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Silvia Riccetti
- grid.5608.b0000 0004 1757 3470Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Mila Della Barbera
- grid.5608.b0000 0004 1757 3470Department of Cardio-Thoracic-Vascular Sciences & Public Health, University of Padova, Padova, Italy
| | - Rafael Boscolo-Berto
- grid.5608.b0000 0004 1757 3470Institute of Human Anatomy, Department of Neuroscience, University of Padova, Padova, Italy
| | - Patrizia Cocco
- Pathology and Histopathology Unit, Ospedali Riuniti Padova Sud, Padova, Italy
| | - Veronica Macchi
- grid.5608.b0000 0004 1757 3470Institute of Human Anatomy, Department of Neuroscience, University of Padova, Padova, Italy ,grid.5608.b0000 0004 1757 3470Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padova, Italy
| | - Angelo Antonini
- grid.5608.b0000 0004 1757 3470Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padova, Italy ,grid.5608.b0000 0004 1757 3470Movement Disorders Unit, Department of Neuroscience, University of Padova, Padova, Italy
| | - Monica De Gaspari
- grid.5608.b0000 0004 1757 3470Department of Cardio-Thoracic-Vascular Sciences & Public Health, University of Padova, Padova, Italy
| | - Cristina Basso
- grid.5608.b0000 0004 1757 3470Department of Cardio-Thoracic-Vascular Sciences & Public Health, University of Padova, Padova, Italy
| | - Raffaele De Caro
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, Padova, Italy. .,Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padova, Italy.
| | - Andrea Porzionato
- grid.5608.b0000 0004 1757 3470Institute of Human Anatomy, Department of Neuroscience, University of Padova, Padova, Italy ,grid.5608.b0000 0004 1757 3470Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padova, Italy
| |
Collapse
|
6
|
Li W, Sun L, Yue L, Xiao S. Alzheimer's disease and COVID-19: Interactions, intrinsic linkages, and the role of immunoinflammatory responses in this process. Front Immunol 2023; 14:1120495. [PMID: 36845144 PMCID: PMC9947230 DOI: 10.3389/fimmu.2023.1120495] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
Alzheimer's disease (AD) and COVID-19 share many common risk factors, such as advanced age, complications, APOE genotype, etc. Epidemiological studies have also confirmed the internal relationship between the two diseases. For example, studies have found that AD patients are more likely to suffer from COVID-19, and after infection with COVID-19, AD also has a much higher risk of death than other chronic diseases, and what's more interesting is that the risk of developing AD in the future is significantly higher after infection with COVID-19. Therefore, this review gives a detailed introduction to the internal relationship between Alzheimer's disease and COVID-19 from the perspectives of epidemiology, susceptibility and mortality. At the same time, we focused on the important role of inflammation and immune responses in promoting the onset and death of AD from COVID-19.
Collapse
Affiliation(s)
- Wei Li
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Alzheimer’s Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Lin Sun
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Alzheimer’s Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Yue
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Alzheimer’s Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Shifu Xiao
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Alzheimer’s Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Leta V, Urso D, Batzu L, Lau YH, Mathew D, Boura I, Raeder V, Falup-Pecurariu C, van Wamelen D, Ray Chaudhuri K. Viruses, parkinsonism and Parkinson's disease: the past, present and future. J Neural Transm (Vienna) 2022; 129:1119-1132. [PMID: 36036863 PMCID: PMC9422946 DOI: 10.1007/s00702-022-02536-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/01/2022] [Indexed: 01/01/2023]
Abstract
Parkinsonism secondary to viral infections is not an uncommon occurrence and has been brought under the spotlight with the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. A variety of viruses have been described with a potential of inducing or contributing to the occurrence of parkinsonism and Parkinson's disease (PD), although the relationship between the two remains a matter of debate originating with the description of encephalitis lethargica in the aftermath of the Spanish flu in 1918. While some viral infections have been linked to an increased risk for the development of PD, others seem to have a causal link with the occurrence of parkinsonism. Here, we review the currently available evidence on viral-induced parkinsonism with a focus on potential pathophysiological mechanisms and clinical features. We also review the evidence on viral infections as a risk factor for developing PD and the link between SARS-CoV-2 and parkinsonism, which might have important implications for future research and treatments.
Collapse
Affiliation(s)
- Valentina Leta
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, Cutcombe Road, London, SE5 9RT, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, SE5 9RS, UK
| | - Daniele Urso
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, Cutcombe Road, London, SE5 9RT, UK
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari 'Aldo Moro', "Pia Fondazione Cardinale G. Panico", Tricase, Lecce, Italy
| | - Lucia Batzu
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, Cutcombe Road, London, SE5 9RT, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, SE5 9RS, UK
| | - Yue Hui Lau
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, Cutcombe Road, London, SE5 9RT, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, SE5 9RS, UK
| | - Donna Mathew
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, Cutcombe Road, London, SE5 9RT, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, SE5 9RS, UK
| | - Iro Boura
- School of Medicine, University of Crete, Heraklion, Crete, Greece
- Department of Neurology, University Hospital of Heraklion, Heraklion, Crete, Greece
| | - Vanessa Raeder
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, Cutcombe Road, London, SE5 9RT, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, SE5 9RS, UK
- Department of Neurology, Technical University Dresden, Dresden, Germany
| | | | - Daniel van Wamelen
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, Cutcombe Road, London, SE5 9RT, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, SE5 9RS, UK
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - K Ray Chaudhuri
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, Cutcombe Road, London, SE5 9RT, UK.
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, SE5 9RS, UK.
| |
Collapse
|