1
|
de Plater L, Firmin J, Maître JL. Mechanical strengthening of cell-cell adhesion during mouse embryo compaction. Biophys J 2025; 124:901-912. [PMID: 38528761 PMCID: PMC11947474 DOI: 10.1016/j.bpj.2024.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/26/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024] Open
Abstract
Compaction is the first morphogenetic movement of the eutherian mammals and involves a developmentally regulated adhesion process. Previous studies investigated cellular and mechanical aspects of compaction. During mouse and human compaction, cells spread onto each other as a result of a contractility-mediated increase in surface tension pulling at the edges of their cell-cell contacts. However, how compaction may affect the mechanical stability of cell-cell contacts remains unknown. Here, we used a dual pipette aspiration assay on cell doublets to quantitatively analyze the mechanical stability of compacting mouse embryos. We measured increased mechanical stability of contacts with rupture forces growing from 40 to 70 nN, which was highly correlated with cell-cell contact expansion. Analyzing the dynamic molecular reorganization of cell-cell contacts, we find minimal recruitment of the cell-cell adhesion molecule Cdh1 (also known as E-cadherin) to contacts but we observe its reorganization into a peripheral adhesive ring. However, this reorganization is not associated with increased effective bond density, contrary to previous reports in other adhesive systems. Using genetics, we reduce the levels of Cdh1 or replace it with a chimeric adhesion molecule composed of the extracellular domain of Cdh1 and the intracellular domain of Cdh2 (also known as N-cadherin). We find that reducing the levels of Cdh1 impairs the mechanical stability of cell-cell contacts due to reduced contact growth, which nevertheless show higher effective bond density than wild-type contacts of similar size. On the other hand, chimeric adhesion molecules cannot form large or strong contacts indicating that the intracellular domain of Cdh2 is unable to reorganize contacts and/or is mechanically weaker than the one of Cdh1 in mouse embryos. Together, we find that mouse embryo compaction mechanically strengthens cell-cell adhesion via the expansion of Cdh1 adhesive rings that maintain pre-compaction levels of effective bond density.
Collapse
Affiliation(s)
- Ludmilla de Plater
- Institut Curie, Université PSL, CNRS UMR3215, INSERM U934, Paris, France
| | - Julie Firmin
- Institut Curie, Université PSL, CNRS UMR3215, INSERM U934, Paris, France; Service de Biologie de la Reproduction - CECOS, Paris Centre Hospital, APHP Centre, Université Paris Cité, Paris, France
| | - Jean-Léon Maître
- Institut Curie, Université PSL, CNRS UMR3215, INSERM U934, Paris, France.
| |
Collapse
|
2
|
Wubshet NH, Liu AP. Methods to mechanically perturb and characterize GUV-based minimal cell models. Comput Struct Biotechnol J 2022; 21:550-562. [PMID: 36659916 PMCID: PMC9816913 DOI: 10.1016/j.csbj.2022.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Cells shield organelles and the cytosol via an active boundary predominantly made of phospholipids and membrane proteins, yet allowing communication between the intracellular and extracellular environment. Micron-sized liposome compartments commonly known as giant unilamellar vesicles (GUVs) are used to model the cell membrane and encapsulate biological materials and processes in a cell-like confinement. In the field of bottom-up synthetic biology, many have utilized GUVs as substrates to study various biological processes such as protein-lipid interactions, cytoskeletal assembly, and dynamics of protein synthesis. Like cells, it is ideal that GUVs are also mechanically durable and able to stay intact when the inner and outer environment changes. As a result, studies have demonstrated approaches to tune the mechanical properties of GUVs by modulating membrane composition and lumenal material property. In this context, there have been many different methods developed to test the mechanical properties of GUVs. In this review, we will survey various perturbation techniques employed to mechanically characterize GUVs.
Collapse
Affiliation(s)
- Nadab H. Wubshet
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Allen P. Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Govendir MA, Kempe D, Sianati S, Cremasco J, Mazalo JK, Colakoglu F, Golo M, Poole K, Biro M. T cell cytoskeletal forces shape synapse topography for targeted lysis via membrane curvature bias of perforin. Dev Cell 2022; 57:2237-2247.e8. [PMID: 36113483 DOI: 10.1016/j.devcel.2022.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/20/2022] [Accepted: 08/24/2022] [Indexed: 11/03/2022]
Abstract
Cytotoxic T lymphocytes (CTLs) lyse target cells by delivering lytic granules that contain the pore former perforin to the cytotoxic immunological synapse. Here, we establish that opposing cytoskeletal forces drive lytic granule polarization and simultaneously shape T cell synapse topography to enhance target perforation. At the cell rear, actomyosin contractility drives the anterograde movement of lytic granules toward the nucleus. At the synapse, dynein-derived forces induce negatively curved membrane pockets to which granules are transported around the nucleus. These highly concave degranulation pockets are located directly opposite positively curved bulges on the target cell membrane. We identify a curvature bias in the action of perforin, which preferentially perforates positively curved tumor cell membrane. Together, these findings demonstrate murine and human T cell-mediated cytotoxicity to be a highly tuned mechano-biochemical system, in which the forces that polarize lytic granules locally bend the synaptic membrane to favor the unidirectional perforation of the target cell.
Collapse
Affiliation(s)
- Matt A Govendir
- EMBL Australia, Single Molecule Science node, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Daryan Kempe
- EMBL Australia, Single Molecule Science node, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Setareh Sianati
- Cellular and Systems Physiology, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - James Cremasco
- EMBL Australia, Single Molecule Science node, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jessica K Mazalo
- EMBL Australia, Single Molecule Science node, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Feyza Colakoglu
- EMBL Australia, Single Molecule Science node, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Matteo Golo
- EMBL Australia, Single Molecule Science node, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Kate Poole
- EMBL Australia, Single Molecule Science node, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia; Cellular and Systems Physiology, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Maté Biro
- EMBL Australia, Single Molecule Science node, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
4
|
Li X, Jin Y, Shi J, Sun X, Ouyang Q, Luo C. A high throughput microfluidic system with large ranges of applied pressures for measuring the mechanical properties of single fixed cells and differentiated cells. BIOMICROFLUIDICS 2022; 16:034102. [PMID: 35547183 PMCID: PMC9075862 DOI: 10.1063/5.0085876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/31/2022] [Indexed: 05/05/2023]
Abstract
The mechanical properties of cells are of great significance to their normal physiological activities. The current methods used for the measurement of a cell's mechanical properties have the problems of complicated operation, low throughput, and limited measuring range. Based on micropipette technology, we designed a double-layer micro-valve-controlled microfluidic chip with a series of micropipette arrays. The chip has adjustment pressure ranges of 0.03-1 and 0.3-10 kPa and has a pressure stabilization design, which can achieve a robust measurement of a single cell's mechanical properties under a wide pressure range and is simple to operate. Using this chip, we measured the mechanical properties of the cells treated with different concentrations of paraformaldehyde (PFA) and observed that the viscoelasticity of the cells gradually increased as the PFA concentration increased. Then, this method was also used to characterize the changes in the mechanical properties of the differentiation pathways of stem cells from the apical papilla to osteogenesis.
Collapse
Affiliation(s)
| | - Yiteng Jin
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | | | - Xiaoqiang Sun
- The Department of Endodontics, School of Stomatology, Capital Medical University, Beijing, China
| | | | | |
Collapse
|
5
|
Wang H, Zhou F, Guo Y, Ju LA. Micropipette-based biomechanical nanotools on living cells. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2022; 51:119-133. [PMID: 35171346 PMCID: PMC8964576 DOI: 10.1007/s00249-021-01587-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/30/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022]
Abstract
Mechanobiology is an emerging field at the interface of biology and mechanics, investigating the roles of mechanical forces within biomolecules, organelles, cells, and tissues. As a highlight, the recent advances of micropipette-based aspiration assays and dynamic force spectroscopies such as biomembrane force probe (BFP) provide unprecedented mechanobiological insights with excellent live-cell compatibility. In their classic applications, these assays measure force-dependent ligand-receptor-binding kinetics, protein conformational changes, and cellular mechanical properties such as cortical tension and stiffness. In recent years, when combined with advanced microscopies in high spatial and temporal resolutions, these biomechanical nanotools enable characterization of receptor-mediated cell mechanosensing and subsequent organelle behaviors at single-cellular and molecular level. In this review, we summarize the latest developments of these assays for live-cell mechanobiology studies. We also provide perspectives on their future upgrades with multimodal integration and high-throughput capability.
Collapse
Affiliation(s)
- Haoqing Wang
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW, Australia.,Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia.,Heart Research Institute, Newtown, NSW, Australia
| | - Fang Zhou
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW, Australia
| | - Yuze Guo
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW, Australia
| | - Lining Arnold Ju
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW, Australia. .,Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia. .,Heart Research Institute, Newtown, NSW, Australia.
| |
Collapse
|
6
|
Ichikawa T, Zhang HT, Panavaite L, Erzberger A, Fabrèges D, Snajder R, Wolny A, Korotkevich E, Tsuchida-Straeten N, Hufnagel L, Kreshuk A, Hiiragi T. An ex vivo system to study cellular dynamics underlying mouse peri-implantation development. Dev Cell 2022; 57:373-386.e9. [PMID: 35063082 PMCID: PMC8826647 DOI: 10.1016/j.devcel.2021.12.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 08/23/2021] [Accepted: 12/23/2021] [Indexed: 01/09/2023]
Abstract
Upon implantation, mammalian embryos undergo major morphogenesis and key developmental processes such as body axis specification and gastrulation. However, limited accessibility obscures the study of these crucial processes. Here, we develop an ex vivo Matrigel-collagen-based culture to recapitulate mouse development from E4.5 to E6.0. Our system not only recapitulates embryonic growth, axis initiation, and overall 3D architecture in 49% of the cases, but its compatibility with light-sheet microscopy also enables the study of cellular dynamics through automatic cell segmentation. We find that, upon implantation, release of the increasing tension in the polar trophectoderm is necessary for its constriction and invagination. The resulting extra-embryonic ectoderm plays a key role in growth, morphogenesis, and patterning of the neighboring epiblast, which subsequently gives rise to all embryonic tissues. This 3D ex vivo system thus offers unprecedented access to peri-implantation development for in toto monitoring, measurement, and spatiotemporally controlled perturbation, revealing a mechano-chemical interplay between extra-embryonic and embryonic tissues.
Collapse
Affiliation(s)
- Takafumi Ichikawa
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Hui Ting Zhang
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Collaboration for PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Laura Panavaite
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Collaboration for PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Anna Erzberger
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany.
| | - Dimitri Fabrèges
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Rene Snajder
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Adrian Wolny
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | | | | | - Lars Hufnagel
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Anna Kreshuk
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Takashi Hiiragi
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, 606-8501 Kyoto, Japan.
| |
Collapse
|
7
|
Sun W, Gao X, Lei H, Wang W, Cao Y. Biophysical Approaches for Applying and Measuring Biological Forces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105254. [PMID: 34923777 PMCID: PMC8844594 DOI: 10.1002/advs.202105254] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 05/13/2023]
Abstract
Over the past decades, increasing evidence has indicated that mechanical loads can regulate the morphogenesis, proliferation, migration, and apoptosis of living cells. Investigations of how cells sense mechanical stimuli or the mechanotransduction mechanism is an active field of biomaterials and biophysics. Gaining a further understanding of mechanical regulation and depicting the mechanotransduction network inside cells require advanced experimental techniques and new theories. In this review, the fundamental principles of various experimental approaches that have been developed to characterize various types and magnitudes of forces experienced at the cellular and subcellular levels are summarized. The broad applications of these techniques are introduced with an emphasis on the difficulties in implementing these techniques in special biological systems. The advantages and disadvantages of each technique are discussed, which can guide readers to choose the most suitable technique for their questions. A perspective on future directions in this field is also provided. It is anticipated that technical advancement can be a driving force for the development of mechanobiology.
Collapse
Affiliation(s)
- Wenxu Sun
- School of SciencesNantong UniversityNantong226019P. R. China
| | - Xiang Gao
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
| | - Hai Lei
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
- Chemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210023P. R. China
| | - Wei Wang
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
| | - Yi Cao
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
- MOE Key Laboratory of High Performance Polymer Materials and TechnologyDepartment of Polymer Science & EngineeringCollege of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023P. R. China
- Chemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210023P. R. China
| |
Collapse
|
8
|
Beshay PE, Cortes-Medina MG, Menyhert MM, Song JW. The biophysics of cancer: emerging insights from micro- and nanoscale tools. ADVANCED NANOBIOMED RESEARCH 2022; 2:2100056. [PMID: 35156093 PMCID: PMC8827905 DOI: 10.1002/anbr.202100056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cancer is a complex and dynamic disease that is aberrant both biologically and physically. There is growing appreciation that physical abnormalities with both cancer cells and their microenvironment that span multiple length scales are important drivers for cancer growth and metastasis. The scope of this review is to highlight the key advancements in micro- and nano-scale tools for delineating the cause and consequences of the aberrant physical properties of tumors. We focus our review on three important physical aspects of cancer: 1) solid mechanical properties, 2) fluid mechanical properties, and 3) mechanical alterations to cancer cells. Beyond posing physical barriers to the delivery of cancer therapeutics, these properties are also known to influence numerous biological processes, including cancer cell invasion and migration leading to metastasis, and response and resistance to therapy. We comment on how micro- and nanoscale tools have transformed our fundamental understanding of the physical dynamics of cancer progression and their potential for bridging towards future applications at the interface of oncology and physical sciences.
Collapse
Affiliation(s)
- Peter E Beshay
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210
| | | | - Miles M Menyhert
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210
| | - Jonathan W Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
9
|
Optical interferometry based micropipette aspiration provides real-time sub-nanometer spatial resolution. Commun Biol 2021; 4:610. [PMID: 34021241 PMCID: PMC8140111 DOI: 10.1038/s42003-021-02121-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/12/2021] [Indexed: 11/09/2022] Open
Abstract
Micropipette aspiration (MPA) is an essential tool in mechanobiology; however, its potential is far from fully exploited. The traditional MPA technique has limited temporal and spatial resolution and requires extensive post processing to obtain the mechanical fingerprints of samples. Here, we develop a MPA system that measures pressure and displacement in real time with sub-nanometer resolution thanks to an interferometric readout. This highly sensitive MPA system enables studying the nanoscale behavior of soft biomaterials under tension and their frequency-dependent viscoelastic response.
Collapse
|
10
|
Tsai TYC, Sikora M, Xia P, Colak-Champollion T, Knaut H, Heisenberg CP, Megason SG. An adhesion code ensures robust pattern formation during tissue morphogenesis. Science 2020; 370:113-116. [PMID: 33004519 PMCID: PMC7879479 DOI: 10.1126/science.aba6637] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/27/2020] [Indexed: 12/14/2022]
Abstract
Animal development entails the organization of specific cell types in space and time, and spatial patterns must form in a robust manner. In the zebrafish spinal cord, neural progenitors form stereotypic patterns despite noisy morphogen signaling and large-scale cellular rearrangements during morphogenesis and growth. By directly measuring adhesion forces and preferences for three types of endogenous neural progenitors, we provide evidence for the differential adhesion model in which differences in intercellular adhesion mediate cell sorting. Cell type-specific combinatorial expression of different classes of cadherins (N-cadherin, cadherin 11, and protocadherin 19) results in homotypic preference ex vivo and patterning robustness in vivo. Furthermore, the differential adhesion code is regulated by the sonic hedgehog morphogen gradient. We propose that robust patterning during tissue morphogenesis results from interplay between adhesion-based self-organization and morphogen-directed patterning.
Collapse
Affiliation(s)
- Tony Y-C Tsai
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston MA 02115, USA
| | - Mateusz Sikora
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuberg, Austria
| | - Peng Xia
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuberg, Austria
| | - Tugba Colak-Champollion
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Holger Knaut
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | | | - Sean G Megason
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston MA 02115, USA.
| |
Collapse
|
11
|
Micropipette force sensors for in vivo force measurements on single cells and multicellular microorganisms. Nat Protoc 2019; 14:594-615. [PMID: 30697007 DOI: 10.1038/s41596-018-0110-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Measuring forces from the piconewton to millinewton range is of great importance for the study of living systems from a biophysical perspective. The use of flexible micropipettes as highly sensitive force probes has become established in the biophysical community, advancing our understanding of cellular processes and microbial behavior. The micropipette force sensor (MFS) technique relies on measurement of the forces acting on a force-calibrated, hollow glass micropipette by optically detecting its deflections. The MFS technique covers a wide micro- and mesoscopic regime of detectable forces (tens of piconewtons to millinewtons) and sample sizes (micrometers to millimeters), does not require gluing of the sample to the cantilever, and allows simultaneous optical imaging of the sample throughout the experiment. Here, we provide a detailed protocol describing how to manufacture and calibrate the micropipettes, as well as how to successfully design, perform, and troubleshoot MFS experiments. We exemplify our approach using the model nematode Caenorhabditis elegans, but by following this protocol, a wide variety of living samples, ranging from single cells to multicellular aggregates and millimeter-sized organisms, can be studied in vivo, with a force resolution as low as 10 pN. A skilled (under)graduate student can master the technique in ~1-2 months. The whole protocol takes ~1-2 d to finish.
Collapse
|
12
|
Pinheiro D, Bellaïche Y. Mechanical Force-Driven Adherens Junction Remodeling and Epithelial Dynamics. Dev Cell 2019; 47:3-19. [PMID: 30300588 DOI: 10.1016/j.devcel.2018.09.014] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/02/2018] [Accepted: 09/12/2018] [Indexed: 12/11/2022]
Abstract
During epithelial tissue development, repair, and homeostasis, adherens junctions (AJs) ensure intercellular adhesion and tissue integrity while allowing for cell and tissue dynamics. Mechanical forces play critical roles in AJs' composition and dynamics. Recent findings highlight that beyond a well-established role in reinforcing cell-cell adhesion, AJ mechanosensitivity promotes junctional remodeling and polarization, thereby regulating critical processes such as cell intercalation, division, and collective migration. Here, we provide an integrated view of mechanosensing mechanisms that regulate cell-cell contact composition, geometry, and integrity under tension and highlight pivotal roles for mechanosensitive AJ remodeling in preserving epithelial integrity and sustaining tissue dynamics.
Collapse
Affiliation(s)
- Diana Pinheiro
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, 75248 Paris Cedex 05, France; Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, 75005 Paris, France
| | - Yohanns Bellaïche
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, 75248 Paris Cedex 05, France; Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, 75005 Paris, France.
| |
Collapse
|
13
|
Advances in Micropipette Aspiration: Applications in Cell Biomechanics, Models, and Extended Studies. Biophys J 2019; 116:587-594. [PMID: 30683304 DOI: 10.1016/j.bpj.2019.01.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/29/2018] [Accepted: 01/02/2019] [Indexed: 12/31/2022] Open
Abstract
With five decades of sustained application, micropipette aspiration has enabled a wide range of biomechanical studies in the field of cell mechanics. Here, we provide an update on the use of the technique, with a focus on recent developments in the analysis of the experiments, innovative microaspiration-based approaches, and applications in a broad variety of cell types. We first recapitulate experimental variations of the technique. We then discuss analysis models focusing on important limitations of widely used biomechanical models, which underpin the urge to adopt the appropriate ones to avoid misleading conclusions. The possibilities of performing different studies on the same cell are also considered.
Collapse
|
14
|
Guevorkian K, Maître JL. Micropipette aspiration: A unique tool for exploring cell and tissue mechanics in vivo. Methods Cell Biol 2016; 139:187-201. [PMID: 28215336 DOI: 10.1016/bs.mcb.2016.11.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cell and tissue mechanical properties are paramount in controlling morphogenesis. Microaspiration techniques allow measuring the absolute values of mechanical properties in space and time in vivo. Here, we explain how to build a microaspiration setup that can be used for both cellular and tissue scale measurements. At the cellular scale, microaspiration allows the mapping in space and time of surface tensions of individual interfaces within a tissue to understand the forces shaping it. At the tissue scale, microaspiration can be used to measure macroscopic mechanical properties such as the viscoelasticity and tissue surface tension that regulate the dynamics of tissue deformation. Based on a simple and cost-effective apparatus, these two complementary microaspiration techniques provide unique tools for exploring cell and tissue mechanics in vivo.
Collapse
Affiliation(s)
- K Guevorkian
- Université de Strasbourg, Centre National de la Recherche Scientifique, UMR 7104, Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
| | - J-L Maître
- Institut Curie, PSL Research University, CNRS, UMR 3215, INSERM, U934, Paris, France
| |
Collapse
|
15
|
Abstract
Fundamental biological processes including morphogenesis and tissue repair require cells to migrate collectively. In these processes, epithelial or endothelial cells move in a cooperative manner coupled by intercellular junctions. Ultimately, the movement of these multicellular systems occurs through the generation of cellular forces, exerted either on the substrate via focal adhesions (cell-substrate forces) or on neighboring cells through cell-cell junctions (cell-cell forces). Quantitative measurements of multicellular forces and kinematics with cellular or subcellular resolution have become possible only in recent years. In this chapter, we describe some of these techniques, which include particle image velocimetry to map cell velocities, traction force microscopy to map forces exerted by cells on the substrate, and monolayer stress microscopy to map forces within and between cells. We also describe experimental protocols to perform these measurements. The combination of these techniques with high-resolution imaging tools and molecular perturbations will lead to a better understanding of the mechanisms underlying collective cell migration in health and disease.
Collapse
|